A Note About the Base of a Product Topology a Question Came up in Class About the Base of a Product Topology

Total Page:16

File Type:pdf, Size:1020Kb

A Note About the Base of a Product Topology a Question Came up in Class About the Base of a Product Topology A Note About the Base of a Product Topology A question came up in class about the base of a product topology. This document hopefully addresses it after first establishing a few things... Consider two topological spaces (X; TX ) and (Y; TY ) and the product space Z = X × Y: A collection of sets BX ⊆ TX is a base (basis) for TX if every G 2 TX can be written as a union of sets in BX . For example, [ G = Bα α2I where I is some arbitrary, and possibly uncountable, index set, and fBαgα2I is a collection of sets in BX . The product space Z can be endowed with the product topology which we will denote here by TZ . It is defined as the topology whose base is the collection of sets fGX × GY : GX 2 TX ;GY 2 TY g: Clearly there are other possible topologies for Z. For example, we could take the trivial topology f;; Zg. However, the product topology will be an important one for us! The question was: Can we just take the base for TZ to be sets of the form fBX × BY : BX 2 BX ;BY 2 BY g? The answer is yes and we will prove it here shortly. Forget product spaces for a few moments. Suppose that (X; TX ) is a topological space. It will be useful to use an alternate definition of a base for T . For clarity, we restate our first definition and label it as “Definition 1". Definition 1: A collection of sets B ⊆ T is a base for T if every G 2 T can be written as a union of sets in B. Definition 2: A collection of sets B ⊆ T is a base for T if for any G 2 T and for any x 2 G, there exists a B 2 B such that x 2 B ⊆ G. Proof that Def 1 ) Def 2: • Take any G 2 T and any x 2 G. S • By Definition 1, we can write G = α2I Bα for some sets Bα 2 B and some index set I. • So, [ x 2 G = Bα ) x 2 Bα∗ α2I ∗ for some Bα∗ 2 B with α 2 I. [ • But Bα∗ ⊆ Bα = G, so we have α2I x 2 Bα∗ ⊆ G for some Bα∗ 2 B. ut Proof that Def 2 ) Def 1: • Take any G 2 T and any x 2 G. • By Definition 2, there exists a B 2 B such that x 2 B ⊆ G. • Denote B by Bx and find such base sets for all x 2 G. • Then clearly [ G ⊆ Bx x2G since every x 2 G is contained in Bx. • On the other hand, [ Bx ⊆ G x2G since each Bx ⊆ G. [ [ • Thus, we have G = Bx, so we have written G in the form Bα. ut x2G α We are ready to prove the following Theorem. Theorem: Let (X; TX ) and (Y; TY ) be two topological spaces with respective bases BX and BY . Let Z = X × Y. Then BX × BY := fBX × BY : BX 2 BX ;BY 2 BY g? is a base for the product topology TZ . Proof: Using Definition 2 of a topology base, We will show that, for any G 2 TZ and for any z = (x; y) 2 G, we can find BX 2 BX and BY 2 BY such that z 2 BX × BY ⊆ G. • Take any G 2 TZ and any z = (x; y) 2 G. • By Definition 2 of the product topology, there exists a GX × GY with GX 2 TX and GY 2 TY such that (x; y) 2 GX × GY ⊆ G: • Since BX and BY are respective bases for TX and TY , there exist sets C 2 BX and D 2 BY such that x 2 C ⊆ BX and y 2 D ⊆ BY : • Since we found C × D in BX × BY such that z = (x; y) 2 C × D ⊆ G, we have, by Definition 2, that BX × BY is a base for the product topology TZ . ut.
Recommended publications
  • Algebra I Chapter 1. Basic Facts from Set Theory 1.1 Glossary of Abbreviations
    Notes: c F.P. Greenleaf, 2000-2014 v43-s14sets.tex (version 1/1/2014) Algebra I Chapter 1. Basic Facts from Set Theory 1.1 Glossary of abbreviations. Below we list some standard math symbols that will be used as shorthand abbreviations throughout this course. means “for all; for every” • ∀ means “there exists (at least one)” • ∃ ! means “there exists exactly one” • ∃ s.t. means “such that” • = means “implies” • ⇒ means “if and only if” • ⇐⇒ x A means “the point x belongs to a set A;” x / A means “x is not in A” • ∈ ∈ N denotes the set of natural numbers (counting numbers) 1, 2, 3, • · · · Z denotes the set of all integers (positive, negative or zero) • Q denotes the set of rational numbers • R denotes the set of real numbers • C denotes the set of complex numbers • x A : P (x) If A is a set, this denotes the subset of elements x in A such that •statement { ∈ P (x)} is true. As examples of the last notation for specifying subsets: x R : x2 +1 2 = ( , 1] [1, ) { ∈ ≥ } −∞ − ∪ ∞ x R : x2 +1=0 = { ∈ } ∅ z C : z2 +1=0 = +i, i where i = √ 1 { ∈ } { − } − 1.2 Basic facts from set theory. Next we review the basic definitions and notations of set theory, which will be used throughout our discussions of algebra. denotes the empty set, the set with nothing in it • ∅ x A means that the point x belongs to a set A, or that x is an element of A. • ∈ A B means A is a subset of B – i.e.
    [Show full text]
  • Generalized Inverse Limits and Topological Entropy
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repository of Faculty of Science, University of Zagreb FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS Goran Erceg GENERALIZED INVERSE LIMITS AND TOPOLOGICAL ENTROPY DOCTORAL THESIS Zagreb, 2016 PRIRODOSLOVNO - MATEMATICKIˇ FAKULTET MATEMATICKIˇ ODSJEK Goran Erceg GENERALIZIRANI INVERZNI LIMESI I TOPOLOŠKA ENTROPIJA DOKTORSKI RAD Zagreb, 2016. FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS Goran Erceg GENERALIZED INVERSE LIMITS AND TOPOLOGICAL ENTROPY DOCTORAL THESIS Supervisors: prof. Judy Kennedy prof. dr. sc. Vlasta Matijevic´ Zagreb, 2016 PRIRODOSLOVNO - MATEMATICKIˇ FAKULTET MATEMATICKIˇ ODSJEK Goran Erceg GENERALIZIRANI INVERZNI LIMESI I TOPOLOŠKA ENTROPIJA DOKTORSKI RAD Mentori: prof. Judy Kennedy prof. dr. sc. Vlasta Matijevic´ Zagreb, 2016. Acknowledgements First of all, i want to thank my supervisor professor Judy Kennedy for accept- ing a big responsibility of guiding a transatlantic student. Her enthusiasm and love for mathematics are contagious. I thank professor Vlasta Matijevi´c, not only my supervisor but also my role model as a professor of mathematics. It was privilege to be guided by her for master's and doctoral thesis. I want to thank all my math teachers, from elementary school onwards, who helped that my love for math rises more and more with each year. Special thanks to Jurica Cudina´ who showed me a glimpse of math theory already in the high school. I thank all members of the Topology seminar in Split who always knew to ask right questions at the right moment and to guide me in the right direction. I also thank Iztok Baniˇcand the rest of the Topology seminar in Maribor who welcomed me as their member and showed me the beauty of a teamwork.
    [Show full text]
  • Ergodicity and Metric Transitivity
    Chapter 25 Ergodicity and Metric Transitivity Section 25.1 explains the ideas of ergodicity (roughly, there is only one invariant set of positive measure) and metric transivity (roughly, the system has a positive probability of going from any- where to anywhere), and why they are (almost) the same. Section 25.2 gives some examples of ergodic systems. Section 25.3 deduces some consequences of ergodicity, most im- portantly that time averages have deterministic limits ( 25.3.1), and an asymptotic approach to independence between even§ts at widely separated times ( 25.3.2), admittedly in a very weak sense. § 25.1 Metric Transitivity Definition 341 (Ergodic Systems, Processes, Measures and Transfor- mations) A dynamical system Ξ, , µ, T is ergodic, or an ergodic system or an ergodic process when µ(C) = 0 orXµ(C) = 1 for every T -invariant set C. µ is called a T -ergodic measure, and T is called a µ-ergodic transformation, or just an ergodic measure and ergodic transformation, respectively. Remark: Most authorities require a µ-ergodic transformation to also be measure-preserving for µ. But (Corollary 54) measure-preserving transforma- tions are necessarily stationary, and we want to minimize our stationarity as- sumptions. So what most books call “ergodic”, we have to qualify as “stationary and ergodic”. (Conversely, when other people talk about processes being “sta- tionary and ergodic”, they mean “stationary with only one ergodic component”; but of that, more later. Definition 342 (Metric Transitivity) A dynamical system is metrically tran- sitive, metrically indecomposable, or irreducible when, for any two sets A, B n ∈ , if µ(A), µ(B) > 0, there exists an n such that µ(T − A B) > 0.
    [Show full text]
  • MTH 304: General Topology Semester 2, 2017-2018
    MTH 304: General Topology Semester 2, 2017-2018 Dr. Prahlad Vaidyanathan Contents I. Continuous Functions3 1. First Definitions................................3 2. Open Sets...................................4 3. Continuity by Open Sets...........................6 II. Topological Spaces8 1. Definition and Examples...........................8 2. Metric Spaces................................. 11 3. Basis for a topology.............................. 16 4. The Product Topology on X × Y ...................... 18 Q 5. The Product Topology on Xα ....................... 20 6. Closed Sets.................................. 22 7. Continuous Functions............................. 27 8. The Quotient Topology............................ 30 III.Properties of Topological Spaces 36 1. The Hausdorff property............................ 36 2. Connectedness................................. 37 3. Path Connectedness............................. 41 4. Local Connectedness............................. 44 5. Compactness................................. 46 6. Compact Subsets of Rn ............................ 50 7. Continuous Functions on Compact Sets................... 52 8. Compactness in Metric Spaces........................ 56 9. Local Compactness.............................. 59 IV.Separation Axioms 62 1. Regular Spaces................................ 62 2. Normal Spaces................................ 64 3. Tietze's extension Theorem......................... 67 4. Urysohn Metrization Theorem........................ 71 5. Imbedding of Manifolds..........................
    [Show full text]
  • POINT-COFINITE COVERS in the LAVER MODEL 1. Background Let
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 138, Number 9, September 2010, Pages 3313–3321 S 0002-9939(10)10407-9 Article electronically published on April 30, 2010 POINT-COFINITE COVERS IN THE LAVER MODEL ARNOLD W. MILLER AND BOAZ TSABAN (Communicated by Julia Knight) Abstract. Let S1(Γ, Γ) be the statement: For each sequence of point-cofinite open covers, one can pick one element from each cover and obtain a point- cofinite cover. b is the minimal cardinality of a set of reals not satisfying S1(Γ, Γ). We prove the following assertions: (1) If there is an unbounded tower, then there are sets of reals of cardinality b satisfying S1(Γ, Γ). (2) It is consistent that all sets of reals satisfying S1(Γ, Γ) have cardinality smaller than b. These results can also be formulated as dealing with Arhangel’ski˘ı’s property α2 for spaces of continuous real-valued functions. The main technical result is that in Laver’s model, each set of reals of cardinality b has an unbounded Borel image in the Baire space ωω. 1. Background Let P be a nontrivial property of sets of reals. The critical cardinality of P , denoted non(P ), is the minimal cardinality of a set of reals not satisfying P .A natural question is whether there is a set of reals of cardinality at least non(P ), which satisfies P , i.e., a nontrivial example. We consider the following property. Let X be a set of reals. U is a point-cofinite cover of X if U is infinite, and for each x ∈ X, {U ∈U: x ∈ U} is a cofinite subset of U.1 Having X fixed in the background, let Γ be the family of all point- cofinite open covers of X.
    [Show full text]
  • A TEXTBOOK of TOPOLOGY Lltld
    SEIFERT AND THRELFALL: A TEXTBOOK OF TOPOLOGY lltld SEI FER T: 7'0PO 1.OG 1' 0 I.' 3- Dl M E N SI 0 N A I. FIRERED SPACES This is a volume in PURE AND APPLIED MATHEMATICS A Series of Monographs and Textbooks Editors: SAMUELEILENBERG AND HYMANBASS A list of recent titles in this series appears at the end of this volunie. SEIFERT AND THRELFALL: A TEXTBOOK OF TOPOLOGY H. SEIFERT and W. THRELFALL Translated by Michael A. Goldman und S E I FE R T: TOPOLOGY OF 3-DIMENSIONAL FIBERED SPACES H. SEIFERT Translated by Wolfgang Heil Edited by Joan S. Birman and Julian Eisner @ 1980 ACADEMIC PRESS A Subsidiary of Harcourr Brace Jovanovich, Publishers NEW YORK LONDON TORONTO SYDNEY SAN FRANCISCO COPYRIGHT@ 1980, BY ACADEMICPRESS, INC. ALL RIGHTS RESERVED. NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT PERMISSION IN WRITING FROM THE PUBLISHER. ACADEMIC PRESS, INC. 11 1 Fifth Avenue, New York. New York 10003 United Kingdom Edition published by ACADEMIC PRESS, INC. (LONDON) LTD. 24/28 Oval Road, London NWI 7DX Mit Genehmigung des Verlager B. G. Teubner, Stuttgart, veranstaltete, akin autorisierte englische Ubersetzung, der deutschen Originalausgdbe. Library of Congress Cataloging in Publication Data Seifert, Herbert, 1897- Seifert and Threlfall: A textbook of topology. Seifert: Topology of 3-dimensional fibered spaces. (Pure and applied mathematics, a series of mono- graphs and textbooks ; ) Translation of Lehrbuch der Topologic. Bibliography: p. Includes index. 1.
    [Show full text]
  • General Topology
    General Topology Tom Leinster 2014{15 Contents A Topological spaces2 A1 Review of metric spaces.......................2 A2 The definition of topological space.................8 A3 Metrics versus topologies....................... 13 A4 Continuous maps........................... 17 A5 When are two spaces homeomorphic?................ 22 A6 Topological properties........................ 26 A7 Bases................................. 28 A8 Closure and interior......................... 31 A9 Subspaces (new spaces from old, 1)................. 35 A10 Products (new spaces from old, 2)................. 39 A11 Quotients (new spaces from old, 3)................. 43 A12 Review of ChapterA......................... 48 B Compactness 51 B1 The definition of compactness.................... 51 B2 Closed bounded intervals are compact............... 55 B3 Compactness and subspaces..................... 56 B4 Compactness and products..................... 58 B5 The compact subsets of Rn ..................... 59 B6 Compactness and quotients (and images)............. 61 B7 Compact metric spaces........................ 64 C Connectedness 68 C1 The definition of connectedness................... 68 C2 Connected subsets of the real line.................. 72 C3 Path-connectedness.......................... 76 C4 Connected-components and path-components........... 80 1 Chapter A Topological spaces A1 Review of metric spaces For the lecture of Thursday, 18 September 2014 Almost everything in this section should have been covered in Honours Analysis, with the possible exception of some of the examples. For that reason, this lecture is longer than usual. Definition A1.1 Let X be a set. A metric on X is a function d: X × X ! [0; 1) with the following three properties: • d(x; y) = 0 () x = y, for x; y 2 X; • d(x; y) + d(y; z) ≥ d(x; z) for all x; y; z 2 X (triangle inequality); • d(x; y) = d(y; x) for all x; y 2 X (symmetry).
    [Show full text]
  • The Hardness of the Hidden Subset Sum Problem and Its Cryptographic Implications
    The Hardness of the Hidden Subset Sum Problem and Its Cryptographic Implications Phong Nguyen and Jacques Stern Ecole´ Normale Sup´erieure Laboratoire d’Informatique 45 rue d’Ulm, 75230 Paris Cedex 05 France fPhong.Nguyen,[email protected] http://www.dmi.ens.fr/~fpnguyen,sterng/ Abstract. At Eurocrypt’98, Boyko, Peinado and Venkatesan presented simple and very fast methods for generating randomly distributed pairs of the form (x; gx mod p) using precomputation. The security of these methods relied on the potential hardness of a new problem, the so-called hidden subset sum problem. Surprisingly, apart from exhaustive search, no algorithm to solve this problem was known. In this paper, we exhibit a security criterion for the hidden subset sum problem, and discuss its implications on the practicability of the precomputation schemes. Our results are twofold. On the one hand, we present an efficient lattice-based attack which is expected to succeed if and only if the parameters satisfy a particular condition that we make explicit. Experiments have validated the theoretical analysis, and show the limitations of the precomputa- tion methods. For instance, any realistic smart-card implementation of Schnorr’s identification scheme using these precomputations methods is either vulnerable to the attack, or less efficient than with traditional pre- computation methods. On the other hand, we show that, when another condition is satisfied, the pseudo-random generator based on the hidden subset sum problem is strong in some precise sense which includes at- tacks via lattice reduction. Namely, using the discrete Fourier transform, we prove that the distribution of the generator’s output is indistinguish- able from the uniform distribution.
    [Show full text]
  • Composite Subset Measures
    Composite Subset Measures Lei Chen1, Raghu Ramakrishnan1,2, Paul Barford1, Bee-Chung Chen1, Vinod Yegneswaran1 1 Computer Sciences Department, University of Wisconsin, Madison, WI, USA 2 Yahoo! Research, Santa Clara, CA, USA {chenl, pb, beechung, vinod}@cs.wisc.edu [email protected] ABSTRACT into a hierarchy, leading to a very natural notion of multidimen- Measures are numeric summaries of a collection of data records sional regions. Each region represents a data subset. Summarizing produced by applying aggregation functions. Summarizing a col- the records that belong to a region by applying an aggregate opera- lection of subsets of a large dataset, by computing a measure for tor, such as SUM, to a measure attribute (thereby computing a new each subset in the (typically, user-specified) collection is a funda- measure that is associated with the entire region) is a fundamental mental problem. The multidimensional data model, which treats operation in OLAP. records as points in a space defined by dimension attributes, offers Often, however, more sophisticated analysis can be carried out a natural space of data subsets to be considered as summarization based on the computed measures, e.g., identifying regions with candidates, and traditional SQL and OLAP constructs, such as abnormally high measures. For such analyses, it is necessary to GROUP BY and CUBE, allow us to compute measures for subsets compute the measure for a region by also considering other re- drawn from this space. However, GROUP BY only allows us to gions (which are, intuitively, “related” to the given region) and summarize a limited collection of subsets, and CUBE summarizes their measures.
    [Show full text]
  • 14. Arbitrary Products
    14. Arbitrary products Contents 1 Motivation 2 2 Background and preliminary definitions2 N 3 The space Rbox 4 N 4 The space Rprod 6 5 The uniform topology on RN, and completeness 12 6 Summary of results about RN 14 7 Arbitrary products 14 8 A final note on completeness, and completions 19 c 2018{ Ivan Khatchatourian 1 14. Arbitrary products 14.2. Background and preliminary definitions 1 Motivation In section 8 of the lecture notes we discussed a way of defining a topology on a finite product of topological spaces. That definition more or less agreed with our intuition. We should expect products of open sets in each coordinate space to be open in the product, for example, and the only issue that arises is that these sets only form a basis rather than a topology. So we simply generate a topology from them and call it the product topology. This product topology \played nicely" with the topologies on each of the factors in a number of ways. In that earlier section, we also saw that every topological property we had studied up to that point other than ccc-ness was finitely productive. Since then we have developed some new topological properties like regularity, normality, and metrizability, and learned that except for normality these are also finitely productive. So, ultimately, most of the properties we have studied are finitely productive. More importantly, the proofs that they are finitely productive have been easy. Look back for example to your proof that separability is finitely productive, and you will see that there was almost nothing to do.
    [Show full text]
  • On the Cardinality of a Topological Space
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 66, Number 1, September 1977 ON THE CARDINALITY OF A TOPOLOGICAL SPACE ARTHUR CHARLESWORTH Abstract. In recent papers, B. Sapirovskiï, R. Pol, and R. E. Hodel have used a transfinite construction technique of Sapirovskil to provide a unified treatment of fundamental inequalities in the theory of cardinal functions. Sapirovskil's technique is used in this paper to establish an inequality whose countable version states that the continuum is an upper bound for the cardinality of any Lindelöf space having countable pseudocharacter and a point-continuum separating open cover. In addition, the unified treatment is extended to include a recent theorem of Sapirovskil concerning the cardinality of T3 spaces. 1. Introduction. Throughout this paper a and ß denote ordinals, m and n denote infinite cardinals, and \A\ denotes the cardinality of a set A. We let d, c, L, w, it, and \¡>denote the density, cellularity, Lindelöf degree, weight, 77-weight, and pseudocharacter. (For definitions see Juhász [5].) We also let nw, 77% and psw denote the net weight, vT-character, and point separating weight. A collection "31 of subsets of a topological space X is a network for X if whenever p E V, with V open in X, we have p E N C F for some N in CX. A collection % of nonempty open sets is a tr-local base at/7 if whenever p E V, with V open in X, we have U C V for some U in %. A separating open cover § for X is an open cover for X having the property that for each distinct x and y in X there is an S in S such that x E S and y G S.
    [Show full text]
  • Chapter I Sums of Independent Random Variables
    Chapter I Sums of Independent Random Variables In one way or another, most probabilistic analysis entails the study of large families of random variables. The key to such analysis is an understanding of the relations among the family members; and of all the possible ways in which members of a family can be related, by far the simplest is when there is no relationship at all! For this reason, I will begin by looking at families of independent random variables. x1.1 Independence In this section I will introduce Kolmogorov's way of describing independence and prove a few of its consequences. x1.1.1. Independent Sigma Algebras. Let (Ω; F; P) be a probability space (i.e., Ω is a nonempty set, F is a σ-algebra over Ω, and P is a non- negative measure on the measurable space (Ω; F) having total mass 1); and, for each i from the (nonempty) index set I, let Fi be a sub σ-algebra of F. I will say that the σ-algebras Fi; i 2 I, are mutually P-independent or, less precisely, P-independent, if, for every finite subset fi1; : : : ; ing of distinct elements of I and every choice of Aim 2 Fim ; 1 ≤ m ≤ n, (1.1.1) P Ai1 \···\ Ain = P Ai1 ··· P Ain : In particular, if fAi : i 2 Ig is a family of sets from F, I will say that Ai; i 2 I; are P-independent if the associated σ-algebras Fi = f;;Ai;Ai{; Ωg; i 2 I; are. To gain an appreciation for the intuition on which this definition is based, it is important to notice that independence of the pair A1 and A2 in the present sense is equivalent to P A1 \ A2 = P A1 P A2 ; the classical definition which one encounters in elementary treatments.
    [Show full text]