Coordination Chemistry of High Oxidation Nitrogen Containing Amides and Heterocycles
Total Page:16
File Type:pdf, Size:1020Kb
Coordination Chemistry of High Oxidation Nitrogen containing Amides and Heterocycles By Zhijie Chua A thesis submitted to McGill University in partial fulfilment of the requirements in the degree of: DOCTORATE OF PHILOSOPHY Department of Chemistry, Faculty of Science McGill University Montreal, Quebec, Canada © Zhijie Chua. 2013 Abstract The catalytic reduction of nitrous oxide (N2O) to dinitrogen (N2) by nitrous oxide reductase (N2OR) is poorly understood. The N2O molecule is a poor ligand with relatively sparse coordination chemistry. We proposed the synthesis of probable nitrous oxide precursors which can be coordinated to transition metals prior to conversion to nitrous oxide. Nitramide, H2NNO2, 2-1, and the related nitrogen amide acids N-nitroamide 2-2, 2-3; N-nitrocarbamate 2-4, 2-5, N-nitrosocarbamate 2-6, 2-7; N-nitrosulfonamide 2-8 have been synthesized as possible nitrous oxide precursors for coordination studies with transition metals. The silver salts of the conjugate base of the nitrogen acids N-nitroamide 2-2Ag; N-nitrocarbamate 2-4Ag, 2-5Ag; N- nitrosocarbamate 2-6Ag; N-nitrosulfonamide 2-8Ag are synthesized from the reaction of the acids with Ag2CO3. Similarly the potassium salts of the nitrogen acids N-nitroamide 2-2K; N-nitrocarbamate 2-4K; N-nitrosocarbamate 2-6K; N- nitrosulfonamide 2-8K are synthesized from the reaction of the nitrogen acids with K2CO3 or CH3OK. To investigate the -acidity of the nitrogen acids, a series of Ir(I) complexes of (I) 1 the nitrogen acids, trans-Ir (η -X)(CO)(PPh3)2, (X = nitrogen acid) N-nitroamide 3-3; N-nitrocarbamate 3-4, 3-5; N-nitrosocarbamate 3-6; N-nitrosulfonamide 3-7 (I) are synthesized from the reaction of Vaska’s complex, trans-Ir (Cl)(CO)(PPh3)2 i (3-1) with the silver salts of the conjugate base of the nitrogen acids (N- nitroamide 2-2Ag; N-nitrocarbamate 2-4Ag, 2-5Ag; N-nitrosocarbamate 2-6Ag; N-nitrosulfonamide 2-8Ag). Comparative studies with the related amides, dinitramide and bistriflimide, have also been done. The oxidative addition of the nitrogen acids (N-nitroamide 2-2, 2-3; N- (I) nitrocarbamate 2-4, 2-5) to trans-Ir (Cl)(N2)(PPh3)2 (3-2) afford the Ir(III) (III) 2 complexes of the nitrogen acids, Ir (η -X)(H)(Cl)(PPh3)2, (X = nitrogen acid) N-nitroamide 3-11, 3-12; N-nitrocarbamate 3-13, 3-14. The 31P, 1H NMR and IR spectroscopic reaction monitoring profiles of the oxidative addition reactions give evidence of reaction intermediates that eventually convert to the final product. The reaction of 3-11 with CO and P(CH3)2Ph result in the formation of multiple isomers of the addition products and also phosphine substitution. Addition of methyl triflate to 3-11 in CH3CN is found to result in the substitution and loss of the nitrogen acid. (I) 2 The Re(I) complexes of the nitrogen acids , trans-Re (η -X)(CO)2(PPh3)2, (X = nitrogen acid) N-nitroamide 4-8; N-nitrocarbamate 4-9; N-nitrosulfonamide 4-12 (I) are synthesized from the reaction of trans-[Re (CH3CN)2(CO)2(PPh3)2](Y), (Y = ClO4: 4-3, BF4: 4-7) with the potassium salts of the conjugate base of the nitrogen acids 2-2K, 2-4K and 2-8K respectively. The reaction of 4-7 with N- nitrosocarbamate 2-6K at room temperature gives mostly the kinetic isomer trans- (I) 2 Re (η -X)(CO)2(PPh3)2 (4-10). The same reaction at reflux conditions gives (I) 2 mostly a thermodynamic isomer Re (η -X)(CO)2(PPh3)2 (4-11A). Complex 4-9 and 4-10 are found to crystallize in an unusual space group R-3 that gives a large unit cell with huge solvent channels between the Re complexes and CH2Cl2 solvate molecules. The Dimroth/amidine rearrangement of benzotriazoles has been shown to exist in solution for 5-1 by variable temperature 19F NMR. The reaction of 3-2 with the benzotriazoles 5-1 and 5-2 gives the new Ir(I) complex, trans-Ir(I)(Cl)(η1-5- (III) 3 1)(PPh3)2 (5-7) and Ir(III) complex, trans-Ir (Cl)(η -5-2)(PPh3)2 (5-8) respectively. Complex 5-7 undergoes addition and substitution reactions readily to give multiple isomers while 5-8 is inert towards nucleophiles. ii Abstrait La réduction de l’oxyde nitreux (N2O) en diazote (N2) par le réductase de l'oxyde nitreux (N2OR) est très peu comprise. La molécule N2O n’est pas un très bon ligand et à une coordination chimique limité. Nous proposons la synthèse de précurseurs de l’oxyde nitreux qui peuvent se coordonner aux métaux de transitions avant leurs conversions en oxyde nitreux. Nitramide, H2NNO2, 2-1, et les acides d’azotes amidés N-nitroamide 2-2, 2-3; N- nitrocarbamate 2-4, 2-5, N-nitrosocarbamate 2-6, 2-7; N-nitrosulfonamide 2-8 ont étés synthétisés en tant que de possible précurseurs de l’oxyde nitreux pour des études de coordination avec des métaux de transitions. Les sels d’argents des bases conjugués des acides d’azotes N-nitroamide 2-2Ag; N-nitrocarbamate 2- 4Ag, 2-5Ag; N-nitrosocarbamate 2-6Ag; N-nitrosulfonamide 2-8Ag ont étés synthétisés par les réactions des ces acides avec Ag2CO3. Similairement, les sels de potassium des bases conjugués des acides d’azotes N-nitroamide 2-2K; N- nitrocarbamate 2-4K; N-nitrosocarbamate 2-6K; N-nitrosulfonamide 2-8K ont étés synthétisés par les réactions des ces acides soit avec K2CO3 ou CH3OK. Pour examiner l’acidité du système de ces acides d’azotes, des séries the (I) 1 complexes d’acides d’azotes d’Ir(I) trans-Ir (η -X)(CO)(PPh3)2, (X = acide d’azote) N-nitroamide 3-3; N-nitrocarbamate 3-4, 3-5; N-nitrosocarbamate 3-6; N-nitrosulfonamide 3-7 ont étés étés synthétisés par les réactions du complexe de iii (I) Vaska, trans-Ir (Cl)(CO)(PPh3)2 (3-1), avec les sels d’argents des bases conjugués des acides d’azotes (N-nitroamide 2-2Ag; N-nitrocarbamate 2-4Ag, 2- 5Ag; N-nitrosocarbamate 2-6Ag; N-nitrosulfonamide 2-8Ag). Des études comparatives avec des amides reliés, dinitramide et bistriflimide, ont aussi étés faites. (I) 2 Les complexes de Re(I) des acides d’azotes, trans-Re (η -X)(CO)2(PPh3)2, (X = acide d’azote) N-nitroamide 4-8; N-nitrocarbamate 4-9; N-nitrosulfonamide 4-12 (I) ont étés synthétisés par les réactions de trans-[Re (CH3CN)2(CO)2(PPh3)2](Y), (Y = ClO4: 4-3, BF4: 4-7) aves les sels de potassium des bases conjugués des acides d’azotes 2-2K, 2-4K et 2-8K respectivement. La réaction de 4-7 avec N- nitrosocarbamate 2-6K à température de la pièce procure principalement (I) 2 l’isomère cinétique trans-Re (η -X)(CO)2(PPh3)2 (4-10). La même réaction en condition de reflux procure principalement l’isomère thermodynamique Re(I)(η2- X)(CO)2(PPh3)2 (4-11A). Les complexes 4-9 et 4-10 cristallisent dans un groupe d’espace insolite, soit R-3, qui à une grande unité cellulaire avec de larges canaux de solvant entre les complexes de Re et les molécules de solvant de CH2Cl2. Le réarrangement Dimroth/amidine des benzotriazoles ont démontré leur existence en solution pour 5-1 via la RMN 19F en température variable. Les réactions de 3-2 avec les benzotriazoles 5-1 et 5-2 donnent de nouveaux (I) 1 complexes d’Ir(I), trans-Ir (Cl)(η -5-1)(PPh3)2 (5-7) et d’Ir(III), trans- (III) 3 Ir (Cl)(η -5-2)(PPh3)2 (5-8) respectivement. Le complexe 5-7 subit facilement des réactions de substitution et d’addition pour donner de multiples isomères tandis que le complexe 5-8 est inerte envers les nucléophiles. iv Acknowledgements I would like to thank first and foremost my supervisor Prof D. Scott Bohle, for giving me the opportunity, his patient guidance, never-ending belief and encouragement during the course of my doctorate studies. Great thanks to past and present members of the Bohle research group: Aaron Kosar, Marie-Josée Bellemare, Rae Moore, Carla Spina, Heather Philips, Alex Czerniewski, Erin Dodd, Kristopher Rosadiuk, Wei Gu Yuxuan, Joël Poisson, Ivor Wharf, Mirna Veruca and Laura Brothers who have contributed in one way or another, both to the joys and annoyance of working in a lab which resembles much like a family. Special thanks to Kristopher Rosadiuk who had to endure the proof reading of most of this dissertation. Thanks also to Tina Lam of the Kakkar group for the French translation of the abstract. I would like to give special thanks and gratitude to Dr Inna Perepichka for the countless discussions regarding anything under the sun which kept my sanity and humorous outlook of life. We have numerous collaborations and our research findings extend beyond the current of contents of this dissertation. I would like to thank my family ZhiRen, ZhiYuan, ZhiYu and ZhiQian for their support and encouragement. In particular my parents for their utmost patience trust and encouragement in supporting me to pursue my doctorate studies overseas. I hold special gratitude to Aunt Eleanor and Uncle James Kee for giving me kinship support when I first arrive in Canada. The following staff of the Department of Chemistry, McGill University: Dr Fred Morin, Dr Nadim Saade, Rick Rossi, Weihua Wang, Fred Kluck, Jean-Philippe Guay and Chantal Marotte own my gratitude for providing their expertise and prompt assistance during the course of my studies. v Last but not least I would like to thank Jean-Phillipe Demers, Wayne Mah, Kenward Vong and members of the Asian Dragons dragonboat team for showing me that there is much more to life than just chemical reactions! To end, thanks to McGill University and the supporting grants for funding my doctoral studies throughout.