Design of the Munin Distributed Shared Memory System

Total Page:16

File Type:pdf, Size:1020Kb

Design of the Munin Distributed Shared Memory System Design of the Munin Distributed Shared Memory System John B Carter Department of Computer Science University of Utah Salt LakeCity UT This researchwas supp orted in part by the National Science Foundation under Grants CDA CCR CCRby the IBM Corp oration under Research Agreement No by the Texas Advanced Technology Program under Grants and andby a NASA Graduate Fellowship Design of the Munin Distributed Shared Memory System Prop osed running head Design of the Munin Distributed Shared Memory System Contact author John B Carter Department of Computer Science University of Utah Salt LakeCityUT Abstract Software distributed shared memory DSM is a software abstraction of shared memory on a distributed memory machine The key problem in building an ecient DSM system is to reduce the amount of communication needed to keep the distributed memories consistent The Munin DSM system incorp orates a number of novel techniques for doing so including the use of multiple consistency proto cols and supp ort for multiple concurrent writer proto cols Due to these and other features Munin is able to achieve high p erformance on a varietyof numerical applications This pap er contains a detailed description of the design and implementation of the Munin prototyp e with sp ecial emphasis given to its novel write shared proto col Furthermore it describ es a numb er of lessons that we learned from our exp erience with the prototyp e implementation that are relevant to the implementation of future DSMs List of Symbols Boldface italics and typewriterfontare used often Sp ecial symb ols used A numb er of mathematical symb ols are used including slash leftarrow left brace f right brace g and ellipsis Intro duction A software distributed shared memory DSM system provides the abstraction of a shared address space spanning the pro cessors of a distributed memory multipro cessor This abstrac tion simplies the programming of distributed memory multipro cessors and allows parallel programs written for shared memory machines to b e p orted easily The basic idea b ehind software DSM whichwe will refer to as simply DSM throughout the rest of this pap er is to treat the lo cal memory of a pro cessor as if it were a coherentcache in a shared memory multipro cessor DSM systems combine the b est features of shared memory and distributed memory multipro cessors They supp ort the relatively simple and p ortable programming mo del of shared memory on physically distributed memory hardware which is more scalable and less exp ensive to build than shared memory hardware DSM would thus seem to b e an ideal vehicle for making parallel pro cessing widely available However although many DSM systems have b een prop osed and implemented DSM is not widely used The reason for this is that it has proven dicult to achieve accept able p erformance using DSM without requiring programmers to carefully restructure their sharedmemory parallel programs to reect the way that the DSM op erates For example it is often necessary to decomp ose the shared data into small pagealigned pieces or to in tro duce new variables to reduce the amount of sharing This restructuring can b e as tedious and dicult as using messagepassing directly or more so The challenge in building a DSM system is to achieve go o d p erformance over a wide range of programs without requiring programmers to restructure their shared memory par allel programs The overhead of maintaining consistency in software and the high latency of sending messages make this dicult The primary source of DSM overhead is the large amountofcommunication that is required to maintain consistency Since DSMs use general purp ose networks eg Ethernet and op erating systems to communicate the latency of eac h message b etween no des is high Given this high cost of interpro cessor communication the p erformance challenge for DSM is to reduce the amount of communication p erformed during the execution of a DSM program ideally to the same level as the amount of commu nication p erformed during the execution of an equivalent message passing program DSM has not gained wide acceptance b ecause previous DSM systems did not achieve this level of communication The Munin DSM system incorp orates several techniques make DSM a more viable so lution for distributed pro cessing by substantially reducing the amount of communication required to maintain consistency compared to previous DSM systems The innovative communicationreducing features supp orted by Munin include the use of multiple consis tency protocolswhichkeep each shared variable consistent with a proto col well suited to its exp ected or observed access pattern and supp ort for multiple concurrent writers which ad dresses the problem of false sharing by reducing the amount of unnecessary communication p erformed keeping falsely shared data consistent To determine the value of Munins novel features weevaluated the p erformance of a suite of seven scientic applications implemented using message passing Munin DSM and a conventional Ivylike DSM system Munins p erformance is within of message passing for four out of the seven applications studied and within to for the other three Furthermore for the ve applications in which there was a mo derate to high degree of sharing the programs run under Munin achieved from to over higher sp eedups than their conventional DSM counterparts Munins p erformance on a variety of application programs is evaluated elsewhere this pap er concentrates on the design of Munin esp ecially its ma jor data structures and the proto cols used to maintain memory consistency Also included are a numb er of lessons that we garnered from our exp erience with the prototyp e implementation that are relev ant to the implementation of future DSMs The remainder of this pap er is organized as follows Section presents an overview of Munins runtime system Section describ es Munins multiple consistency proto cols and the algorithms used to implement them We summarize Munins p erformance in Section and draw conclusions in Section Overview of the Munin Runtime System The core of the Munin system is the runtime library that contains the fault handling thread supp ort synchronization and other runtime mechanisms It consists of approximately lines of C source co de that create an kilobyte library le that is linked into each Munin program Each no de of an executing Munin program consists of a collection of Munin run time threads that handle consistency and synchronization op erations and one or more user threads p erforming the parallel computation Munin programmers write parallel programs using threads as they would on a unipro cessor or shared memory multipro cessor Figure illustrates the organization of a Munin program during runtime The Munin prototyp e was implemented on a collection of sixteen SUN workstations running the V op erating system On each participating no de the Munin runtime is linked into the same address space as the user program and thus can access user data directly The two ma jor data structures used by the Munin runtime are an object directory that maintains the state of the shared data b eing used by lo cal user threads and the delayedupdate queue DUQ which manages Munins software implementation of release consistency Munin installs itself as the default page fault handler for the Munin program so that the underlying Vkernel will forward all memory exceptions to it for handling Each Munin no de interacts with the V kernel to communicate with the other Munin no des over the Ethernet and to manipulate the virtual memory system as part of maintaining the consistency of shared memory Although the Munin prototyp e was implemented on the V system it could b e made to run on any op erating system that allowed user programs to manipulate its own virtual memory mappings handle page faults at user levelcreateand destroy pro cesses on remote no des exchange messages with remote pro cesses and access unipro cessor synchronization supp ort P and V All of these requirements are present in current op erating systems suchasMach Chorus and Unix Object Directory User Code Munin Runtime and SUN 3/60s Data DUQ V Kernel ... Network (10 Mbps Ethernet) Figure Munin Runtime Organization Munins ob ject directory is structured as a hash table that maps a virtual address to an entry that describ es the data lo cated at that address In Munin all variables on the same page are treated as a single ob ject with the same consistency proto col Programmers can guide placementofvariables on to pages but by default variables are placed on pages by themselves The memory overhead of this solution is negligible for the applications studied as there were few distinct variables When a Munin runtime thread cannot nd an ob ject directory entry in the lo cal hash table it requests a copy from the no de where the computation started the socalled the ro ot no de whichcontains all of the shared data at the start of the program The elds of an entry in the directory include a lock that provides exclusive access to the entry for a handler thread a start address and size that act as keys for lo oking up a shared data items directory entry a protocol that sp ecies how the fault handler should service access faults on the data item various state bits that characterize the dynamic state of the data such as whether it is present lo cally and whether it is writable a copyset that represents a b est guess of the set of pro cessors with copies of the data and a probable owner that represents
Recommended publications
  • Scalable and Distributed Deep Learning (DL): Co-Design MPI Runtimes and DL Frameworks
    Scalable and Distributed Deep Learning (DL): Co-Design MPI Runtimes and DL Frameworks OSU Booth Talk (SC ’19) Ammar Ahmad Awan [email protected] Network Based Computing Laboratory Dept. of Computer Science and Engineering The Ohio State University Agenda • Introduction – Deep Learning Trends – CPUs and GPUs for Deep Learning – Message Passing Interface (MPI) • Research Challenges: Exploiting HPC for Deep Learning • Proposed Solutions • Conclusion Network Based Computing Laboratory OSU Booth - SC ‘18 High-Performance Deep Learning 2 Understanding the Deep Learning Resurgence • Deep Learning (DL) is a sub-set of Machine Learning (ML) – Perhaps, the most revolutionary subset! Deep Machine – Feature extraction vs. hand-crafted Learning Learning features AI Examples: • Deep Learning Examples: Logistic Regression – A renewed interest and a lot of hype! MLPs, DNNs, – Key success: Deep Neural Networks (DNNs) – Everything was there since the late 80s except the “computability of DNNs” Adopted from: http://www.deeplearningbook.org/contents/intro.html Network Based Computing Laboratory OSU Booth - SC ‘18 High-Performance Deep Learning 3 AlexNet Deep Learning in the Many-core Era 10000 8000 • Modern and efficient hardware enabled 6000 – Computability of DNNs – impossible in the 4000 ~500X in 5 years 2000 past! Minutesto Train – GPUs – at the core of DNN training 0 2 GTX 580 DGX-2 – CPUs – catching up fast • Availability of Datasets – MNIST, CIFAR10, ImageNet, and more… • Excellent Accuracy for many application areas – Vision, Machine Translation, and
    [Show full text]
  • Parallel Programming
    Parallel Programming Parallel Programming Parallel Computing Hardware Shared memory: multiple cpus are attached to the BUS all processors share the same primary memory the same memory address on different CPU’s refer to the same memory location CPU-to-memory connection becomes a bottleneck: shared memory computers cannot scale very well Parallel Programming Parallel Computing Hardware Distributed memory: each processor has its own private memory computational tasks can only operate on local data infinite available memory through adding nodes requires more difficult programming Parallel Programming OpenMP versus MPI OpenMP (Open Multi-Processing): easy to use; loop-level parallelism non-loop-level parallelism is more difficult limited to shared memory computers cannot handle very large problems MPI(Message Passing Interface): require low-level programming; more difficult programming scalable cost/size can handle very large problems Parallel Programming MPI Distributed memory: Each processor can access only the instructions/data stored in its own memory. The machine has an interconnection network that supports passing messages between processors. A user specifies a number of concurrent processes when program begins. Every process executes the same program, though theflow of execution may depend on the processors unique ID number (e.g. “if (my id == 0) then ”). ··· Each process performs computations on its local variables, then communicates with other processes (repeat), to eventually achieve the computed result. In this model, processors pass messages both to send/receive information, and to synchronize with one another. Parallel Programming Introduction to MPI Communicators and Groups: MPI uses objects called communicators and groups to define which collection of processes may communicate with each other.
    [Show full text]
  • Parallel Computer Architecture
    Parallel Computer Architecture Introduction to Parallel Computing CIS 410/510 Department of Computer and Information Science Lecture 2 – Parallel Architecture Outline q Parallel architecture types q Instruction-level parallelism q Vector processing q SIMD q Shared memory ❍ Memory organization: UMA, NUMA ❍ Coherency: CC-UMA, CC-NUMA q Interconnection networks q Distributed memory q Clusters q Clusters of SMPs q Heterogeneous clusters of SMPs Introduction to Parallel Computing, University of Oregon, IPCC Lecture 2 – Parallel Architecture 2 Parallel Architecture Types • Uniprocessor • Shared Memory – Scalar processor Multiprocessor (SMP) processor – Shared memory address space – Bus-based memory system memory processor … processor – Vector processor bus processor vector memory memory – Interconnection network – Single Instruction Multiple processor … processor Data (SIMD) network processor … … memory memory Introduction to Parallel Computing, University of Oregon, IPCC Lecture 2 – Parallel Architecture 3 Parallel Architecture Types (2) • Distributed Memory • Cluster of SMPs Multiprocessor – Shared memory addressing – Message passing within SMP node between nodes – Message passing between SMP memory memory nodes … M M processor processor … … P … P P P interconnec2on network network interface interconnec2on network processor processor … P … P P … P memory memory … M M – Massively Parallel Processor (MPP) – Can also be regarded as MPP if • Many, many processors processor number is large Introduction to Parallel Computing, University of Oregon,
    [Show full text]
  • Parallel Programming Using Openmp Feb 2014
    OpenMP tutorial by Brent Swartz February 18, 2014 Room 575 Walter 1-4 P.M. © 2013 Regents of the University of Minnesota. All rights reserved. Outline • OpenMP Definition • MSI hardware Overview • Hyper-threading • Programming Models • OpenMP tutorial • Affinity • OpenMP 4.0 Support / Features • OpenMP Optimization Tips © 2013 Regents of the University of Minnesota. All rights reserved. OpenMP Definition The OpenMP Application Program Interface (API) is a multi-platform shared-memory parallel programming model for the C, C++ and Fortran programming languages. Further information can be found at http://www.openmp.org/ © 2013 Regents of the University of Minnesota. All rights reserved. OpenMP Definition Jointly defined by a group of major computer hardware and software vendors and the user community, OpenMP is a portable, scalable model that gives shared-memory parallel programmers a simple and flexible interface for developing parallel applications for platforms ranging from multicore systems and SMPs, to embedded systems. © 2013 Regents of the University of Minnesota. All rights reserved. MSI Hardware • MSI hardware is described here: https://www.msi.umn.edu/hpc © 2013 Regents of the University of Minnesota. All rights reserved. MSI Hardware The number of cores per node varies with the type of Xeon on that node. We define: MAXCORES=number of cores/node, e.g. Nehalem=8, Westmere=12, SandyBridge=16, IvyBridge=20. © 2013 Regents of the University of Minnesota. All rights reserved. MSI Hardware Since MAXCORES will not vary within the PBS job (the itasca queues are split by Xeon type), you can determine this at the start of the job (in bash): MAXCORES=`grep "core id" /proc/cpuinfo | wc -l` © 2013 Regents of the University of Minnesota.
    [Show full text]
  • Enabling Efficient Use of UPC and Openshmem PGAS Models on GPU Clusters
    Enabling Efficient Use of UPC and OpenSHMEM PGAS Models on GPU Clusters Presented at GTC ’15 Presented by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: [email protected] hCp://www.cse.ohio-state.edu/~panda Accelerator Era GTC ’15 • Accelerators are becominG common in hiGh-end system architectures Top 100 – Nov 2014 (28% use Accelerators) 57% use NVIDIA GPUs 57% 28% • IncreasinG number of workloads are beinG ported to take advantage of NVIDIA GPUs • As they scale to larGe GPU clusters with hiGh compute density – hiGher the synchronizaon and communicaon overheads – hiGher the penalty • CriPcal to minimize these overheads to achieve maximum performance 3 Parallel ProGramminG Models Overview GTC ’15 P1 P2 P3 P1 P2 P3 P1 P2 P3 LoGical shared memory Shared Memory Memory Memory Memory Memory Memory Memory Shared Memory Model Distributed Memory Model ParPPoned Global Address Space (PGAS) DSM MPI (Message PassinG Interface) Global Arrays, UPC, Chapel, X10, CAF, … • ProGramminG models provide abstract machine models • Models can be mapped on different types of systems - e.G. Distributed Shared Memory (DSM), MPI within a node, etc. • Each model has strenGths and drawbacks - suite different problems or applicaons 4 Outline GTC ’15 • Overview of PGAS models (UPC and OpenSHMEM) • Limitaons in PGAS models for GPU compuPnG • Proposed DesiGns and Alternaves • Performance Evaluaon • ExploiPnG GPUDirect RDMA 5 ParPPoned Global Address Space (PGAS) Models GTC ’15 • PGAS models, an aracPve alternave to tradiPonal message passinG - Simple
    [Show full text]
  • An Overview of the PARADIGM Compiler for Distributed-Memory
    appeared in IEEE Computer, Volume 28, Number 10, October 1995 An Overview of the PARADIGM Compiler for DistributedMemory Multicomputers y Prithvira j Banerjee John A Chandy Manish Gupta Eugene W Ho dges IV John G Holm Antonio Lain Daniel J Palermo Shankar Ramaswamy Ernesto Su Center for Reliable and HighPerformance Computing University of Illinois at UrbanaChampaign W Main St Urbana IL Phone Fax banerjeecrhcuiucedu Abstract Distributedmemory multicomputers suchasthetheIntel Paragon the IBM SP and the Thinking Machines CM oer signicant advantages over sharedmemory multipro cessors in terms of cost and scalability Unfortunately extracting all the computational p ower from these machines requires users to write ecientsoftware for them which is a lab orious pro cess The PARADIGM compiler pro ject provides an automated means to parallelize programs written using a serial programming mo del for ecient execution on distributedmemory multicomput ers In addition to p erforming traditional compiler optimizations PARADIGM is unique in that it addresses many other issues within a unied platform automatic data distribution commu nication optimizations supp ort for irregular computations exploitation of functional and data parallelism and multithreaded execution This pap er describ es the techniques used and pro vides exp erimental evidence of their eectiveness on the Intel Paragon the IBM SP and the Thinking Machines CM Keywords compilers distributed memorymulticomputers parallelizing compilers parallel pro cessing This research was supp orted
    [Show full text]
  • Concepts from High-Performance Computing Lecture a - Overview of HPC Paradigms
    Concepts from High-Performance Computing Lecture A - Overview of HPC paradigms OBJECTIVE: The clock speeds of computer processors are topping out as the limits of traditional computer chip technology are being reached. Increased performance is being achieved by increasing the number of compute cores on a chip. In order to understand and take advantage of this disruptive technology, one must appreciate the paradigms of high-performance computing. The economics of technology Technology is governed by economics. The rate at which a computer processor can execute instructions (e.g., floating-point operations) is proportional to the frequency of its clock. However, 2 power ∼ (voltage) × (frequency), voltage ∼ frequency, 3 =⇒ power ∼ (frequency) e.g., a 50% increase in performance by increasing frequency requires 3.4 times more power. By going to 2 cores, this performance increase can be achieved with 16% less power1. 1This assumes you can make 100% use of each core. Moreover, transistors are getting so small that (undesirable) quantum effects (such as electron tunnelling) are becoming non-negligible. → Increasing frequency is no longer an option! When increasing frequency was possible, software got faster because hardware got faster. In the near future, the only software that will survive will be that which can take advantage of parallel processing. It is already difficult to do leading-edge computational science without parallel computing; this situation can only get worse. Computational scientists who ignore parallel computing do so at their own risk! Most of numerical analysis (and software in general) was designed for the serial processor. There is a lot of numerical analysis that needs to be revisited in this new world of computing.
    [Show full text]
  • In Reference to RPC: It's Time to Add Distributed Memory
    In Reference to RPC: It’s Time to Add Distributed Memory Stephanie Wang, Benjamin Hindman, Ion Stoica UC Berkeley ACM Reference Format: D (e.g., Apache Spark) F (e.g., Distributed TF) Stephanie Wang, Benjamin Hindman, Ion Stoica. 2021. In Refer- A B C i ii 1 2 3 ence to RPC: It’s Time to Add Distributed Memory. In Workshop RPC E on Hot Topics in Operating Systems (HotOS ’21), May 31-June 2, application 2021, Ann Arbor, MI, USA. ACM, New York, NY, USA, 8 pages. Figure 1: A single “application” actually consists of many https://doi.org/10.1145/3458336.3465302 components and distinct frameworks. With no shared address space, data (squares) must be copied between 1 Introduction different components. RPC has been remarkably successful. Most distributed ap- Load balancer Scheduler + Mem Mgt plications built today use an RPC runtime such as gRPC [3] Executors or Apache Thrift [2]. The key behind RPC’s success is the Servers request simple but powerful semantics of its programming model. client data request cache In particular, RPC has no shared state: arguments and return Distributed object store values are passed by value between processes, meaning that (a) (b) they must be copied into the request or reply. Thus, argu- ments and return values are inherently immutable. These Figure 2: Logical RPC architecture: (a) today, and (b) with a shared address space and automatic memory management. simple semantics facilitate highly efficient and reliable imple- mentations, as no distributed coordination is required, while then return a reference, i.e., some metadata that acts as a remaining useful for a general set of distributed applications.
    [Show full text]
  • Parallel Breadth-First Search on Distributed Memory Systems
    Parallel Breadth-First Search on Distributed Memory Systems Aydın Buluç Kamesh Madduri Computational Research Division Lawrence Berkeley National Laboratory Berkeley, CA {ABuluc, KMadduri}@lbl.gov ABSTRACT tions, in these graphs. To cater to the graph-theoretic anal- Data-intensive, graph-based computations are pervasive in yses demands of emerging \big data" applications, it is es- several scientific applications, and are known to to be quite sential that we speed up the underlying graph problems on challenging to implement on distributed memory systems. current parallel systems. In this work, we explore the design space of parallel algo- We study the problem of traversing large graphs in this rithms for Breadth-First Search (BFS), a key subroutine in paper. A traversal refers to a systematic method of explor- several graph algorithms. We present two highly-tuned par- ing all the vertices and edges in a graph. The ordering of allel approaches for BFS on large parallel systems: a level- vertices using a \breadth-first" search (BFS) is of particular synchronous strategy that relies on a simple vertex-based interest in many graph problems. Theoretical analysis in the partitioning of the graph, and a two-dimensional sparse ma- random access machine (RAM) model of computation indi- trix partitioning-based approach that mitigates parallel com- cates that the computational work performed by an efficient munication overhead. For both approaches, we also present BFS algorithm would scale linearly with the number of ver- hybrid versions with intra-node multithreading. Our novel tices and edges, and there are several well-known serial and hybrid two-dimensional algorithm reduces communication parallel BFS algorithms (discussed in Section2).
    [Show full text]
  • Introduction to Parallel Computing
    INTRODUCTION TO PARALLEL COMPUTING Plamen Krastev Office: 38 Oxford, Room 117 Email: [email protected] FAS Research Computing Harvard University OBJECTIVES: To introduce you to the basic concepts and ideas in parallel computing To familiarize you with the major programming models in parallel computing To provide you with with guidance for designing efficient parallel programs 2 OUTLINE: Introduction to Parallel Computing / High Performance Computing (HPC) Concepts and terminology Parallel programming models Parallelizing your programs Parallel examples 3 What is High Performance Computing? Pravetz 82 and 8M, Bulgarian Apple clones Image credit: flickr 4 What is High Performance Computing? Pravetz 82 and 8M, Bulgarian Apple clones Image credit: flickr 4 What is High Performance Computing? Odyssey supercomputer is the major computational resource of FAS RC: • 2,140 nodes / 60,000 cores • 14 petabytes of storage 5 What is High Performance Computing? Odyssey supercomputer is the major computational resource of FAS RC: • 2,140 nodes / 60,000 cores • 14 petabytes of storage Using the world’s fastest and largest computers to solve large and complex problems. 5 Serial Computation: Traditionally software has been written for serial computations: To be run on a single computer having a single Central Processing Unit (CPU) A problem is broken into a discrete set of instructions Instructions are executed one after another Only one instruction can be executed at any moment in time 6 Parallel Computing: In the simplest sense, parallel
    [Show full text]
  • Multi-Core Architectures
    Multi-core architectures Jernej Barbic 15-213, Spring 2007 May 3, 2007 1 Single-core computer 2 Single-core CPU chip the single core 3 Multi-core architectures • This lecture is about a new trend in computer architecture: Replicate multiple processor cores on a single die. Core 1 Core 2 Core 3 Core 4 Multi-core CPU chip 4 Multi-core CPU chip • The cores fit on a single processor socket • Also called CMP (Chip Multi-Processor) c c c c o o o o r r r r e e e e 1 2 3 4 5 The cores run in parallel thread 1 thread 2 thread 3 thread 4 c c c c o o o o r r r r e e e e 1 2 3 4 6 Within each core, threads are time-sliced (just like on a uniprocessor) several several several several threads threads threads threads c c c c o o o o r r r r e e e e 1 2 3 4 7 Interaction with the Operating System • OS perceives each core as a separate processor • OS scheduler maps threads/processes to different cores • Most major OS support multi-core today: Windows, Linux, Mac OS X, … 8 Why multi-core ? • Difficult to make single-core clock frequencies even higher • Deeply pipelined circuits: – heat problems – speed of light problems – difficult design and verification – large design teams necessary – server farms need expensive air-conditioning • Many new applications are multithreaded • General trend in computer architecture (shift towards more parallelism) 9 Instruction-level parallelism • Parallelism at the machine-instruction level • The processor can re-order, pipeline instructions, split them into microinstructions, do aggressive branch prediction, etc.
    [Show full text]
  • Scalable Problems and Memory-Bounded Speedup
    Scalable Problems and MemoryBounded Sp eedup XianHe Sun ICASE Mail Stop C NASA Langley Research Center Hampton VA sunicaseedu Abstract In this pap er three mo dels of parallel sp eedup are studied They are xedsize speedup xedtime speedup and memorybounded speedup The latter two consider the relationship b etween sp eedup and problem scalability Two sets of sp eedup formulations are derived for these three mo dels One set considers uneven workload allo cation and communication overhead and gives more accurate estimation Another set considers a simplied case and provides a clear picture on the impact of the sequential p ortion of an application on the p ossible p erformance gain from parallel pro cessing The simplied xedsize sp eedup is Amdahls law The simplied xedtime sp eedup is Gustafsons scaled speedup The simplied memoryb ounded sp eedup contains b oth Amdahls law and Gustafsons scaled sp eedup as sp ecial cases This study leads to a b etter under standing of parallel pro cessing Running Head Scalable Problems and MemoryBounded Sp eedup This research was supp orted in part by the NSF grant ECS and by the National Aeronautics and Space Administration under NASA contract NAS SCALABLE PROBLEMS AND MEMORYBOUNDED SPEEDUP By XianHe Sun ICASE NASA Langley Research Center Hampton VA sunicaseedu And Lionel M Ni Computer Science Department Michigan State University E Lansing MI nicpsmsuedu Intro duction Although parallel pro cessing has b ecome a common approach for achieving high p erformance there is no wellestablished metric to
    [Show full text]