Stages Feb 10.Indd

Total Page:16

File Type:pdf, Size:1020Kb

Stages Feb 10.Indd Newsletter of the STAGES Early Life History Section of the American Fisheries Society Volume 31, Number 1 Lee A. Fuiman, Editor February 2010 Inside this issue President’s Message ........... 1 “21st Century Larval Fish Biology: News from the Regions ....... 2 Responding to a Changing Environment” Section Officers ................... 2 is the theme of the 34th annual Larval Fish Conference to be held Upcoming Events ................ 5 in Santa Fe, New Mexico, May 30 - June 3, 2010. This year’s People ................................. 6 conference will be held at the Fort Marcy Hotel Suites in Santa Fe, New Mexico, USA. The hotel is located amidst nine acres of natural Publications ......................... 8 and landscaped grounds and gardens and is just a four-block walk Editor’s Ramblings .............11 from the historic downtown Santa Fe Plaza. Co-organizers for the conference are Ione Hunt von Herbing, University of North Texas ([email protected]), and Joan Holt, Marine Science Institute, ELHS Back Then University of Texas at Austin ([email protected]). nd 5 years ago: 29th LFC held at Univer- Early registration closes March 22 and abstract submission sity Pompeu Fabra in Barcelona. closes on March 24th, 2010; late registration ends on May 15th. 10 years ago: Section approves its Please see the Larval Fish Conference website for more details first subvention to support creation (www.larvalfishcon.org). of a new book. 15 years ago: Tom Miller gives the ELHS newsletter a new look and a ...continued on p. 5 new name: STAGES 20 years ago: Section membership climbs to 39 countries on six President’s Message continents. 25 years ago: ELHS newsletter I am really looking forward and juveniles are all fair game. The name publishes its very first photo, a to the Larval Fish Conference Larval Fish Conference is just simpler than shot of the Section’s Executive in May. First, the LFC is a the Non-Adult Stage Fish Conference or the Committee (Nancy Auer, Joan great meeting: small enough Early Life Stage Fish Conference. Also, the Holt, Bill Matthews, Bob Muth, Bob Hoyt, Neal Foster, and Fred to have a sense of community Fish in Larval Fish Conference is broadly Binkowski). and to allow plenty of defined. There have been sessions on larval 30 years ago: At the 4th annual Larval opportunity to meet and talk cephalopods and talks on the early life Fish Conference, Van Conner with other scientists, but large enough to stages of crabs and clams. Again, the LFC is reported first evidence for natural have a diverse array of interesting sessions just easier than the Larval Fish and Shellfish reproduction of grass carp in US. and presentations. The LFC is so unlike those Conference or the Larval Living Aquatic monstrous meetings where talks continue Resources Conference. So for those of you likes chocolates on an assembly line and you who feel limited by the name, understand are lucky to see someone twice even if you that the LFC is inclusive and covers a broad are sharing a room with them. array of taxa, stages, and disciplines. That Deadline for material Second, the focus of the LFC is unique said, I have been hearing rumors of a future to be included in the - well almost unique. The meeting doesn’t bid that hopes to organize a joint Larval next issue of Stages: revolve around a discipline. Rather it centers Fish Conference / Larval Biology Meeting on the unique challenges of studying the early sometime this decade. Maybe we will find May 1, 2010 life stages of fishes. The LFC encompasses out more at the Early Life History Section much more than the name implies. It is not Business Meeting. limited to larvae: reproduction, eggs, larvae ...continued on p. 11 Stages News from the Regions European Pacific Rim Region Region Audrey Geffen Iain Suthers From: Francisco Alemany, From: Lynnath Beckley, Larval ecology and Murdoch University recruitment group, Centro At Murdoch University in Fremantle, Oceanográfico de Baleares Western Australia, work has continued on larval fish assemblages associated del Instituto Español de with the Leeuwin Current and its eddies. Oceanografía, Spain sensors, and water samples at different Lynnath Beckley and co-authors have depth were obtained from a rosette of Our team works on ELH of a variety recently reviewed what is known about Niskin bottles for nutrients and chlorophylls of taxonomic groups; but at present is larval fishes off Western Australia as part determination. In addition, several plankton mainly focused on Atlantic Bluefin (ABT) of the proceedings of the Leeuwin Current hauls were carried out: oblique tows with and related species larval ecology. This Symposium (J Roy Soc WA 92:101-109). Bongo 60 nets fitted with 200 and 333 μm line of research was initiated in 2001 by meshes; Bongo 90 equipped with 500 μm David Holliday has completed his PhD a multidisciplinary group of the Spanish meshes sub-surface horizontal tows and which examined the cross-shelf transport Institute of Oceanography (IEO) (www. vertical micro-zooplankton tows by means and incorporation of larval fishes into an ieo.es), including ichthyoplanktologists, of Calvet nets. Part of ABT and other tuna evolving anticyclonic (warm-core) Leeuwin fisheries biologists, and chemical and (albacore, bullet tuna) larvae were sorted Current eddy. This research, supervised physical oceanographers from several IEO on board and preserved in liquid nitrogen by Lynnath and Dr Ming Feng (a physical labs. Within the framework of the TUNIBAL for nucleic acids and daily growth analysis oceanographer from CSIRO), was part project, whose immediate general object- to determine larval condition. Preliminary of a larger interdisciplinary biophysical ives were to determine the influence of investigation of Leeuwin Current eddies ...continued on p. 9 environmental factors on the location of which covered everything from physics ABT spawning areas and to characterize to fish! Larval fish assemblages from the environmental scenarios favoring shelf and offshore waters within the ABT larvae survival, five summer eddy field were sampled using neuston, hydrographic-planktonic surveys were bongo, and depth-stratified EZ nets, and carried out off the Balearic Islands, one these data were supported by concurrent of the main spawning areas of the ABT oceanographic measurements (CTD, eastern stock. Around 200 stations, ADCP, etc). The dynamic oceanography, located on the nodes of a 10 x 10 nautical particularly large-scale mixing, was mile regular grid, were sampled by year. reflected in the waters of the eddy as At each station a hydrographic profile well as the larval fish assemblages. The was performed by means of a Seabird onshore-offshore distributions of meso- 911 CTD, equipped with turbidity, pelagic and neritic fishes highlighted fluorimetry and dissolved oxygen ...continued on p. 3 Section Officers President Secretary Treasurer Jon Hare Ione Hunt von Herbing Elisabeth H. Laban NMFS, NE Fisheries Science Center North Texas University National Ocean Service Narragansett Laboratory Biological Sciences Department NOAA Beaufort Laboratory [email protected] [email protected] [email protected] President-Elect Secretary-Elect HELP US Susan Sogard Catriona Clemmesen UPDATE OUR NMFS, SW Fisheries Science Center Leibniz Institute of Marine Science RECORDS... Fisheries Ecology Division Kiel, Germany [email protected] [email protected] Verify your email and postal address with our Secretary. 2 AFS - Early Life History Section February 2010 Oregon, and will be presented again at the Western 2010 PICES Climate Change symposium in Japan in April. A manuscript has also been Region submitted to Fisheries Oceanography: Auth, T.D., Brodeur, R.D., Soulen, H.L., Ciannelli, L., and Peterson, W.T. (Submitted). An Dan Margulies investigation of the response of fish larvae to decadal changes in environmental forcing factors off the Oregon coast. From: Hatfield Marine Science 2) We have conducted monthly Center ichthyoplankton sampling along four A substantial amount of early life Pilar Olivar from Barcelona visiting the Murdoch transects in the NCC from May to history research had been conducted in Fremantle lab to assist with identification of larval September from 2004 to the present as part the northern California Current (NCC) in myctophids from the Leeuwin Current. Left to right of the Stock Assessment Improvement Plan the 1970s by Sally Richardson and her David Holliday, Pilar Olivar, Lynnath Beckley and (SAIP) project. The 489 ichthyoplankton collaborators and again in the 1980s by Natalie Millar. samples collected from 28 monthly cruises Miriam Doyle and colleagues at the Alaska between May and October/November vigorous cross-shelf transport processes. Fisheries Science Center (AFSC). After a during the six study years yielded 16,524 The occurrence of the larvae of near-shore lengthy hiatus, interest in early life history fish larvae comprising 60 taxa in 30 fishes such as Gobiidae and Tripterygiidae, has been renewed under a cooperative families. The dominant taxa, comprising in the eddy (200 nm offshore) indicated research program between the Northwest 94% of the total larvae collected, were: their incorporation into the poleward flowing Fisheries Science Center and Oregon State Engraulis mordax (northern anchovy), Leeuwin Current from lower latitudes north University researchers based at the Hatfield Sebastes spp. (rockfishes), Stenobrachius of the eddy field. Examination of the vertical Marine Science Center in Newport, Oregon. leucopsarus (northern lanternfish), distributions of
Recommended publications
  • Fish Locomotion: Recent Advances and New Directions
    MA07CH22-Lauder ARI 6 November 2014 13:40 Fish Locomotion: Recent Advances and New Directions George V. Lauder Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138; email: [email protected] Annu. Rev. Mar. Sci. 2015. 7:521–45 Keywords First published online as a Review in Advance on swimming, kinematics, hydrodynamics, robotics September 19, 2014 The Annual Review of Marine Science is online at Abstract marine.annualreviews.org Access provided by Harvard University on 01/07/15. For personal use only. Research on fish locomotion has expanded greatly in recent years as new This article’s doi: approaches have been brought to bear on a classical field of study. Detailed Annu. Rev. Marine. Sci. 2015.7:521-545. Downloaded from www.annualreviews.org 10.1146/annurev-marine-010814-015614 analyses of patterns of body and fin motion and the effects of these move- Copyright c 2015 by Annual Reviews. ments on water flow patterns have helped scientists understand the causes All rights reserved and effects of hydrodynamic patterns produced by swimming fish. Recent developments include the study of the center-of-mass motion of swimming fish and the use of volumetric imaging systems that allow three-dimensional instantaneous snapshots of wake flow patterns. The large numbers of swim- ming fish in the oceans and the vorticity present in fin and body wakes sup- port the hypothesis that fish contribute significantly to the mixing of ocean waters. New developments in fish robotics have enhanced understanding of the physical principles underlying aquatic propulsion and allowed intriguing biological features, such as the structure of shark skin, to be studied in detail.
    [Show full text]
  • Copyrighted Material
    Index INDEX Note: page numbers in italics refer to fi gures, those in bold refer to tables and boxes. abducens nerve 55 activity cycles 499–522 inhibition 485 absorption effi ciency 72 annual patterns 515, 516, 517–22 interactions 485–6 abyssal zone 393 circadian rhythms 505 prey 445 Acanthaster planci (Crown-of-Thorns Starfi sh) diel patterns 499, 500, 501–2, 503–4, reduction 484 579 504–7 aggressive mimicry 428, 432–3 Acanthocybium (Wahoo) 15 light-induced 499, 500, 501–2, 503–4, aggressive resemblance 425–6 Acanthodii 178, 179 505 aglomerular 52 Acanthomorpha 284–8, 289 lunar patterns 507–9 agnathans Acanthopterygii 291–325 seasonal 509–15 gills 59, 60 Atherinomorpha 293–6 semilunar patterns 507–9 osmoregulation 101, 102 characteristics 291–2 supra-annual patterns 515, 516, 517–22 phylogeny 202 distribution 349, 350 tidal patterns 506–7 ventilation 59, 60 jaws 291 see also migration see also hagfi shes; lampreys Mugilomorpha 292–3, 294 adaptive response 106 agnathous fi shes see jawless fi shes pelagic 405 adaptive zones 534 agonistic interactions 83–4, 485–8 Percomorpha 296–325 adenohypophysis 91, 92 chemically mediated 484 pharyngeal jaws 291 adenosine triphosphate (ATP) 57 sound production 461–2 phylogeny 292, 293, 294 adipose fi n 35 visual 479 spines 449, 450 adrenocorticotropic hormone (ACTH) 92 agricultural chemicals 605 Acanthothoraciformes 177 adrianichthyids 295 air breathing 60, 61–2, 62–4 acanthurids 318–19 adult fi shes 153, 154, 155–7 ammonia production 64, 100–1 Acanthuroidei 12, 318–19 death 156–7 amphibious 60 Acanthurus bahianus
    [Show full text]
  • Three Gray Classics on the Biomechanics of Animal Movement
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Harvard University - DASH Three Gray Classics on the Biomechanics of Animal Movement The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Lauder, G. V., Eric Tytell. 2004. Three Gray Classics on the Biomechanics of Animal Movement. Journal of Experimental Biology 207, no. 10: 1597–1599. doi:10.1242/jeb.00921. Published Version doi:10.1242/jeb.00921 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:30510313 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA JEB Classics 1597 THREE GRAY CLASSICS locomotor kinematics, muscle dynamics, JEB Classics is an occasional ON THE BIOMECHANICS and computational fluid dynamic column, featuring historic analyses of animals moving through publications from The Journal of OF ANIMAL MOVEMENT water. Virtually every recent textbook in Experimental Biology. These the field either reproduces one of Gray’s articles, written by modern experts figures directly or includes illustrations in the field, discuss each classic that derive their inspiration from his paper’s impact on the field of figures (e.g. Alexander, 2003; Biewener, biology and their own work. A 2003). PDF of the original paper accompanies each article, and can be found on the journal’s In his 1933a paper, Gray aimed to website as supplemental data.
    [Show full text]
  • Swimming Speed Performance in Coral Reef Fishes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Coral Reefs (2007) 26:217–228 DOI 10.1007/s00338-007-0195-0 REPORT Swimming speed performance in coral reef fishes: field validations reveal distinct functional groups C. J. Fulton Received: 11 October 2006 / Accepted: 6 January 2007 / Published online: 7 February 2007 Ó Springer-Verlag 2007 Abstract Central to our understanding of locomotion of efficiency, maneuverability and speed in one mode in fishes are the performance implications of using of propulsion, pectoral swimming appears to be a different modes of swimming. Employing a unique particularly versatile form of locomotion, well suited to combination of laboratory performance trials and field a demersal lifestyle on coral reefs. observations of swimming speed, this study investi- gated the comparative performance of pectoral and Keywords Gait Á Pectoral Á Body-caudal Á body-caudal fin swimming within an entire assemblage Habitat-use Á Energetic of coral reef fishes (117 species 10 families). Field observations of swimming behaviour identified three primary modes: labriform (pectoral 70 spp.), subca- Introduction rangiform (body-caudal 29 spp.) and chaetodontiform (augmented body-caudal 18 spp.). While representa- Swimming performance can be crucial for the survival tive taxa from all three modes were capable of speeds of fishes by affecting their ability to access habitats, exceeding 50 cm s–1 during laboratory trials, only avoid predators and acquire food. Such essential daily pectoral-swimmers maintained such high speeds under tasks often require precise movements, bursts of speed, field conditions. Direct comparisons revealed that or prolonged periods of swimming depending on the pectoral-swimming species maintained field speeds at a habitat or predator–prey system involved (Videler remarkable 70% of their maximum (lab-tested) re- 1993; Plaut 2001; Castro-Santos 2005).
    [Show full text]
  • LOCOMOTION ENERGETICS of LEEDSICHTHYS PROBLEMATICUS (ACTINOPTERYGII, PACHYCORMIFORMES) by HUMBERTO G
    [Palaeontology, Vol. 61, Part 5, 2018, pp. 775–783] ASSESSING METABOLIC CONSTRAINTS ON THE MAXIMUM BODY SIZE OF ACTINOPTERYGIANS: LOCOMOTION ENERGETICS OF LEEDSICHTHYS PROBLEMATICUS (ACTINOPTERYGII, PACHYCORMIFORMES) by HUMBERTO G. FERRON 1,* ,BORJAHOLGADO2,* , JEFFREY J. LISTON3,4,5,6,CARLOSMARTINEZ-PEREZ 1,6 and HECTOR BOTELLA1 1Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de Valencia, C/Catedratic Jose Beltran Martınez 2, 46980, Paterna, Valencia Spain; [email protected], [email protected], [email protected] 2Laboratory of Systematics & Taphonomy of Fossil Vertebrates, Departamento de Geologia e Paleontologia, Museu Nacional/Universidade Federal do Riode Janeiro (UFRJ), Quinta da Boa Vista, s/n, S~ao Cristov ~ao, 20940-040, Rio de Janeiro, RJ Brazil; [email protected] 3Bayerische Staatssammlung fur€ Pal€aontologie und Geologie, Richard-Wagner-Straße 10, 80333, Munchen,€ Germany; [email protected], [email protected] 4National Museums Scotland, Chambers Street, Edinburgh, EH1 1JF, UK; [email protected] 5Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK; [email protected] 6School of Earth Sciences, University of Bristol, Bristol, BS8 1TQ, UK; [email protected], [email protected] *Corresponding authors Typescript received 21 October 2017; accepted in revised form 5 April 2018 Abstract: Maximum sizes attained by living actinoptery- weighing up to 44.9 tonnes would have been energetically gians are much smaller than those reached by chon- viable and suggests that similar body sizes could also be possi- drichthyans. Several factors, including the high metabolic ble among living taxa, discarding metabolic factors as likely requirements of bony fishes, have been proposed as possible body size constraints in actinopterygians.
    [Show full text]
  • Energetics and Behavior of Coral Reef Fishes During Oscillatory Swimming in a Simulated Wave Surge Travis M
    © 2019. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2019) 222, jeb191791. doi:10.1242/jeb.191791 RESEARCH ARTICLE Energetics and behavior of coral reef fishes during oscillatory swimming in a simulated wave surge Travis M. Marcoux and Keith E. Korsmeyer* ABSTRACT exposure has been identified as an important factor affecting reef Oxygen consumption rates were measured for coral reef fishes fish distributions, with correlations with fish morphology and during swimming in a bidirectional, oscillatory pattern to simulate swimming performance (Bellwood and Wainwright, 2001; Fulton, station-holding in wave-induced, shallow-water flows. For all species 2010; Webb et al., 2010; Fulton et al., 2017). examined, increases in wave intensity, as simulated by increases in Coral reef fishes display a great diversity of body and fin shapes, frequency and amplitude of oscillation, yielded increased metabolic and also swimming gaits, or patterns of fin use for swimming (Price rates and net costs of swimming (NCOS; swimming metabolic rate et al., 2011; Fulton et al., 2013b; Pink and Fulton, 2014). Swimming minus standard metabolic rate). Comparing species with different mode in fishes can be divided into two broad functional groups: – swimming modes, the caudal fin swimming Kuhlia spp. (Kuhliidae) body caudal fin (BCF) swimming, using lateral undulations of – and simultaneous pectoral–caudal fin swimming Amphiprion ocellaris the body and caudal fin, and median paired fin (MPF) swimming, (Pomacentridae) turned around to face the direction of swimming involving movements of one or more median (dorsal and anal) or most of the time, whereas the median–paired fin (MPF) swimmers, paired (pectoral) fins, while the body is held rigid (Webb, 1998).
    [Show full text]
  • Dispersal Patterns, Active Behaviour, and Flow Environment During Early Life History of Coastal Cold Water Fishes
    Dispersal Patterns, Active Behaviour, and Flow Environment during Early Life History of Coastal Cold Water Fishes Ryan Stanley1*, Paul V. R. Snelgrove1,2, Brad deYoung3, Robert S. Gregory4 1 Ocean Sciences Centre and Biology Department, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada, 2 Canada Research Chair in Boreal and Cold Ocean Systems, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada, 3 Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada, 4 Ecological Sciences Section and Centre of Expertise for Aquatic Habitat Research, Fisheries and Oceans Canada, St. John’s, Newfoundland, Canada Abstract During the pelagic larval phase, fish dispersal may be influenced passively by surface currents or actively determined by swimming behaviour. In situ observations of larval swimming are few given the constraints of field sampling. Active behaviour is therefore often inferred from spatial patterns in the field, laboratory studies, or hydrodynamic theory, but rarely are these approaches considered in concert. Ichthyoplankton survey data collected during 2004 and 2006 from coastal Newfoundland show that changes in spatial heterogeneity for multiple species do not conform to predictions based on passive transport. We evaluated the interaction of individual larvae with their environment by calculating Reynolds number as a function of ontogeny. Typically, larvae hatch into a viscous environment in which swimming is inefficient, and later grow into more efficient intermediate and inertial swimming environments. Swimming is therefore closely related to length, not only because of swimming capacity but also in how larvae experience viscosity. Six of eight species sampled demonstrated consistent changes in spatial patchiness and concomitant increases in spatial heterogeneity as they transitioned into more favourable hydrodynamic swimming environments, suggesting an active behavioural element to dispersal.
    [Show full text]
  • Hydrodynamics of Balistiform Swimming in the Picasso
    HYDRODYNAMICS OF BALISTIFORM SWIMMING IN THE PICASSO TRIGGERFISH, RHINECANTHUS ACULEATUS by HALE LOOFBOURROW BSc. University of British Columbia, 2006 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES (Zoology) THE UNIVERSITY OF BRITISH COLUMBIA (VANCOUVER) January 2009 © Hale Loofbourrow, 2009 ii Abstract Aquatic propulsion by means of undulatory movements of the median (dorsal and anal) fins is the primary mode of transport for the Picasso triggerfish (Rhinecanthus aculeatus). Known as balistiform locomotion, this form of propulsion is an adaptation for highly efficient movement within complex environments such as coral reefs. A principle component of balistiform locomotion has been the development of momentum enhancement, a fin-force multiplier that increases swimming efficiency. This study examines the kinematics and energetics of balistiform locomotion employing theoretical models of thrust, power, and efficiency. Thrust and power were calculated and compared with theoretical values modeled by Lighthill and Blake (1990). This model has heretofore not been thoroughly vetted and was tested for accuracy and applicability. Thrust force was estimated from resistance (drag) using a vertical dead drop to determine terminal velocity; power was calculated from oxygen consumption measurements at different speeds. The Lighthill and Blake (1990) model requires median fin kinematics (frequency, wavelength, amplitude, wave angle), which were measured from high-speed videography and followed statistically predicted trends with frequency being the dominant variable, and the others changing little or not at all with speed. Momentum enhancement was found to be 3.6, close to Lighthill and Blake’s (1990) theoretically predicted value of 2.5.
    [Show full text]
  • Kinematics of Ribbonfin Locomotion in the Bowfin, Amia Calva
    RESEARCH ARTICLE Kinematics of Ribbon‐Fin Locomotion in the Bowfin, Amia calva 1,2 KEVIN JAGNANDAN * AND CHRISTOPHER P. SANFORD1 1Department of Biology, Hofstra University, Hempstead, New York 2Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, California ABSTRACT An elongated dorsal and/or anal ribbon‐fin to produce forward and backward propulsion has independently evolved in several groups of fishes. In these fishes, fin ray movements along the fin generate a series of waves that drive propulsion. There are no published data on the use of the dorsal ribbon‐fin in the basal freshwater bowfin, Amia calva. In this study, frequency, amplitude, wavelength, and wave speed along the fin were measured in Amia swimming at different speeds (up to 1.0 body length/sec) to understand how the ribbon‐fin generates propulsion. These wave properties were analyzed to (1) determine whether regional specialization occurs along the ribbon‐ fin, and (2) to reveal how the undulatory waves are used to control swimming speed. Wave properties were also compared between swimming with sole use of the ribbon‐fin, and swimming with simultaneous use of the ribbon and pectoral fins. Statistical analysis of ribbon‐fin kinematics revealed no differences in kinematic patterns along the ribbon‐fin, and that forward propulsive speed in Amia is controlled by the frequency of the wave in the ribbon‐fin, irrespective of the contribution of the pectoral fin. This study is the first kinematic analysis of the ribbon‐fin in a basal fish and the model species for Amiiform locomotion, providing a basis for understanding ribbon‐fin locomotion among a broad range of teleosts.
    [Show full text]
  • Morphology and Experimental Hydrodynamics of Fish Fin Control Surfaces George V
    556 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 29, NO. 3, JULY 2004 Morphology and Experimental Hydrodynamics of Fish Fin Control Surfaces George V. Lauder and Eliot G. Drucker Abstract—Over the past 520 million years, the process of evo- lution has produced a diversity of nearly 25 000 species of fish. This diversity includes thousands of different fin designs which are largely the product of natural selection for locomotor performance. Fish fins can be grouped into two major categories: median and paired fins. Fins are typically supported at their base by a series of segmentally arranged bony or cartilaginous elements, and fish have extensive muscular control over fin conformation. Recent experimental hydrodynamic investigation of fish fin func- tion in a diversity of freely swimming fish (including sharks, stur- geon, trout, sunfish, and surfperch) has demonstrated the role of fins in propulsion and maneuvering. Fish pectoral fins generate either separate or linked vortex rings during propulsion, and the lateral forces generated by pectoral fins are of similar magnitudes to thrust force during slow swimming. Yawing maneuvers involve differentiation of hydrodynamic function between left and right fins via vortex ring reorientation. Low-aspect ratio pectoral fins in Fig. 1. Photograph of bluegill sunfish (Lepomis macrochirus) showing the sharks function to alter body pitch and induce vertical maneuvers configuration of median and paired fins in a representative spiny-finned fish. through conformational changes of the fin trailing edge. The dorsal fin of fish displays a diversity of hydrodynamic function, from a discrete thrust-generating propulsor acting I. INTRODUCTION independently from the body, to a stabilizer generating only side forces.
    [Show full text]
  • The Effects of Viscosity on the Axial Motor Pattern and Kinematics of the African Lungfish (Protopterus Annectens) During Lateral Undulatory Swimming
    1612 The Journal of Experimental Biology 211, 1612-1622 Published by The Company of Biologists 2008 doi:10.1242/jeb.013029 The effects of viscosity on the axial motor pattern and kinematics of the African lungfish (Protopterus annectens) during lateral undulatory swimming Angela M. Horner* and Bruce C. Jayne Department of Biological Sciences, University of Cincinnati, PO Box 210006, Cincinnati, OH 45221-0006, USA *Author for correspondence at present address: Department of Biological Sciences, Ohio University, Irvine Hall, Athens, OH 45701, USA (e-mail: [email protected]) Accepted 7 March 2008 SUMMARY Separate studies of terrestrial and aquatic locomotion are abundant, but research addressing locomotion in transitional environments (e.g. mud) is scant. The African lungfish (Protopterus annectens) moves in a gradation of water to mud conditions during seasonal droughts, and breathes air. Thus, the lungfish was an ideal organism for our study to determine the effects of a wide range of viscosities on lateral undulatory swimming and to simulate some of the muddy conditions early tetrapods may have encountered. Regardless of viscosity, several aspects of lungfish swimming were similar to those of other swimming vertebrates including: posteriorly propagated muscle activity that was unilateral and alternated between the left and right sides at each longitudinal location, and posterior increases in the amount of bending, the amplitude of muscle activity and the timing differences between muscle activity and bending. With increased viscosity (1–1000·cSt), significant increases occurred in the amount of lateral bending of the vertebral column and the amplitude of muscle activity, particularly in the most anterior sites, but the distance the fish traveled per tail beat decreased.
    [Show full text]
  • Fish Locomotion: Biology and Robotics of Body and Fin-Based Movements
    Fish Locomotion: Biology and Robotics of Body and Fin-Based Movements George V. Lauder and James L. Tangorra Abstract The study of fish locomotion provides a rich source of inspiration for the design of robotic devices. Fish exhibit an array of complex locomotor designs that involve both diversity of structures used to generate locomotor forces, and versatile behaviors to engage with the aquatic environment. The functional design of fish includes both a flexible body exhibiting undulatory motion as well as numerous control surfaces that enable fish to vector forces and execute rapid maneuvers in roll, pitch, and yaw directions. Patterns of body undulation have often been misunderstood, and fish with propulsive mechanics as diverse as tuna and eels can display similar patterns of body bending during swimming. Many of the often-cited classical locomotor categories are based on a misunderstanding of body and fin kinematics. Fish fins can exhibit remarkably complex conformational changes during propulsion, and do not function as flat plates but have individual mobile fin rays actuated by muscles at the fin base. Fin motion and surface bending in most fish is actively controlled. Even during steady horizontal locomotion, median fins such as the dorsal and anal fins function to balance torques and can contribute to thrust. Locomotion using body undulation is not achieved independently from fin motion, and the vast majority of fish locomotor patterns utilize both the body and fins. Robotic systems derived from fish templates can range from simple flexible plastic panels to more complex models of whole body and fin design. Experimental test platforms that represent individual fins or specific components of fish locomotor design allow for detailed testing of hydrodynamic and mechanical function.
    [Show full text]