Field Surveys for Hexalectris Colemanii in Southeastern Arizona

Total Page:16

File Type:pdf, Size:1020Kb

Field Surveys for Hexalectris Colemanii in Southeastern Arizona FIELD SURVEYS FOR HEXALECTRIS COLEMANII IN SOUTHEASTERN ARIZONA MAY – JUNE 2010 Prepared for: ROSEMONT COPPER COMPANY 3931 W Ina Road Tucson, Arizona 85741 Prepared by: 4001 East Paradise Falls Drive Tucson, Arizona 85712 JULY 28, 2010 Project No. 1049.14 v132,17 Date: July 29, 2010 WestLand File No.: 1049.14 WestLand Resources, Inc. Pickup Deliver X Mail Engineering and Environmental Consultants 4001 East Paradise Falls Drive Tucson, Arizona 85712 By: The Runner (Courier) Ph: (520) 206-9585 Fx: (520) 206-9518 (Client to Pickup, Name of Courier or In-house Delivery; FedEx with Type, LISPS Regular, LISPS Priority, or (ASPS Certified Mail; etc.) TRANSMITTAL TO: Ms. Melissa Reichard SWCA Environmental Consultants FOR YOUR: 343 W. Franklin Street Information Tucson, AZ 85701 Use X 520-325-9194 Signature FROM: Brian Lindenlaub Stamp Review RE: Rosemont Copper Project Approval File SENT: Per Your Request Other (see comments) As Requested By: ATTACHED: Copies Originals Copies Originals Field Surveys for Hexalectris Colemanii in Southeastern Arizona, May-June 2010 — Report prepared 2 for Rosemont Copper Company CD containing above-referenced 1 report Your Redlines Check Comments: CC: If Delivered or Picked Up: Received by (Signature/Print Name) Date Field Surveys for Hexalectris colemanii in Southeastern Arizona July 28, 2010 May – June 2010 Page ii TABLE OF CONTENTS Executive Summary .....................................................................................................................................iv 1. Introduction..........................................................................................................................................1 2. Description of Survey Areas, Field Methods, and Materials ...............................................................3 2.1 Field Training ..............................................................................................................................3 2.2 Survey Approach in Rosemont Area...........................................................................................3 2.3 Survey Approach Outside of Rosemont Area .............................................................................5 3. Survey Results......................................................................................................................................6 3.1 Surveyors and Survey Effort .......................................................................................................6 3.2 Survey Results within the Rosemont Area ..................................................................................9 3.3 Survey Results Outside of the Rosemont Area..........................................................................11 4. Conclusions from 2010 Survey for H. colemanii...............................................................................15 5. References Cited ................................................................................................................................16 LIST OF TABLES Table 1. All areas surveyed during the 2010 Hexalectris colemanii inventory with specific reference to canyon, mountain range, and surveyor...................................................................................... 7 Table 2. Rosemont area surveyed--2010 Hexalectris colemanii inventory by WestLand. Survey conducted May 18-June 28 and June 7-9, 2010.......................................................................................... 8 Table 3. UTM Coordinates of the historic locations of Hexalectris colemanii in McCleary Canyon, Santa Rita Mountains, in NAD 83 .................................................................................................... 10 Table 4. Canyons surveyed outside Rosemont area-- 2010 Hexalectris inventory by WestLand, Holly Lawson, and other volunteers................................................................................................. 10 LIST OF FIGURES (All figures follow text) Figure 1. Vicinity Map Figure 2. Regional Map of Historic Locations of Hexalectris colemanii Figure 3. Rosemont Area, 2010 Orchid Survey Figure 4. Detailed Survey Area, showing Hexalectris colemanii locations Figure 5. Detailed Survey Area, showing Hexalectris colemanii locations (Wasp Canyon, McCleary Canyon) Figure 6. Regional Map of Hexalectris surveys in 2010 Figure 7. Overview of survey area, Cochise Stronghold, West and East Canyons, Big Dragoon Mountains Figure 7a. Detailed Survey Area, Cochise Stronghold, West and East Canyons, Big Dragoon Mountains Figure 7b. Detailed Survey Area, Cochise Stronghold, West and East Canyons, Big Dragoon Mountains Figure 8. Canyons surveyed outside Rosemont Area Figure 9. Detailed survey area, Solano Canyon, Baboquivari Mountains Figure 10. Detailed survey area, upper Canada del Oro Canyon, Santa Catalina Mountains Figure 11. Detailed survey area, Sawmill Canyon, Santa Rita Mountains Figure 12. Detailed survey area, Box Canyon Figure 13. Detailed survey area, Florida Canyon Figure 14. Detailed survey area, Agua Caliente and Montosa Canyon Q\jobs\1000s\1049.14\Orchids\July 28 Report\\Rosemont Hexalectris survey report 72810REV.doc WestLand Resources, Inc. Engineering and Environmental Consultants Field Surveys for Hexalectris colemanii in Southeastern Arizona July 28, 2010 May – June 2010 Page iii LIST OF APPENDICES Appendix A. Chronology of field notes and observations by Ronald A. Coleman Appendix B. Contributions by Holly Lawson, Rosemont Copper Reclamation Specialist Appendix C. GPS Data of Hexalectris located during surveys in May and June 2010 Q\jobs\1000s\1049.14\Orchids\July 28 Report\\Rosemont Hexalectris survey report 72810REV.doc WestLand Resources, Inc. Engineering and Environmental Consultants Field Surveys for Hexalectris colemanii in Southeastern Arizona July 28, 2010 May – June 2010 Page iv EXECUTIVE SUMMARY The orchid, Hexalectris colemanii (Catling 2004, Kennedy and Watson 2010), is a non-photosynthetic, obligately mycotrophic orchid with a subterranean rhizome. The only visible portion of the plant is the inflorescence, detectable as the < 35 cm sprout emerges above ground to flower. The time frame in which the inflorescence can be seen is brief, mid-May to mid-June. Its brief appearance each year and its relatively inconspicuous inflorescences have contributed to its rather late first-detection, 1981, as an element of the Arizona flora. H. colemanii has previously been located in Baboquivari Canyon (Baboquivari Mountains), McCleary and Sawmill canyons (Santa Rita Mountains) and Cochise Stronghold West Canyon (Big Dragoon Mountains). Voucher specimens of this species have previously been collected in three of these canyons but not in Cochise Stronghold West Canyon. A single vouchered sighting in 1981 is the only evidence for its occurrence in Baboquivari Canyon. In 1986, McLaughlin made the first vouchered sighting of this species in McCleary Canyon. Coleman, as part of his ongoing research into the distribution of native orchid species in Arizona and New Mexico, began to monitor a population of this species in McCleary Canyon in 1996. The following year, he located the species for the first time in Sawmill Canyon and Cochise Stronghold West Canyon. Coleman was unable to relocate the orchid after two visits (1997 and 1998) to Baboquivari Canyon even with directions from Larry Toolin, who had made the 1981 collection. Coleman’s monitoring and survey efforts from about 1997 to 2009 have produced only four known locations for H. colemanii. An indication of the number of known plants at each of the four locations is provided by Coleman’s monitoring of inflorescences, with the maximum and minimum number of inflorescences seen over the years at each of the four sites: Baboquivari Canyon (1, only in 1981); McCleary Canyon (40 max, 0 min, during 13 years of monitoring), Sawmill Canyon (30 max, 0 min, during 13 years of monitoring), and Cochise Stronghold West Canyon (6 max, 0 min, during five years of monitoring) (Coleman 2010 in Appendix A). WestLand Resources was asked by Rosemont Copper Company to survey for Hexalectris colemanii on the entire “Rosemont Area” (all areas included in the Rosemont Mine Plan of Operations and the alternatives developed by the Coronado National Forest as part of their National Environmental Policy Act review of the Plan of Operations). These surveys were conducted during May and June, 2010, when inflorescences of this orchid sprout or are in flower. Survey efforts were focused on the portions of the Rosemont Area that have Arizona white oak (Quercus arizonica) and Emory oak (Quercus emoryi) stands with contiguous, closed or nearly closed canopies. While surveying the Rosemont Area, the surveyors also delineated the vegetation in the canyon bottoms and along the slopes according to the general species composition of the trees to facilitate complete survey coverage of suitable sites within the Rosemont Area that were identified based upon the described habitat preferences of this species. WestLand field biologists conducted a total of 115 person-days of field surveys in the Rosemont Area, 54 person-days of which were in the watershed of McCleary Canyon. The outcome of the 2010 surveys on the Rosemont Area was the detection of 124 inflorescences of H. colemanii in four distinct sites: 15 inflorescences in the ‘historic’1 location in McCleary Canyon, 10 1 By ‘historic’ location in McCleary Canyon, we mean an approximately 150 m reach of the canyon within which (a) Steve McLaughlin made the first collection of
Recommended publications
  • Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE
    Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE LILIACEAE de Jussieu 1789 (Lily Family) (also see AGAVACEAE, ALLIACEAE, ALSTROEMERIACEAE, AMARYLLIDACEAE, ASPARAGACEAE, COLCHICACEAE, HEMEROCALLIDACEAE, HOSTACEAE, HYACINTHACEAE, HYPOXIDACEAE, MELANTHIACEAE, NARTHECIACEAE, RUSCACEAE, SMILACACEAE, THEMIDACEAE, TOFIELDIACEAE) As here interpreted narrowly, the Liliaceae constitutes about 11 genera and 550 species, of the Northern Hemisphere. There has been much recent investigation and re-interpretation of evidence regarding the upper-level taxonomy of the Liliales, with strong suggestions that the broad Liliaceae recognized by Cronquist (1981) is artificial and polyphyletic. Cronquist (1993) himself concurs, at least to a degree: "we still await a comprehensive reorganization of the lilies into several families more comparable to other recognized families of angiosperms." Dahlgren & Clifford (1982) and Dahlgren, Clifford, & Yeo (1985) synthesized an early phase in the modern revolution of monocot taxonomy. Since then, additional research, especially molecular (Duvall et al. 1993, Chase et al. 1993, Bogler & Simpson 1995, and many others), has strongly validated the general lines (and many details) of Dahlgren's arrangement. The most recent synthesis (Kubitzki 1998a) is followed as the basis for familial and generic taxonomy of the lilies and their relatives (see summary below). References: Angiosperm Phylogeny Group (1998, 2003); Tamura in Kubitzki (1998a). Our “liliaceous” genera (members of orders placed in the Lilianae) are therefore divided as shown below, largely following Kubitzki (1998a) and some more recent molecular analyses. ALISMATALES TOFIELDIACEAE: Pleea, Tofieldia. LILIALES ALSTROEMERIACEAE: Alstroemeria COLCHICACEAE: Colchicum, Uvularia. LILIACEAE: Clintonia, Erythronium, Lilium, Medeola, Prosartes, Streptopus, Tricyrtis, Tulipa. MELANTHIACEAE: Amianthium, Anticlea, Chamaelirium, Helonias, Melanthium, Schoenocaulon, Stenanthium, Veratrum, Toxicoscordion, Trillium, Xerophyllum, Zigadenus.
    [Show full text]
  • Divergence in Mycorrhizal Specialization Within Hexalectris Spicata (Orchidaceae), a Nonphotosynthetic Desert Orchid1
    American Journal of Botany 90(8): 1168±1179. 2003. DIVERGENCE IN MYCORRHIZAL SPECIALIZATION WITHIN HEXALECTRIS SPICATA (ORCHIDACEAE), A NONPHOTOSYNTHETIC DESERT ORCHID1 D. LEE TAYLOR,2,4 THOMAS D. BRUNS,3 TIMOTHY M. SZARO,3 AND SCOTT A. HODGES2 2Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California 93106 USA; and 3Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 USA Evidence is accumulating for specialized yet evolutionarily dynamic associations between orchids and their mycorrhizal fungi. However, the frequency of tight mycorrhizal speci®city and the phylogenetic scale of changes in speci®city within the Orchidaceae are presently unknown. We used microscopic observations and PCR-based methods to address these questions in three taxa of non- photosynthetic orchids within the Hexalectris spicata complex. Fungal ITS RFLP analysis and sequences of the ITS and nuclear LSU ribosomal gene fragments allowed us to identify the fungi colonizing 25 individuals and 50 roots. Thanatephorus ochraceus (Cera- tobasidiaceae) was an occasional colonizer of mycorrhizal roots and nonmycorrhizal rhizomes. Members of the Sebacinaceae were the primary mycorrhizal fungi in every Hexalectris root and were phylogenetically intermixed with ectomycorrhizal taxa. These associates fell into six ITS RFLP types labeled B through G. Types B, C, D, and G were found in samples of H. spicata var. spicata, while only type E was found in H. spicata var. arizonica and only type F was found in H. revoluta. These results provide preliminary evidence for divergence in mycorrhizal speci®city between these two closely related orchid taxa. We hypothesize that mycorrhizal interactions have contributed to the evolutionary diversi®cation of the Orchidaceae.
    [Show full text]
  • Native Orchids of Oklahoma Dr. Lawrence K. Magrath Curator-USAO
    Oklahoma Native Plant Record 39 Volume 1, Number 1, December 2001 Native Orchids of Oklahoma Dr. Lawrence K. Magrath Curator-USAO (OCLA) Herbarium Chickasha, OK 73018-5358 As of the publication of this paper Oklahoma is known to have orchids of 33 species in 18 genera, which compares to 20 species and 11 genera reported by Waterfall (1969). Four of the 33 species are possibly extinct in the state based on current survey work. The greatest concentration of orchid species is in the southeastern corner of the state (Atoka, Bryan, Choctaw, LeFlore, McCurtain and Pushmataha Counties). INTRODUCTION Since the time of Confucius (551-479 BCE) who mentioned lan in his writings, "acquaintance with The family Orchidaceae is the largest of the good men was like entering a room full of lan or families of flowering plants with somewhere between fragrant orchids" (Withner, 1959), orchids have been 25,000 and 35,000 species, with new species important in many facets of Chinese life including continually being described. There are also literature, painting, horticulture, and not least, numerous natural and artificial hybrids. The only medicine". They are mentioned in the materia place where orchids are not known to occur is medica, “Sheng nung pen ts'ao ching”, tracing back Antarctica. to the legendary emperor Sheng Nung (ca. 28th Orchids fascinate us because of the century BCE). The term "lan hua" in early Chinese seemingly infinite combinations of colors and forms records refers to species of the genus Cymbidium that are found in orchid flowers from the Arctic to (Withner, 1959), most likely Cymbidium the tropical rain forests.
    [Show full text]
  • Species List For: Valley View Glades NA 418 Species
    Species List for: Valley View Glades NA 418 Species Jefferson County Date Participants Location NA List NA Nomination and subsequent visits Jefferson County Glade Complex NA List from Gass, Wallace, Priddy, Chmielniak, T. Smith, Ladd & Glore, Bogler, MPF Hikes 9/24/80, 10/2/80, 7/10/85, 8/8/86, 6/2/87, 1986, and 5/92 WGNSS Lists Webster Groves Nature Study Society Fieldtrip Jefferson County Glade Complex Participants WGNSS Vascular Plant List maintained by Steve Turner Species Name (Synonym) Common Name Family COFC COFW Acalypha virginica Virginia copperleaf Euphorbiaceae 2 3 Acer rubrum var. undetermined red maple Sapindaceae 5 0 Acer saccharinum silver maple Sapindaceae 2 -3 Acer saccharum var. undetermined sugar maple Sapindaceae 5 3 Achillea millefolium yarrow Asteraceae/Anthemideae 1 3 Aesculus glabra var. undetermined Ohio buckeye Sapindaceae 5 -1 Agalinis skinneriana (Gerardia) midwestern gerardia Orobanchaceae 7 5 Agalinis tenuifolia (Gerardia, A. tenuifolia var. common gerardia Orobanchaceae 4 -3 macrophylla) Ageratina altissima var. altissima (Eupatorium rugosum) white snakeroot Asteraceae/Eupatorieae 2 3 Agrimonia pubescens downy agrimony Rosaceae 4 5 Agrimonia rostellata woodland agrimony Rosaceae 4 3 Allium canadense var. mobilense wild garlic Liliaceae 7 5 Allium canadense var. undetermined wild garlic Liliaceae 2 3 Allium cernuum wild onion Liliaceae 8 5 Allium stellatum wild onion Liliaceae 6 5 * Allium vineale field garlic Liliaceae 0 3 Ambrosia artemisiifolia common ragweed Asteraceae/Heliantheae 0 3 Ambrosia bidentata lanceleaf ragweed Asteraceae/Heliantheae 0 4 Ambrosia trifida giant ragweed Asteraceae/Heliantheae 0 -1 Amelanchier arborea var. arborea downy serviceberry Rosaceae 6 3 Amorpha canescens lead plant Fabaceae/Faboideae 8 5 Amphicarpaea bracteata hog peanut Fabaceae/Faboideae 4 0 Andropogon gerardii var.
    [Show full text]
  • Mississippi Natural Heritage Program Special Plants - Tracking List -2018
    MISSISSIPPI NATURAL HERITAGE PROGRAM SPECIAL PLANTS - TRACKING LIST -2018- Approximately 3300 species of vascular plants (fern, gymnosperms, and angiosperms), and numerous non-vascular plants may be found in Mississippi. Many of these are quite common. Some, however, are known or suspected to occur in low numbers; these are designated as species of special concern, and are listed below. There are 495 special concern plants, which include 4 non- vascular plants, 28 ferns and fern allies, 4 gymnosperms, and 459 angiosperms 244 dicots and 215 monocots. An additional 100 species are designated “watch” status (see “Special Plants - Watch List”) with the potential of becoming species of special concern and include 2 fern and fern allies, 54 dicots and 44 monocots. This list is designated for the primary purposes of : 1) in environmental assessments, “flagging” of sensitive species that may be negatively affected by proposed actions; 2) determination of protection priorities of natural areas that contain such species; and 3) determination of priorities of inventory and protection for these plants, including the proposed listing of species for federal protection. GLOBAL STATE FEDERAL SPECIES NAME COMMON NAME RANK RANK STATUS BRYOPSIDA Callicladium haldanianum Callicladium Moss G5 SNR Leptobryum pyriforme Leptobryum Moss G5 SNR Rhodobryum roseum Rose Moss G5 S1? Trachyxiphium heteroicum Trachyxiphium Moss G2? S1? EQUISETOPSIDA Equisetum arvense Field Horsetail G5 S1S2 FILICOPSIDA Adiantum capillus-veneris Southern Maidenhair-fern G5 S2 Asplenium
    [Show full text]
  • Annotated Checklist of the Vascular Plants of the Washington - Baltimore Area
    Annotated Checklist of the Vascular Plants of the Washington - Baltimore Area Part II Monocotyledons Stanwyn G. Shetler Sylvia Stone Orli Botany Section, Department of Systematic Biology National Museum of Natural History Smithsonian Institution, Washington, DC 20560-0166 MAP OF THE CHECKLIST AREA Annotated Checklist of the Vascular Plants of the Washington - Baltimore Area Part II Monocotyledons by Stanwyn G. Shetler and Sylvia Stone Orli Department of Systematic Biology Botany Section National Museum of Natural History 2002 Botany Section, Department of Systematic Biology National Museum of Natural History Smithsonian Institution, Washington, DC 20560-0166 Cover illustration of Canada or nodding wild rye (Elymus canadensis L.) from Manual of the Grasses of the United States by A. S. Hitchcock, revised by Agnes Chase (1951). iii PREFACE The first part of our Annotated Checklist, covering the 2001 species of Ferns, Fern Allies, Gymnosperms, and Dicotyledons native or naturalized in the Washington-Baltimore Area, was published in March 2000. Part II covers the Monocotyledons and completes the preliminary edition of the Checklist, which we hope will prove useful not only in itself but also as a first step toward a new manual for the identification of the Area’s flora. Such a manual is needed to replace the long- outdated and out-of-print Flora of the District of Columbia and Vicinity of Hitchcock and Standley, published in 1919. In the preparation of this part, as with Part I, Shetler has been responsible for the taxonomy and nomenclature and Orli for the database. As with the first part, we are distributing this second part in preliminary form, so that it can be used, criticized, and updated while the two parts are being readied for publication as a single volume.
    [Show full text]
  • Temporal Variation in Community Composition of Root Associated Endophytic Fungi and Carbon and Nitrogen Stable Isotope Abundance in Two Bletilla Species (Orchidaceae)
    plants Article Temporal Variation in Community Composition of Root Associated Endophytic Fungi and Carbon and Nitrogen Stable Isotope Abundance in Two Bletilla Species (Orchidaceae) Xinhua Zeng 1, Haixin Diao 1, Ziyi Ni 1, Li Shao 1, Kai Jiang 1 , Chao Hu 1, Qingjun Huang 2 and Weichang Huang 1,3,* 1 Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Chenshan Botanical Garden, Shanghai 201620, China; [email protected] (X.Z.); [email protected] (H.D.); [email protected] (Z.N.); [email protected] (L.S.); [email protected] (K.J.); [email protected] (C.H.) 2 Shanghai Institute of Technology, Shanghai 201418, China; [email protected] 3 College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China * Correspondence: [email protected] Abstract: Mycorrhizae are an important energy source for orchids that may replace or supplement photosynthesis. Most mature orchids rely on mycorrhizae throughout their life cycles. However, little is known about temporal variation in root endophytic fungal diversity and their trophic functions throughout whole growth periods of the orchids. In this study, the community composition of root endophytic fungi and trophic relationships between root endophytic fungi and orchids were investigated in Bletilla striata and B. ochracea at different phenological stages using stable isotope natural abundance analysis combined with molecular identification analysis. We identified 467 OTUs assigned to root-associated fungal endophytes, which belonged to 25 orders in 10 phyla. Most of these OTUs were assigned to saprotroph (143 OTUs), pathotroph-saprotroph (63 OTUs) and pathotroph- saprotroph-symbiotroph (18 OTUs) using FunGuild database. Among these OTUs, about 54 OTUs Citation: Zeng, X.; Diao, H.; Ni, Z.; could be considered as putative species of orchid mycorrhizal fungi (OMF).
    [Show full text]
  • Newsletter 2010
    The UniversiTy of georgia franklin college of arts and sciences a DeparTmenT of planT Biology newsletter JUne 2010 monocot Tree of life The yucca flower is not your grandfather’s plant systematics insect pollinated by the yucca moth. ystematists have tried to understand nuclear genes for over fifty species. These how species are related to each data should allow us to resolve relation- other since Theophrastus, the father ships among all monocot families and Sof botany, lived between the third and gain new insights into the evolution of ing. “As a postdoc I started studying the second century BC. Down through the morphological characteristics, life history amazing obligate pollination mutualism ages, they have depended on comparing traits and genome structure throughout between yuccas and yucca moths. Yucca flower structure, stems and leaves to sort monocot history.” moths have specialized mouthparts they out relationships. Both Wendy Zomlefer, another Plant use to collect yucca pollen and actively In the last 20 years plant system- Biology faculty member participating in deposit it on yucca stigmas. This is not atists have added a dynamic tool to their the Monocot Tree of Life project, and your typical insect pollination sys- toolkit—DNA sequencing. Thanks to the Jim, got hooked on studying non-grass tem! Female yucca moths place their egg recent development of powerful high- monocot species, in the orders Liliales in yucca ovaries before walking up the through put technologies, also known as and Asparagales, respectively. Wendy’s pistil and actively jamming pollen into “next generation” technologies, research- undergraduate days in Vermont helped the bowl-shaped yucca stigmas.
    [Show full text]
  • Systematics, Phylogeography, Fungal Associations, and Photosynthesis
    Systematics, Phylogeography, Fungal Associations, and Photosynthesis Gene Evolution in the Fully Mycoheterotrophic Corallorhiza striata Species Complex (Orchidaceae: Epidendroideae) Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Craig Francis Barrett, M. S. Evolution, Ecology, and Organismal Biology ***** The Ohio State University 2010 Dissertation Committee: Dr. John V. Freudenstein, Advisor Dr. John W. Wenzel Dr. Andrea D. Wolfe Copyright by Craig Francis Barrett 2010 ABSTRACT Corallorhiza is a genus of obligately mycoheterotrophic (fungus-eating) orchids that presents a unique opportunity to study phylogeography, taxonomy, fungal host specificity, and photosynthesis gene evolution. The photosysnthesis gene rbcL was sequenced for nearly all members of the genus Corallorhiza; evidence for pseudogene formation was found in both the C. striata and C. maculata complexes, suggesting multiple independent transitions to complete heterotrophy. Corallorhiza may serve as an exemplary system in which to study the plastid genomic consequences of full mycoheterotrophy due to relaxed selection on photosynthetic apparatus. Corallorhiza striata is a highly variable species complex distributed from Mexico to Canada. In an investigation of molecular and morphological variation, four plastid DNA clades were identified, displaying statistically significant differences in floral morphology. The biogeography of C. striata is more complex than previously hypothesized, with two main plastid lineages present in both Mexico and northern North America. These findings add to a growing body of phylogeographic data on organisms sharing this common distribution. To investigate fungal host specificity in the C. striata complex, I sequenced plastid DNA for orchids and nuclear DNA for fungi (n=107 individuals), and found that ii the four plastid clades associate with divergent sets of ectomycorrhizal fungi; all within a single, variable species, Tomentella fuscocinerea.
    [Show full text]
  • The Herbaceous Vascular Plants of Blackacre Preserve a Preliminary List
    The Herbaceous Vascular Plants of Blackacre Preserve A Preliminary List December 3, 2010 Submitted to: Kentucky State Nature Preserves Commission Submitted by: William E. Thomas Herbarium Indiana University Southeast Photo: Spiked Crested Coralroot by Richard Lyons 1 Scope The aim of this survey was to compile a rough list of herbaceous vascular plant species on the below described tract and was conducted from July 11, 2010 through the end of the growing season. In addition any extensive populations of invasive alien species were noted. Locale Description The Blackacre Preserve website states that the property consists of 170 acres in eastern Jefferson County Kentucky. It is the authors understanding that some additional acreage (size?) was appended to the southern border of the original 170 acre tract. The property is located at 3200 Tucker Station Rd. The tract is bordered on all sides by housing and urban areas; a railroad track runs along the north border. The terrain is of mostly gentle slopes with some wooded areas and open fields formerly used for pasture or crops. There are several ponds on the property; a limestone glade area constitutes the northeast corner of the tract. A small creek flows east to west across the tract north of the center. There are numerous foot trails, some designated and some rogue. An old section of Mann’s Lick road runs northward about midway in the tract. Map #1 from the Blackacre Preserve website provides a general layout of this tract. Map #2 is a topographic map with a NAD83 UTM 16 grid superimposed and the foot trails plotted in various colors.
    [Show full text]
  • Publications1
    PUBLICATIONS1 Book Chapters: Zettler LW, J Sharma, and FN Rasmussen. 2003. Mycorrhizal Diversity (Chapter 11; pp. 205-226). In Orchid Conservation. KW Dixon, SP Kell, RL Barrett and PJ Cribb (eds). 418 pages. Natural History Publications, Kota Kinabalu, Sabah, Malaysia. ISBN: 9838120782 Books and Book Chapters Edited: Sharma J. (Editor). 2010. North American Native Orchid Conservation: Preservation, Propagation, and Restoration. Conference Proceedings of the Native Orchid Conference - Green Bay, Wisconsin. Native Orchid Conference, Inc., Greensboro, North Carolina. 131 pages, plus CD. (Public Review by Dr. Paul M. Catling published in The Canadian Field-Naturalist Vol. 125. pp 86 - 88; http://journals.sfu.ca/cfn/index.php/cfn/article/viewFile/1142/1146). Peer-reviewed Publications (besides Journal publications or refereed proceedings) Goedeke, T., Sharma, J., Treher, A., Frances, A. & *Poff, K. 2016. Calopogon multiflorus. The IUCN Red List of Threatened Species 2016: e.T64175911A86066804. https://dx.doi.org/10.2305/IUCN.UK.2016- 1.RLTS.T64175911A86066804.en. Treher, A., Sharma, J., Frances, A. & *Poff, K. 2015. Basiphyllaea corallicola. The IUCN Red List of Threatened Species 2015: e.T64175902A64175905. https://dx.doi.org/10.2305/IUCN.UK.2015- 4.RLTS.T64175902A64175905.en. Goedeke, T., Sharma, J., Treher, A., Frances, A. & *Poff, K. 2015. Corallorhiza bentleyi. The IUCN Red List of Threatened Species 2015: e.T64175940A64175949. https://dx.doi.org/10.2305/IUCN.UK.2015- 4.RLTS.T64175940A64175949.en. Treher, A., Sharma, J., Frances, A. & *Poff, K. 2015. Eulophia ecristata. The IUCN Red List of Threatened Species 2015: e.T64176842A64176871. https://dx.doi.org/10.2305/IUCN.UK.2015- 4.RLTS.T64176842A64176871.en.
    [Show full text]
  • Molecular Phylogenetic Study of the Tribe Tropidieae (Orchidaceae, Epidendroideae) with Taxonomic and Evolutionary Implications
    A peer-reviewed open-access journal PhytoKeys 140: 11–22 (2020) Molecular phylogenetic study of Tropidieae 11 doi: 10.3897/phytokeys.140.46842 RESEARCH ARTICLE http://phytokeys.pensoft.net Launched to accelerate biodiversity research Molecular phylogenetic study of the tribe Tropidieae (Orchidaceae, Epidendroideae) with taxonomic and evolutionary implications Izai A.B. Sabino Kikuchi1, Paul J.A. Keßler1, André Schuiteman2, Jin Murata3, Tetsuo Ohi-Toma3, Tomohisa Yukawa4, Hirokazu Tsukaya5,6 1 Universiteit Leiden, Hortus botanicus Leiden, PO Box 9500, Leiden, 2300 RA, The Netherlands2 Science Directorate, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK 3 Botanical Gardens, Graduate School of Science, The University of Tokyo, 3-7-1 Hakusan, Bunkyo-ku, Tokyo, 112-0001, Japan4 Tsukuba Botanical Garden, National Science Museum, 4-1-1 Amakubo, Tsukuba, 305-0005, Japan 5 Department of Biological Sciences, Faculty of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan 6 Bio-Next Project, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Yamate Build. #3, 5-1, Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan Corresponding author: Izai A. B. Sabino Kikuchi ([email protected]) Academic editor: M. Simo-Droissart | Received 26 September 2019 | Accepted 18 December 2019 | Published 19 February 2020 Citation: Sabino Kikuchi IAB, Keßler PJA, Schuiteman A, Murata J, Ohi-Toma T, Yukawa T, Tsukaya H (2020) Molecular phylogenetic study of the tribe Tropidieae (Orchidaceae, Epidendroideae) with taxonomic and evolutionary implications. PhytoKeys 140: 11–22. https://doi.org/10.3897/phytokeys.140.46842 Abstract The orchid tribe Tropidieae comprises three genera,Tropidia , Corymborkis and Kalimantanorchis.
    [Show full text]