Shipworm (Teredo Navalis)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Wood-Eating Bivalves Daniel L
The University of Maine DigitalCommons@UMaine University of Maine Office of Research and Special Collections Sponsored Programs: Grant Reports 1-27-2006 Evolution of Endosymbiosis in (xylotrophic) Wood-Eating Bivalves Daniel L. Distel Principal Investigator; University of Maine, Orono Follow this and additional works at: https://digitalcommons.library.umaine.edu/orsp_reports Part of the Marine Biology Commons Recommended Citation Distel, Daniel L., "Evolution of Endosymbiosis in (xylotrophic) Wood-Eating Bivalves" (2006). University of Maine Office of Research and Sponsored Programs: Grant Reports. 133. https://digitalcommons.library.umaine.edu/orsp_reports/133 This Open-Access Report is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in University of Maine Office of Research and Sponsored Programs: Grant Reports by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. Annual Report: 0129117 Annual Report for Period:06/2004 - 06/2005 Submitted on: 01/27/2006 Principal Investigator: Distel, Daniel L. Award ID: 0129117 Organization: University of Maine Title: Evolution of Endosymbiosis in (xylotrophic) Wood-Eating Bivalves Project Participants Senior Personnel Name: Distel, Daniel Worked for more than 160 Hours: Yes Contribution to Project: Post-doc Graduate Student Name: Luyten, Yvette Worked for more than 160 Hours: Yes Contribution to Project: Graduate student participated in lab research with support from this grant. Name: Mamangkey, Gustaf Worked for more than 160 Hours: Yes Contribution to Project: Gustaf Mamangkey is a lecturer at the Tropical Marine Mollusc Programme, Faculty of Fisheries and Marine Sciences, Sam Ratulangi University,Jl. Kampus UNSRAT Bahu, Manado 95115,Indonesia. -
TSUNODA, Kunio; NISHIMOTO, Koichi
Studies on the Shipworms I : The Occurrence and Seasonal Title Settlement of Shipworms. Author(s) TSUNODA, Kunio; NISHIMOTO, Koichi Wood research : bulletin of the Wood Research Institute Kyoto Citation University (1972), 53: 1-8 Issue Date 1972-08-31 URL http://hdl.handle.net/2433/53408 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University Studies on the Shipworms I The Occurrence and Seasonal Settlement of Shipworms. Kunio TSUNODA* and Koichi NISHIMOTO* Abstract--The previous investigation on the occurrence of shipworms in December, 1971 indicated the co-existence of three species of shipworms: Bankia bipalmulata LAMARCK, Teredo navalis LINNAEUS and Lyrodus pedicellatus QUATREFAGES. However, the absence of B. bipalmulata was found in this investigation carried out from February, 1971 to January, 1972. Of these three species, T. navalis was the commonest. In this survey of larval settlement on floating wood surfaces, there was no settlement from January to May, and the first settlement of larvae was not observed until June, when water temperature was over 20°C. The explosive settlement was observed in September. After June, boring damage always occurred when wood blocks were submerged in the sea for over 60 days. Introduction The import of logs into Japan has enormously increased in recent years, and this trend will continue for some time. The imported logs are transported by ship into 85 international trading ports along Japanese coasts. For the last three years the annual amount has been not 3 less than 50,000,000 m , which is equivalent to more than 50 percent of Japan's total wood supply. -
Bivalvia: Teredinidae) in Drifted Eelgrass
Short Notes 263 The Rhizome-Boring Shipworm Zachsia zenkewitschi (Bivalvia: Teredinidae) in Drifted Eelgrass Takuma Haga Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan The shipworm Zachsia zenkewitschi Bulatoff & free-swimming larval stage. Turner & Yakovlev Rjabtschikoff, 1933 lives inside the rhizomes of the (1983) observed that the larvae swam mostly near eelgrasses Phyllospadix and Zostera (Helobiales; the bottom of a culture dish in their laboratory. Zosteraceae) and has sporadic distribution records They hypothesized that in natural environments the from Primorskii Krai (=Primoriye Region) to larvae can swim only for short distances within the Siberia in the Russian Far East and in Japanese eelgrass beds and that wide dispersal might have waters (Higo et al., 1999). Its detailed distribution been achieved through long-distance transporta- and habitats have been surveyed in detail only tion of the host eelgrass by accidental drifting. locally along the coast of Vladivostok in Primoriye However, this hypothesis has not been verified to (Turner et al., 1983; Fig. 1F). In Japanese waters, date. this species has been recorded in only three cata- This report is the first documentation of Z. logues of local molluscan faunas (Fig. 1; Inaba, zenkewitschi in drifted rhizomes of eelgrass, and 1982; Kano, 1981; Kuroda & Habe, 1981). These describes the soft animal morphology of this spe- catalogues, however, did not provide information cies. on detailed collecting sites and habitats. This rare species was recently rediscovered along the coast Zachsia zenkewitschi in drift eelgrass of Miyagi Prefecture, northeast Japan (Sasaki et al., 2006; Fig. -
Paalwormen Hoewel Hun Naam En Vorm Doet Denken Aan Een Worm, Zijn De Paalworm En De Scheepsworm Tweekleppige Weekdieren, Net Zoals De Mossel of De Kokkel
Niet-inheemse soorten van het Belgisch deel van de Noordzee en aanpalende estuaria Paalwormen Hoewel hun naam en vorm doet denken aan een worm, zijn de paalworm en de scheepsworm tweekleppige weekdieren, net zoals de mossel of de kokkel. Ze boren gangen in hout. Beide soor- ten hebben zich al vroeg verspreid over alle we- reldzeeën, dankzij transport via scheepsrompen en drijfhout. Hierdoor is het moeilijk te achter- halen waar deze soorten oorspronkelijk vandaan komen. Scheeps- en paalwormen baren de zeelui al eeuwenlang zorgen, doordat ze het hout van schepen aantasten. Ze kregen dan ook de bijnaam ‘termieten van de zee’… paalworm © Marco Faasse (www.acteon.nl) Wetenschappelijke naam Teredo navalis Linnaeus, 1758 - paalworm Psiloteredo megotara (Hanley in Forbes & Hanley, 1848) - scheepsworm Beide soorten behoren tot de familie van de ‘paalwormen’ of de ‘Teredo wormen’. Gezien ze heel sterk op elkaar gelijken in biologie en ecologie, zullen ze in deze fiche samen besproken worden. Oorspronkelijke verspreiding Verschillende klassieke auteurs zoals Aristoteles, Ovidius en Plinius maakten in hun geschriften al melding van paalwormen, zonder echter te weten wat hun identiteit of oorsprong was. Ze verwezen daarbij naar plaatsen in het Middellandse Zeegebied [1,2]. Een eventuele vroege aanwezigheid van paalwormen in de Noord-Europese regio kan niet bevestigd worden. Er zijn immers geen overleveringen of geschriften beschikbaar die rapporteren over schade toegebracht aan Vikingschepen door deze weekdieren [1]. De paalworm heeft vandaag een bijna wereldwijde verspreiding, en komt in Europa voor vanaf het Noordpoolgebied tot in de Middellandse Zee. De scheepsworm daarentegen komt enkel voor van het Noordpoolgebied tot in de Middellandse Zee [3]. -
Comparing the Dutch and British Maritime Technologies During the Napoleonic Era (1792–1815)
Technology and Empire: Comparing the Dutch and British Maritime Technologies during the Napoleonic Era (1792–1815) By Ivor Mollema December, 2015 Director of Thesis: Dr. Lynn Harris Major Department: History The two ships, Bato (1806) and Brunswick (1805) wrecked in Simons Bay, South Africa, provide an opportunity to compare British and Dutch maritime technologies during the Napoleonic Era (1792–1815). The former was a Dutch 74-gun ship of the line and the latter a British East Indiaman. Their remains reveal pertinent information about the maritime technologies available to each European power. Industrial capacity and advanced metal working played a significant role in ship construction initiatives of that period, while the dwindling timber supplies forced invention of new technologies. Imperial efforts during the Napoleonic Era relied on naval power. Maritime technologies dictated imperial strategy as ships were deployed to expand or maintain colonial empires. Naval theorists place the strategy into a wider spectrum and the analysis of the material culture complements further understanding of sea power. The study also recommends management options to preserve the archaeological sites for future study and to showcase for heritage tourism. TECHNOLOGY AND EMPIRE: Comparing Dutch and British Maritime Technologies During the Napoleonic Era (1792–1815) Title Page A Thesis Presented To The Faculty of the Department of History East Carolina University In Partial Fulfillment Of the Requirements for the Degree Master of Arts, Program in Maritime Studies by Ivor Mollema December, 2015 © Ivor Mollema, 2015 Copyright Page TECHNOLOGY AND EMPIRE: Comparing Dutch and British Maritime Technologies During the Napoleonic Era (1792–1815) by Ivor Mollema Signature Page APPROVED BY: DIRECTOR OF THESIS: ________________________________________________________ Dr. -
SPECIAL PUBLICATION 6 the Effects of Marine Debris Caused by the Great Japan Tsunami of 2011
PICES SPECIAL PUBLICATION 6 The Effects of Marine Debris Caused by the Great Japan Tsunami of 2011 Editors: Cathryn Clarke Murray, Thomas W. Therriault, Hideaki Maki, and Nancy Wallace Authors: Stephen Ambagis, Rebecca Barnard, Alexander Bychkov, Deborah A. Carlton, James T. Carlton, Miguel Castrence, Andrew Chang, John W. Chapman, Anne Chung, Kristine Davidson, Ruth DiMaria, Jonathan B. Geller, Reva Gillman, Jan Hafner, Gayle I. Hansen, Takeaki Hanyuda, Stacey Havard, Hirofumi Hinata, Vanessa Hodes, Atsuhiko Isobe, Shin’ichiro Kako, Masafumi Kamachi, Tomoya Kataoka, Hisatsugu Kato, Hiroshi Kawai, Erica Keppel, Kristen Larson, Lauran Liggan, Sandra Lindstrom, Sherry Lippiatt, Katrina Lohan, Amy MacFadyen, Hideaki Maki, Michelle Marraffini, Nikolai Maximenko, Megan I. McCuller, Amber Meadows, Jessica A. Miller, Kirsten Moy, Cathryn Clarke Murray, Brian Neilson, Jocelyn C. Nelson, Katherine Newcomer, Michio Otani, Gregory M. Ruiz, Danielle Scriven, Brian P. Steves, Thomas W. Therriault, Brianna Tracy, Nancy C. Treneman, Nancy Wallace, and Taichi Yonezawa. Technical Editor: Rosalie Rutka Please cite this publication as: The views expressed in this volume are those of the participating scientists. Contributions were edited for Clarke Murray, C., Therriault, T.W., Maki, H., and Wallace, N. brevity, relevance, language, and style and any errors that [Eds.] 2019. The Effects of Marine Debris Caused by the were introduced were done so inadvertently. Great Japan Tsunami of 2011, PICES Special Publication 6, 278 pp. Published by: Project Designer: North Pacific Marine Science Organization (PICES) Lori Waters, Waters Biomedical Communications c/o Institute of Ocean Sciences Victoria, BC, Canada P.O. Box 6000, Sidney, BC, Canada V8L 4B2 Feedback: www.pices.int Comments on this volume are welcome and can be sent This publication is based on a report submitted to the via email to: [email protected] Ministry of the Environment, Government of Japan, in June 2017. -
Chec List ISSN 1809-127X (Available at Journal of Species Lists and Distribution
Check List 10(3): 609–614, 2014 © 2014 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution N Interesting shipworm (Mollusca: Bivalvia: Teredinidae) records from India ISTRIBUTIO * D Rao M. V. , Pachu A. V. and Balaji M. RAPHIC Wood Biodegradation Centre (Marine), Institute of Wood Science and Technology via Yoga Village, Beach Road, A. U. Post, Visakhapatnam-530 G 003, A.P., India. EO * Corresponding author. E-mail: [email protected] G N O Abstract: In a survey on the occurrence of marine wood boring organisms at Chippada-Rambilli, Visakhapatnam- OTES Bhimunipatnam and Soralgondi-Nachugunta coastal stretches along Bay of Bengal on the east coast of India, a good N Uperotus panamensis (Bartsch), U. lieberkindi (Roch), Teredora malleolus (Turton), Teredo poculifer Iredale and Nototeredo norvagicaassemblage (Spengler) of wood borers, are new especially records teredinidsto India; three were species, collected. namely, Among Teredo these mindanensis samples, five Bartsch, species T.of portoricensisteredinids, namely, Clapp and T. somersi Clapp new to the mainland and one species, namely, Teredothyra matocotana (Bartsch) new to the east coast. Systematic details of these nine teredinid taxa are presented in this communication. DOI: 10.15560/10.3.609 Information on the occurrence and distribution of Clapp, T. clappi Bartsch, T. somersi Clapp, T. indomalaiica marine wood borers in Indian waters relative to the Roch, Nototeredo norvagica (Spengler), N. edax (Hedley), country’s vast coastal stretch is far from satisfactory (Rao Nausitora fusticula (Jeffreys), N. dunlopei Wright, Bankia et al. 2008). Hence, efforts have been renewed to generate carinata (Gray), B. -
The ECPHORA the Newsletter of the Calvert Marine Museum Fossil Club Volume 26 Number 1 March 2011
The ECPHORA The Newsletter of the Calvert Marine Museum Fossil Club Volume 26 Number 1 March 2011 Stranded Beaked Whale Features Shark Tooth Hill, California Homage to Jean Hooper Calvert Cliffs at Last Serpulid Worm Shells, Corrected Inside May 21 Lecture by Catalina Pimiento ―Giant Shark Babies from Panama‖ Dolphin Limb Donated by USNMNH President’s Message CMMFC Shirt Order(See Page 12) Unfortunately, this adult male beaked whale, Mesoplodon grayi, stranded Fossil Club Field Trips in western Victoria, Australia in January. Museum Victoria collected the and Events whole animal for future research. See an up-close image of the beak on Stranded Beaked Whale page 11. Photo © by Sean Wright; submitted by Erich Fitzgerald. ☼ The Smithsonian Institution recently donated these small dolphin flipper bones to the comparative osteology collection at the Calvert Marine Museum. Many thanks to Charley Potter for arranging/facilitating the donation. ☼ CALVERT MARINE MUSEUM www.calvertmarinemuseum.com 2 The Ecphora March 2011 President's Message in 2009. The phosphate is used for fertilizer and animal feed; the phosphoric acid ends up in that cold bottle of Coca Cola you swig after a day of The weather is warming up in eastern North collecting. Carolina, but it's been a tough 12 months for Much of the demand comes from the collecting south of the border. PCS Aurora skyrocketing need for fertilizer, especially overseas (Miocene) is still closed to fossil collecting as is the in India and China. Late last year rumors circulated Martin Marietta mine in Belgrade (Late Oligocene, that the Chinese were trying to buy the company. -
Distel Et Al
Discovery of chemoautotrophic symbiosis in the giant PNAS PLUS shipworm Kuphus polythalamia (Bivalvia: Teredinidae) extends wooden-steps theory Daniel L. Distela,1, Marvin A. Altamiab, Zhenjian Linc, J. Reuben Shipwaya, Andrew Hand, Imelda Fortezab, Rowena Antemanob, Ma. Gwen J. Peñaflor Limbacob, Alison G. Teboe, Rande Dechavezf, Julie Albanof, Gary Rosenbergg, Gisela P. Concepcionb,h, Eric W. Schmidtc, and Margo G. Haygoodc,1 aOcean Genome Legacy Center, Department of Marine and Environmental Science, Northeastern University, Nahant, MA 01908; bMarine Science Institute, University of the Philippines, Diliman, Quezon City 1101, Philippines; cDepartment of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112; dSecond Genome, South San Francisco, CA 94080; ePasteur, Département de Chimie, École Normale Supérieure, PSL Research University, Sorbonne Universités, Pierre and Marie Curie University Paris 06, CNRS, 75005 Paris, France; fSultan Kudarat State University, Tacurong City 9800, Sultan Kudarat, Philippines; gAcademy of Natural Sciences of Drexel University, Philadelphia, PA 19103; and hPhilippine Genome Center, University of the Philippines System, Diliman, Quezon City 1101, Philippines Edited by Margaret J. McFall-Ngai, University of Hawaii at Manoa, Honolulu, HI, and approved March 21, 2017 (received for review December 15, 2016) The “wooden-steps” hypothesis [Distel DL, et al. (2000) Nature Although few other marine invertebrates are known to consume 403:725–726] proposed that large chemosynthetic mussels found at wood as food, an increasing number are believed to use waste deep-sea hydrothermal vents descend from much smaller species as- products associated with microbial degradation of wood on the sociated with sunken wood and other organic deposits, and that the seafloor. -
Exotic Species in the Aegean, Marmara, Black, Azov and Caspian Seas
EXOTIC SPECIES IN THE AEGEAN, MARMARA, BLACK, AZOV AND CASPIAN SEAS Edited by Yuvenaly ZAITSEV and Bayram ÖZTÜRK EXOTIC SPECIES IN THE AEGEAN, MARMARA, BLACK, AZOV AND CASPIAN SEAS All rights are reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the prior permission from the Turkish Marine Research Foundation (TÜDAV) Copyright :Türk Deniz Araştırmaları Vakfı (Turkish Marine Research Foundation) ISBN :975-97132-2-5 This publication should be cited as follows: Zaitsev Yu. and Öztürk B.(Eds) Exotic Species in the Aegean, Marmara, Black, Azov and Caspian Seas. Published by Turkish Marine Research Foundation, Istanbul, TURKEY, 2001, 267 pp. Türk Deniz Araştırmaları Vakfı (TÜDAV) P.K 10 Beykoz-İSTANBUL-TURKEY Tel:0216 424 07 72 Fax:0216 424 07 71 E-mail :[email protected] http://www.tudav.org Printed by Ofis Grafik Matbaa A.Ş. / İstanbul -Tel: 0212 266 54 56 Contributors Prof. Abdul Guseinali Kasymov, Caspian Biological Station, Institute of Zoology, Azerbaijan Academy of Sciences. Baku, Azerbaijan Dr. Ahmet Kıdeys, Middle East Technical University, Erdemli.İçel, Turkey Dr. Ahmet . N. Tarkan, University of Istanbul, Faculty of Fisheries. Istanbul, Turkey. Prof. Bayram Ozturk, University of Istanbul, Faculty of Fisheries and Turkish Marine Research Foundation, Istanbul, Turkey. Dr. Boris Alexandrov, Odessa Branch, Institute of Biology of Southern Seas, National Academy of Ukraine. Odessa, Ukraine. Dr. Firdauz Shakirova, National Institute of Deserts, Flora and Fauna, Ministry of Nature Use and Environmental Protection of Turkmenistan. Ashgabat, Turkmenistan. Dr. Galina Minicheva, Odessa Branch, Institute of Biology of Southern Seas, National Academy of Ukraine. -
A New Miocene Deep-Sea Chiton and Early Evidence for Teredinidae-Sustained Wood-Fall Communities
Palaeontologia Electronica palaeo-electronica.org A new Miocene deep-sea chiton and early evidence for Teredinidae-sustained wood-fall communities Luca Bertolaso, Vittorio Garilli, Daniela Parrinello, Maurizio Sosso, and Bruno Dell’Angelo ABSTRACT Deep-sea wood-falls are important biodiversity hot spots for insights on chemo- synthesis-based communities. The study of deep-sea wood-fall-related palaeocommu- nities from the Neogene of north Italy shed light on interesting associations from the Miocene of Torrente Cinghio (Tortonian) and of Moncasale di Casina (Langhian). The most common components of this association are typical chemosynthetic/wood-fall molluscs, such as the gastropods Homalopoma sp. and Pseudonina bellardii, the bivalves Idas sp. and shipworms, and the chiton Leptochiton lignatilis n. sp., which belongs to a genus typical of recent sunken woods in tropical waters. The new species described is compared with other fossil and recent congeners, especially with those sharing the same kind of tegmental sculpture, fully covered with randomly or quincun- cially arranged granules. An overview of the sunken wood-related chitons is provided. Surprisingly no taxa of the boring bivalves of the family Xylophagidae, whose species have been known to be fundamental for sustaining this kind of deep sea chemosyn- thetic ecosystem, were found in the studied site; however, other boring Teredinidae bivalves have been abundantly recovered. This suggests that, conversely to what has previously been observed on sunken wood communities, Teredinidae may be viewed as a counterpart for the maintenance of deep-sea wood-fall ecosystems. Luca Bertolaso. Via Manzotti 35, 42015 Correggio (RE), Italy. [email protected] Vittorio Garilli (corresponding author). -
Underwater Archaeological Investigation of the Roosevelt Inlet Shipwreck (7S-D-91A) Volume 1: Final Report
UNDERWATER ARCHAEOLOGICAL INVESTIGATION OF THE ROOSEVELT INLET SHIPWRECK (7S-D-91A) VOLUME 1: FINAL REPORT State Contract No. 26-200-03 Federal Aid Project No. ETEA-2006 (10) Prepared for: Delaware Department of State Division of Historical and Cultural Affairs 21 The Green Dover, Delaware 19901 And for the Federal Highway Administration and Delaware Department of Transportation By: APRIL 2010 www.searchinc.com UNDERWATER ARCHAEOLOGICAL INVESTIGATION OF THE ROOSEVELT INLET SHIPWRECK (7S-D-91A) State Contract No. 26-200-03 Federal Aid Project No. ETEA-2006 (10) Prepared for Delaware Department of State Division of Historical and Cultural Affairs 21 The Green Dover, Delaware 19901 And for the Federal Highway Administration and Delaware Department of Transportation By SOUTHEASTERN ARCHAEOLOGICAL RESEARCH, INC. Michael Krivor, M.A., RPA Principal Investigator AUTHORED BY: MICHAEL C. KRIVOR, NICHOLAS J. LINVILLE, DEBRA J. WELLS, JASON M. BURNS, AND PAUL J. SJORDAL APRIL 2010 www.searchinc.com Underwater Archaeological Investigations of the Roosevelt Inlet Shipwreck FINAL REPORT ABSTRACT In the fall of 2004, a dredge struck an eighteenth-century wreck site during beach replenishment, resulting in thousands of artifacts being scattered along the beach in Lewes, Delaware. Local residents informed archaeologists with the Delaware Department of State (State) Division of Historical and Cultural Affairs (Division) about the artifacts, and investigations were undertaken to locate the source of the historic material. Approximately 40,000 artifacts from Lewes Beach were recovered by archaeologists from the Division as well as many private citizens who donated their artifacts to the Delaware Department of State. In consultation with the U.S.