Introduction to Supercomputer Technology

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Supercomputer Technology Introduction to Supercomputer Technology November 2015 1. OVERVIEW Supercomputer Architecture • A supercomputer consists of many computers (nodes) connected together by a fast network (interconnect) • Performance is determined by • the capabilities of individual nodes • the ability of the nodes to communicate • The architectural features of the nodes and interconnect set upper limits on the performance of a program running on the system • the characteristics of the program will determine how well it makes use of the available hardware resources 2. CENTRAL PROCESSING UNIT (CPU) Central Processing Unit (CPU) • The processor that carries out the instructions of a computer program • Evolved from the arithmetic logic unit and control unit of the Von Neumann architecture • Modern CPUs have much more complexity • additional functionality to improve performance • integrated additional roles that were traditionally external to the CPU • It is important to understand the architectural features of the CPU in order to make the best use of them when writing and executing programs • On a Linux system, relevant information is typically found in /proc/cpuinfo Von Neumann Machine (serial processor) • Main Memory: stores data and instructions • Arithmetic Logic Unit (ALU): performs operations on data • Control Unit (CU): interprets and causes execution of instructions • Input Output: allows transfer of data into and out of the machine Exercise: Acquiring CPU Information • Write a SLURM script to output the contents of the /proc/cpuinfo file on a compute node • what is the model name of the processor? • which vendor produced the processor? • Find the processor specification on the vendor website • hint: perform a search using the model name #!/bin/bash -l #SBATCH --account=courses01 #SBATCH –-reservation=courseq #SBATCH –-nodes=1 #SBATCH --time=00:05:00 #SBATCH --export=NONE aprun –n 1 –N 1 cat /proc/cpuinfo > cpuinfo.txt Vector Instructions • Vector instructions allow a processor to perform multiple arithmetic operations in a single clock cycle • They utilise Single Instruction Multiple Data (SIMD) parallelism • All operations perform the same instruction to different data • The data values must be consecutive in memory • The length of vector instructions are increasing with newer architectures Vector Instructions • Check the flags in /proc/cpuinfo to determine which vector instructions are supported, by referring to the cpuinfo.txt created previously flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm ida arat epb xsaveopt pln pts dtherm tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid • Can also check official specification on the vendor website: • What vector instructions are supported on the processors we are using? Simultaneous Multithreading (SMT) also known as Hyper-threading on Intel Processors • Appears as two logical processor for each physical processor • The processor has additional circuitry to hold the state of a second process, which shares the resources of the physical processor • In theory, allows higher utilisation of resources resulting in faster runtimes • In practice, it is program dependent • works well for some programs • sharing of resources causes worse performance for others Simultaneous Multithreading (SMT) also known as Hyper-threading on Intel Processors • SMT can complicate job allocations on supercomputers • Since double the number of processors are presented to the scheduler, it may pack jobs such that two tasks are run per processor • It is important to specify the number of nodes and tasks per node in the SLURM script to ensure your job is being allocated the resources you are expecting • On systems with SMT enabled, it may be worth trying to run your workflow with both cases (one and two tasks per processor) and comparing performance Simultaneous Multithreading (SMT) also known as Hyper-threading on Intel Processors • To determine if SMT is enabled, compare the number of processor entries to the number of siblings in /proc/cpuinfo • Processor entries can be counted with the grep and wc utilities grep processor cpuinfo.txt | wc –l • Siblings are listed in each processor entry grep siblings cpuinfo.txt | head –n 1 • Is hyper-threading enabled on the processors we are using? Multicore Architecture • The circuitry for more than one processor can be placed on a single CPU chip • The processors of a CPU chip are referred to as cores • The number of cores on CPUs have been growing steadily over the last decade • Dual-core, Quad-core, Hex-core, Multicore Multicore Architecture • Each core is able to execute processes independently of the other core, using its own compute resources • However, the cores do share other resources • eg. the memory system, and some levels of caching • If the cores are working in parallel on a shared program, the efficiency may also be reduced by dependencies Multicore Architecture • The number of cores per CPU is listed in /proc/cpuinfo grep cores cpuinfo.txt | head –n 1 • They are also typically provided on the vendor website • How many cores are there on the CPUs we are using? Multi-socket Architecture • The physical CPU identifier for each processor is listed in /proc/cpuinfo, which can be used to determine the number of physical CPUs on the node grep ’physical id’ cpuinfo.txt | sort –u | wc -l • How many physical CPUs are there on the nodes we are using? • The total number of processors should be equal to the result obtained by multiplying the physical CPUs by the cores per CPU, and then doubling if hyper-threading is enabled. • Most codes work well with one process or thread per core on a node, but there are exceptions. • It is worth testing your code with different configurations before commencing production jobs • What are the configurations you would try on the nodes we are using? Cache • A component that temporarily stores data in order to reduce access time • Widely used for a variety of devices for memory or storage: • eg. CPU, Hard Disk, Tape Storage • Typically, data is transferred on access in blocks, known as a cache line • Cache Hit : The data being accessed is in the cache • Cache Miss: The data being accessed is not in the cache • For read access, cache lines are typically loaded on first access • Variety of methods for determining which cache line to overwrite • least frequently used, least recently used, random • Similar variety of methods for determining when to forward writes to memory • write-through, write back • An algorithm’s pattern of data access affects the caching efficiency Cache: Access Patterns • Sequential access results in a higher rate of cache hits • Striding access has a low rate of hits, however modern processors can detect striding access patterns and pre-fetch cache lines • Random access is typically the worst, with a low rate of hits and no ability to predict subsequent access locations Cache • Caches may be shared or exclusive to processor cores • typically numbered in order of location relative to the core • There can be multiple levels of cache in modern processors • smaller, faster caches close to a core • larger, less fast caches shared by cores Exercise: Acquiring Cache Information Write a SLURM script to output the contents of the lscpu command on a compute node • what are the various cache sizes? #!/bin/bash -l #SBATCH --account=courses01 #SBATCH –-reservation=courseq #SBATCH --nodes=1 #SBATCH --time=00:05:00 #SBATCH --export=NONE aprun –n 1 –N 1 lscpu > lscpu.txt 3. NODE ARCHITECTURE Node Components • Components on a node are managed by the chipset, and are connected via a PCI-Express bus • A network adapter connects the node to the rest of the supercomputer via the interconnect • Some systems have local storage on the node, but more commonly remote storage is used • Some systems utilise accelerators to boost the computational performance of the node Node Components • The components are physically attached to a motherboard Memory • Memory is the component on a node that stores the data that the processor is actively using, but does not fit in cache. • It is much larger than the cache, but slower to access by an order of magnitude. • However it is much faster than larger file storage, such as SSD/HDD/Tape. Component Example Example Latency Capacity L1 Cache 1 ns 64 kB per core L2 Cache 3 ns 256 kB per core L3 Cache 10 ns 20,480 kB Memory 100 ns 64 GB SSD Storage 30,000 ns 100 GB HDD Storage 15,000,000 ns 1 TB Exercise: Acquiring Memory Information • Write a SLURM script to output the contents of the /proc/meminfo file on a compute node • what is the total memory available on a node? • how much is currently unused? • how much swap space is there, if any? • Find the processor specification on the vendor website • What information about the memory specification is available? #!/bin/bash -l #SBATCH --account=courses01 #SBATCH –-reservation=courseq #SBATCH --nodes=1 #SBATCH --time=00:05:00 #SBATCH --export=NONE aprun –n 1 –N 1 cat /proc/meminfo > meminfo.txt Multichannel Memory • Memory controllers are integrated into modern CPUs • Multiple channels are used to increase memory bandwidth • Multiple DIMMs are used to increase capacity per channel
Recommended publications
  • Scalable and Distributed Deep Learning (DL): Co-Design MPI Runtimes and DL Frameworks
    Scalable and Distributed Deep Learning (DL): Co-Design MPI Runtimes and DL Frameworks OSU Booth Talk (SC ’19) Ammar Ahmad Awan [email protected] Network Based Computing Laboratory Dept. of Computer Science and Engineering The Ohio State University Agenda • Introduction – Deep Learning Trends – CPUs and GPUs for Deep Learning – Message Passing Interface (MPI) • Research Challenges: Exploiting HPC for Deep Learning • Proposed Solutions • Conclusion Network Based Computing Laboratory OSU Booth - SC ‘18 High-Performance Deep Learning 2 Understanding the Deep Learning Resurgence • Deep Learning (DL) is a sub-set of Machine Learning (ML) – Perhaps, the most revolutionary subset! Deep Machine – Feature extraction vs. hand-crafted Learning Learning features AI Examples: • Deep Learning Examples: Logistic Regression – A renewed interest and a lot of hype! MLPs, DNNs, – Key success: Deep Neural Networks (DNNs) – Everything was there since the late 80s except the “computability of DNNs” Adopted from: http://www.deeplearningbook.org/contents/intro.html Network Based Computing Laboratory OSU Booth - SC ‘18 High-Performance Deep Learning 3 AlexNet Deep Learning in the Many-core Era 10000 8000 • Modern and efficient hardware enabled 6000 – Computability of DNNs – impossible in the 4000 ~500X in 5 years 2000 past! Minutesto Train – GPUs – at the core of DNN training 0 2 GTX 580 DGX-2 – CPUs – catching up fast • Availability of Datasets – MNIST, CIFAR10, ImageNet, and more… • Excellent Accuracy for many application areas – Vision, Machine Translation, and
    [Show full text]
  • Parallel Programming
    Parallel Programming Parallel Programming Parallel Computing Hardware Shared memory: multiple cpus are attached to the BUS all processors share the same primary memory the same memory address on different CPU’s refer to the same memory location CPU-to-memory connection becomes a bottleneck: shared memory computers cannot scale very well Parallel Programming Parallel Computing Hardware Distributed memory: each processor has its own private memory computational tasks can only operate on local data infinite available memory through adding nodes requires more difficult programming Parallel Programming OpenMP versus MPI OpenMP (Open Multi-Processing): easy to use; loop-level parallelism non-loop-level parallelism is more difficult limited to shared memory computers cannot handle very large problems MPI(Message Passing Interface): require low-level programming; more difficult programming scalable cost/size can handle very large problems Parallel Programming MPI Distributed memory: Each processor can access only the instructions/data stored in its own memory. The machine has an interconnection network that supports passing messages between processors. A user specifies a number of concurrent processes when program begins. Every process executes the same program, though theflow of execution may depend on the processors unique ID number (e.g. “if (my id == 0) then ”). ··· Each process performs computations on its local variables, then communicates with other processes (repeat), to eventually achieve the computed result. In this model, processors pass messages both to send/receive information, and to synchronize with one another. Parallel Programming Introduction to MPI Communicators and Groups: MPI uses objects called communicators and groups to define which collection of processes may communicate with each other.
    [Show full text]
  • Parallel Computer Architecture
    Parallel Computer Architecture Introduction to Parallel Computing CIS 410/510 Department of Computer and Information Science Lecture 2 – Parallel Architecture Outline q Parallel architecture types q Instruction-level parallelism q Vector processing q SIMD q Shared memory ❍ Memory organization: UMA, NUMA ❍ Coherency: CC-UMA, CC-NUMA q Interconnection networks q Distributed memory q Clusters q Clusters of SMPs q Heterogeneous clusters of SMPs Introduction to Parallel Computing, University of Oregon, IPCC Lecture 2 – Parallel Architecture 2 Parallel Architecture Types • Uniprocessor • Shared Memory – Scalar processor Multiprocessor (SMP) processor – Shared memory address space – Bus-based memory system memory processor … processor – Vector processor bus processor vector memory memory – Interconnection network – Single Instruction Multiple processor … processor Data (SIMD) network processor … … memory memory Introduction to Parallel Computing, University of Oregon, IPCC Lecture 2 – Parallel Architecture 3 Parallel Architecture Types (2) • Distributed Memory • Cluster of SMPs Multiprocessor – Shared memory addressing – Message passing within SMP node between nodes – Message passing between SMP memory memory nodes … M M processor processor … … P … P P P interconnec2on network network interface interconnec2on network processor processor … P … P P … P memory memory … M M – Massively Parallel Processor (MPP) – Can also be regarded as MPP if • Many, many processors processor number is large Introduction to Parallel Computing, University of Oregon,
    [Show full text]
  • Parallel Programming Using Openmp Feb 2014
    OpenMP tutorial by Brent Swartz February 18, 2014 Room 575 Walter 1-4 P.M. © 2013 Regents of the University of Minnesota. All rights reserved. Outline • OpenMP Definition • MSI hardware Overview • Hyper-threading • Programming Models • OpenMP tutorial • Affinity • OpenMP 4.0 Support / Features • OpenMP Optimization Tips © 2013 Regents of the University of Minnesota. All rights reserved. OpenMP Definition The OpenMP Application Program Interface (API) is a multi-platform shared-memory parallel programming model for the C, C++ and Fortran programming languages. Further information can be found at http://www.openmp.org/ © 2013 Regents of the University of Minnesota. All rights reserved. OpenMP Definition Jointly defined by a group of major computer hardware and software vendors and the user community, OpenMP is a portable, scalable model that gives shared-memory parallel programmers a simple and flexible interface for developing parallel applications for platforms ranging from multicore systems and SMPs, to embedded systems. © 2013 Regents of the University of Minnesota. All rights reserved. MSI Hardware • MSI hardware is described here: https://www.msi.umn.edu/hpc © 2013 Regents of the University of Minnesota. All rights reserved. MSI Hardware The number of cores per node varies with the type of Xeon on that node. We define: MAXCORES=number of cores/node, e.g. Nehalem=8, Westmere=12, SandyBridge=16, IvyBridge=20. © 2013 Regents of the University of Minnesota. All rights reserved. MSI Hardware Since MAXCORES will not vary within the PBS job (the itasca queues are split by Xeon type), you can determine this at the start of the job (in bash): MAXCORES=`grep "core id" /proc/cpuinfo | wc -l` © 2013 Regents of the University of Minnesota.
    [Show full text]
  • Enabling Efficient Use of UPC and Openshmem PGAS Models on GPU Clusters
    Enabling Efficient Use of UPC and OpenSHMEM PGAS Models on GPU Clusters Presented at GTC ’15 Presented by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: [email protected] hCp://www.cse.ohio-state.edu/~panda Accelerator Era GTC ’15 • Accelerators are becominG common in hiGh-end system architectures Top 100 – Nov 2014 (28% use Accelerators) 57% use NVIDIA GPUs 57% 28% • IncreasinG number of workloads are beinG ported to take advantage of NVIDIA GPUs • As they scale to larGe GPU clusters with hiGh compute density – hiGher the synchronizaon and communicaon overheads – hiGher the penalty • CriPcal to minimize these overheads to achieve maximum performance 3 Parallel ProGramminG Models Overview GTC ’15 P1 P2 P3 P1 P2 P3 P1 P2 P3 LoGical shared memory Shared Memory Memory Memory Memory Memory Memory Memory Shared Memory Model Distributed Memory Model ParPPoned Global Address Space (PGAS) DSM MPI (Message PassinG Interface) Global Arrays, UPC, Chapel, X10, CAF, … • ProGramminG models provide abstract machine models • Models can be mapped on different types of systems - e.G. Distributed Shared Memory (DSM), MPI within a node, etc. • Each model has strenGths and drawbacks - suite different problems or applicaons 4 Outline GTC ’15 • Overview of PGAS models (UPC and OpenSHMEM) • Limitaons in PGAS models for GPU compuPnG • Proposed DesiGns and Alternaves • Performance Evaluaon • ExploiPnG GPUDirect RDMA 5 ParPPoned Global Address Space (PGAS) Models GTC ’15 • PGAS models, an aracPve alternave to tradiPonal message passinG - Simple
    [Show full text]
  • An Overview of the PARADIGM Compiler for Distributed-Memory
    appeared in IEEE Computer, Volume 28, Number 10, October 1995 An Overview of the PARADIGM Compiler for DistributedMemory Multicomputers y Prithvira j Banerjee John A Chandy Manish Gupta Eugene W Ho dges IV John G Holm Antonio Lain Daniel J Palermo Shankar Ramaswamy Ernesto Su Center for Reliable and HighPerformance Computing University of Illinois at UrbanaChampaign W Main St Urbana IL Phone Fax banerjeecrhcuiucedu Abstract Distributedmemory multicomputers suchasthetheIntel Paragon the IBM SP and the Thinking Machines CM oer signicant advantages over sharedmemory multipro cessors in terms of cost and scalability Unfortunately extracting all the computational p ower from these machines requires users to write ecientsoftware for them which is a lab orious pro cess The PARADIGM compiler pro ject provides an automated means to parallelize programs written using a serial programming mo del for ecient execution on distributedmemory multicomput ers In addition to p erforming traditional compiler optimizations PARADIGM is unique in that it addresses many other issues within a unied platform automatic data distribution commu nication optimizations supp ort for irregular computations exploitation of functional and data parallelism and multithreaded execution This pap er describ es the techniques used and pro vides exp erimental evidence of their eectiveness on the Intel Paragon the IBM SP and the Thinking Machines CM Keywords compilers distributed memorymulticomputers parallelizing compilers parallel pro cessing This research was supp orted
    [Show full text]
  • Concepts from High-Performance Computing Lecture a - Overview of HPC Paradigms
    Concepts from High-Performance Computing Lecture A - Overview of HPC paradigms OBJECTIVE: The clock speeds of computer processors are topping out as the limits of traditional computer chip technology are being reached. Increased performance is being achieved by increasing the number of compute cores on a chip. In order to understand and take advantage of this disruptive technology, one must appreciate the paradigms of high-performance computing. The economics of technology Technology is governed by economics. The rate at which a computer processor can execute instructions (e.g., floating-point operations) is proportional to the frequency of its clock. However, 2 power ∼ (voltage) × (frequency), voltage ∼ frequency, 3 =⇒ power ∼ (frequency) e.g., a 50% increase in performance by increasing frequency requires 3.4 times more power. By going to 2 cores, this performance increase can be achieved with 16% less power1. 1This assumes you can make 100% use of each core. Moreover, transistors are getting so small that (undesirable) quantum effects (such as electron tunnelling) are becoming non-negligible. → Increasing frequency is no longer an option! When increasing frequency was possible, software got faster because hardware got faster. In the near future, the only software that will survive will be that which can take advantage of parallel processing. It is already difficult to do leading-edge computational science without parallel computing; this situation can only get worse. Computational scientists who ignore parallel computing do so at their own risk! Most of numerical analysis (and software in general) was designed for the serial processor. There is a lot of numerical analysis that needs to be revisited in this new world of computing.
    [Show full text]
  • In Reference to RPC: It's Time to Add Distributed Memory
    In Reference to RPC: It’s Time to Add Distributed Memory Stephanie Wang, Benjamin Hindman, Ion Stoica UC Berkeley ACM Reference Format: D (e.g., Apache Spark) F (e.g., Distributed TF) Stephanie Wang, Benjamin Hindman, Ion Stoica. 2021. In Refer- A B C i ii 1 2 3 ence to RPC: It’s Time to Add Distributed Memory. In Workshop RPC E on Hot Topics in Operating Systems (HotOS ’21), May 31-June 2, application 2021, Ann Arbor, MI, USA. ACM, New York, NY, USA, 8 pages. Figure 1: A single “application” actually consists of many https://doi.org/10.1145/3458336.3465302 components and distinct frameworks. With no shared address space, data (squares) must be copied between 1 Introduction different components. RPC has been remarkably successful. Most distributed ap- Load balancer Scheduler + Mem Mgt plications built today use an RPC runtime such as gRPC [3] Executors or Apache Thrift [2]. The key behind RPC’s success is the Servers request simple but powerful semantics of its programming model. client data request cache In particular, RPC has no shared state: arguments and return Distributed object store values are passed by value between processes, meaning that (a) (b) they must be copied into the request or reply. Thus, argu- ments and return values are inherently immutable. These Figure 2: Logical RPC architecture: (a) today, and (b) with a shared address space and automatic memory management. simple semantics facilitate highly efficient and reliable imple- mentations, as no distributed coordination is required, while then return a reference, i.e., some metadata that acts as a remaining useful for a general set of distributed applications.
    [Show full text]
  • Parallel Breadth-First Search on Distributed Memory Systems
    Parallel Breadth-First Search on Distributed Memory Systems Aydın Buluç Kamesh Madduri Computational Research Division Lawrence Berkeley National Laboratory Berkeley, CA {ABuluc, KMadduri}@lbl.gov ABSTRACT tions, in these graphs. To cater to the graph-theoretic anal- Data-intensive, graph-based computations are pervasive in yses demands of emerging \big data" applications, it is es- several scientific applications, and are known to to be quite sential that we speed up the underlying graph problems on challenging to implement on distributed memory systems. current parallel systems. In this work, we explore the design space of parallel algo- We study the problem of traversing large graphs in this rithms for Breadth-First Search (BFS), a key subroutine in paper. A traversal refers to a systematic method of explor- several graph algorithms. We present two highly-tuned par- ing all the vertices and edges in a graph. The ordering of allel approaches for BFS on large parallel systems: a level- vertices using a \breadth-first" search (BFS) is of particular synchronous strategy that relies on a simple vertex-based interest in many graph problems. Theoretical analysis in the partitioning of the graph, and a two-dimensional sparse ma- random access machine (RAM) model of computation indi- trix partitioning-based approach that mitigates parallel com- cates that the computational work performed by an efficient munication overhead. For both approaches, we also present BFS algorithm would scale linearly with the number of ver- hybrid versions with intra-node multithreading. Our novel tices and edges, and there are several well-known serial and hybrid two-dimensional algorithm reduces communication parallel BFS algorithms (discussed in Section2).
    [Show full text]
  • Introduction to Parallel Computing
    INTRODUCTION TO PARALLEL COMPUTING Plamen Krastev Office: 38 Oxford, Room 117 Email: [email protected] FAS Research Computing Harvard University OBJECTIVES: To introduce you to the basic concepts and ideas in parallel computing To familiarize you with the major programming models in parallel computing To provide you with with guidance for designing efficient parallel programs 2 OUTLINE: Introduction to Parallel Computing / High Performance Computing (HPC) Concepts and terminology Parallel programming models Parallelizing your programs Parallel examples 3 What is High Performance Computing? Pravetz 82 and 8M, Bulgarian Apple clones Image credit: flickr 4 What is High Performance Computing? Pravetz 82 and 8M, Bulgarian Apple clones Image credit: flickr 4 What is High Performance Computing? Odyssey supercomputer is the major computational resource of FAS RC: • 2,140 nodes / 60,000 cores • 14 petabytes of storage 5 What is High Performance Computing? Odyssey supercomputer is the major computational resource of FAS RC: • 2,140 nodes / 60,000 cores • 14 petabytes of storage Using the world’s fastest and largest computers to solve large and complex problems. 5 Serial Computation: Traditionally software has been written for serial computations: To be run on a single computer having a single Central Processing Unit (CPU) A problem is broken into a discrete set of instructions Instructions are executed one after another Only one instruction can be executed at any moment in time 6 Parallel Computing: In the simplest sense, parallel
    [Show full text]
  • Multi-Core Architectures
    Multi-core architectures Jernej Barbic 15-213, Spring 2007 May 3, 2007 1 Single-core computer 2 Single-core CPU chip the single core 3 Multi-core architectures • This lecture is about a new trend in computer architecture: Replicate multiple processor cores on a single die. Core 1 Core 2 Core 3 Core 4 Multi-core CPU chip 4 Multi-core CPU chip • The cores fit on a single processor socket • Also called CMP (Chip Multi-Processor) c c c c o o o o r r r r e e e e 1 2 3 4 5 The cores run in parallel thread 1 thread 2 thread 3 thread 4 c c c c o o o o r r r r e e e e 1 2 3 4 6 Within each core, threads are time-sliced (just like on a uniprocessor) several several several several threads threads threads threads c c c c o o o o r r r r e e e e 1 2 3 4 7 Interaction with the Operating System • OS perceives each core as a separate processor • OS scheduler maps threads/processes to different cores • Most major OS support multi-core today: Windows, Linux, Mac OS X, … 8 Why multi-core ? • Difficult to make single-core clock frequencies even higher • Deeply pipelined circuits: – heat problems – speed of light problems – difficult design and verification – large design teams necessary – server farms need expensive air-conditioning • Many new applications are multithreaded • General trend in computer architecture (shift towards more parallelism) 9 Instruction-level parallelism • Parallelism at the machine-instruction level • The processor can re-order, pipeline instructions, split them into microinstructions, do aggressive branch prediction, etc.
    [Show full text]
  • Scalable Problems and Memory-Bounded Speedup
    Scalable Problems and MemoryBounded Sp eedup XianHe Sun ICASE Mail Stop C NASA Langley Research Center Hampton VA sunicaseedu Abstract In this pap er three mo dels of parallel sp eedup are studied They are xedsize speedup xedtime speedup and memorybounded speedup The latter two consider the relationship b etween sp eedup and problem scalability Two sets of sp eedup formulations are derived for these three mo dels One set considers uneven workload allo cation and communication overhead and gives more accurate estimation Another set considers a simplied case and provides a clear picture on the impact of the sequential p ortion of an application on the p ossible p erformance gain from parallel pro cessing The simplied xedsize sp eedup is Amdahls law The simplied xedtime sp eedup is Gustafsons scaled speedup The simplied memoryb ounded sp eedup contains b oth Amdahls law and Gustafsons scaled sp eedup as sp ecial cases This study leads to a b etter under standing of parallel pro cessing Running Head Scalable Problems and MemoryBounded Sp eedup This research was supp orted in part by the NSF grant ECS and by the National Aeronautics and Space Administration under NASA contract NAS SCALABLE PROBLEMS AND MEMORYBOUNDED SPEEDUP By XianHe Sun ICASE NASA Langley Research Center Hampton VA sunicaseedu And Lionel M Ni Computer Science Department Michigan State University E Lansing MI nicpsmsuedu Intro duction Although parallel pro cessing has b ecome a common approach for achieving high p erformance there is no wellestablished metric to
    [Show full text]