Coordination Chemistry of High Oxidation Nitrogen Containing Amides and Heterocycles
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mechanistic Insight to the Chemical Treatments of Monolayer Transition Metal Disulfides for Photoluminescence Enhancement
Mechanistic Insight to the Chemical Treatments of Monolayer Transition Metal Disulfides for Photoluminescence Enhancement Zhaojun Li1,2, Hope Bretscher1, Yunwei Zhang1, Géraud Delport1, James Xiao1, Alpha Lee1, Samuel D. Stranks1,3, and Akshay Rao1* 1Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, CB3 0HE, Cambridge, United Kingdom E-mail: [email protected] 2Molecular and Condensed Matter Physics, Department of Physics and Astronomy, Uppsala University, 75120 Uppsala, Sweden 3Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB3 0AS, Cambridge, United Kingdom Keywords: chemical treatments, transition metal disulfides, photoluminescence, trion suppression, p- doping Abstract There is a growing interest in obtaining high quality monolayer transition metal disulfides (TMDSs) for optoelectronic device applications. Surface chemical treatments using a range of chemicals on monolayer TMDSs have proven effective to improve their photoluminescence (PL) yield. However, the underlying mechanism for PL enhancement by these treatments is not clear, which prevents a rational design of passivation strategies. In this work, a simple and effective approach to significantly enhance PL of TMDSs is demonstrated by using a family of cation donors, which we show to be much more effective than commonly used p-dopants which achieve PL enhancement through electron transfer. We develop a detailed mechanistic picture for the action of these cation donors and demonstrate that one of them, Li-TFSI (bistriflimide), enhances the PL of both MoS2 and WS2 to a level double that compared to the widely discussed and currently best performing “super acid” H-TFSI treatment. In addition, the ionic salts used in chemical treatments are compatible with a range of greener solvents and are easier to handle than super-acids, which provides the possibility of directly treating TMDSs during device fabrication. -
Base Stable and Basic Ionic Liquids for Catalysis
DOCTOR OF PHILOSOPHY Base stable and basic ionic liquids for catalysis McNeice, Peter Award date: 2020 Awarding institution: Queen's University Belfast Link to publication Terms of use All those accessing thesis content in Queen’s University Belfast Research Portal are subject to the following terms and conditions of use • Copyright is subject to the Copyright, Designs and Patent Act 1988, or as modified by any successor legislation • Copyright and moral rights for thesis content are retained by the author and/or other copyright owners • A copy of a thesis may be downloaded for personal non-commercial research/study without the need for permission or charge • Distribution or reproduction of thesis content in any format is not permitted without the permission of the copyright holder • When citing this work, full bibliographic details should be supplied, including the author, title, awarding institution and date of thesis Take down policy A thesis can be removed from the Research Portal if there has been a breach of copyright, or a similarly robust reason. If you believe this document breaches copyright, or there is sufficient cause to take down, please contact us, citing details. Email: [email protected] Supplementary materials Where possible, we endeavour to provide supplementary materials to theses. This may include video, audio and other types of files. We endeavour to capture all content and upload as part of the Pure record for each thesis. Note, it may not be possible in all instances to convert analogue formats to usable digital formats for some supplementary materials. We exercise best efforts on our behalf and, in such instances, encourage the individual to consult the physical thesis for further information. -
Formation of Complexes in RTIL and Ion Separations
20 Formation of Complexes in RTIL and Ion Separations Konstantin Popov1,2, Andrei Vendilo2, Igor Pletnev3, Marja Lajunen4, Hannu Rönkkömäki5 and Lauri H.J. Lajunen4 1Department of Physical and Colloid Chemistry, Moscow State University of Food Production, Moscow, 2Institute of Reagents and high purity Substances (IREA), Moscow, 3Department of Chemistry M.V.Lomonosov State University , Moscow, 4Department of Chemistry, Oulu University, Oulu, 5Finnish institute of Occupational Health, Oulu, 1,2,3Russia 4,5Finland 1. Introduction Room temperature ionic liquids (RTILs) are gaining an increasing interest as a unique medium for a complex formation and development of new inorganic materials (Cocalia et al, 2006; Billard et al, 2003; Yan et al, 2010; Vendilo et al, 2010; Nockemann et al, 2009; Nockemann et al, 2008; Murding & Tang, 2010; Billard & Gaillard, 2009; Taubert, 2004; Tang et al, 2008). Among the most promising fields the RTIL-based lithium batteries (Lewandowski & Swiderska- Mocek, 2009; Rosol et al, 2009) and recent applications of ionic liquids in the separation technology (Dundan & Kyung, 2010; Dietz, 2006) can be considered as a “hot” research topic. The present review is therefore focused on the role of cation complexes in RTIL-based metal ion separations, while the other important aspects of inorganic salt behaviour in RTILs are excellently summarised in another chapter of this book (Nockemann, 2011). RTILs are intensively studied in solvent extraction processes due to such important advantages over conventional organic diluents as negligible vapor pressure, low flammability, moisture stability, relatively high radiation stability, different extraction properties and possibility to eliminate aqueous phase acidification (Cocalia et al, 2006a; Visser et al, 2000; Dai et al, 1999; Luo et al, 2006; Chen, 2007; Chun et al, 2001; Visser & Rogers, 2003). -
Hexaalkylguanidinium Salts As Ionic Liquids – New Applications In
Institut für Organische Chemie I Hexaalkylguanidinium Salts as Ionic Liquids – New Applications in Titanium and Aluminium Alcoholates Assisted Synthesis and as Electrolytes for Electrodeposition of Metals Dissertation zur Erlangung des Grades des Doktors Dr. rer. nat. der Fakultät für Naturwissenschaften der Universität Ulm vorgelegt von Dipl.-Ing. Maria Arkhipova aus Leningrad (St. Petersburg) Ulm 2014 Die vorliegende Arbeit entstand in der Zeit von Januar 2010 bis Januar 2014 in dem Institut für Organische Chemie I der Universität Ulm. Amtierender Dekan: Prof. Dr. Joachim Ankerhold 1. Gutachter: Prof. Dr. Gerhard Maas 2. Gutachter: Prof. Dr. Willi Kantlehner Tag der Promotion: 17.03.2014 Моим родителям List of abbreviations APIs Active Pharmaceutical Ingredients AES Auger Electron Spectroscopy BASIL Biphasic Acid Scavenging Utilising Ionic Liquids BINOL 1,1'-Bi-2-naphthol BMIm 1-Butyl-3-methylimidazolium BMPyr N-Butyl-N-methylpyrrolidinium Bn Benzyl Bu Butyl tBu tert-Butyl CHN Elemental analysis CI Chemical Ionisation CV Cyclic Voltammetry d day(s) DLS Dynamic Light Scattering DMC Dimethyl carbonate DMF Dimethylformamide DSC Differential Scanning Calorimetry DSSC Dye-Sensitised Solar Cell EC Ethylene carbonate EDX Energy-Dispersive X-ray analysis EIS Electrochemical Impedance Spectroscopy EMIm 1-Ethyl-3-methylimidazolium Et Ethyl FAP Tris(perfluoroalkyl)trifluorophosphate FSI Bis(fluorosulfonyl)imide GC Glassy Carbon Gu Guanidinium h hour(s) Hex Hexyl cHex Cyclohexyl HMBC Heteronuclear Multiple Bond Correlation HMMIm 1-Hexyl-2,3-dimethylimidazolium -
Nitroxyl (Hno) and Carbonylnitrenes
INVESTIGATION OF REACTIVE INTERMEDIATES: NITROXYL (HNO) AND CARBONYLNITRENES by Tyler A. Chavez A dissertation submitted to the Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland February 2016 © 2016 Tyler A. Chavez All rights reserved Abstract Membrane inlet mass spectrometry (MIMS) is a well-established method used to detect gases dissolved in solution through the use of a semipermeable hydrophobic membrane that allows the dissolved gases, but not the liquid phase, to enter a mass spectrometer. Interest in the unique biological activity of azanone (nitroxyl, HNO) has highlighted the need for new sensitive and direct detection methods. Recently, MIMS has been shown to be a viable method for HNO detection with nanomolar sensitivity under physiologically relevant conditions (Chapter 2). In addition, this technique has been used to explore potential biological pathways to HNO production (Chapter 3). Nitrenes are reactive intermediates containing neutral, monovalent nitrogen atoms. In contrast to alky- and arylnitrenes, carbonylnitrenes are typically ground state singlets. In joint synthesis, anion photoelectron spectroscopic, and computational work we studied the three nitrenes, benzoylnitrene, acetylnitrene, and trifluoroacetylnitrene, with the purpose of determining the singlet-triplet splitting (ΔEST = ES – ET) in each case (Chapter 7). Further, triplet ethoxycarbonylnitrene and triplet t-butyloxycarbonylnitrene have been observed following photolysis of sulfilimine precursors by time-resolved infrared (TRIR) spectroscopy (Chapter 6). The observed growth kinetics of nitrene products suggest a contribution from both the triplet and singlet nitrene, with the contribution from the singlet becoming more prevalent in polar solvents. Advisor: Professor John P. Toscano Readers: Professor Kenneth D. -
Synthesis and Applications of New Ionic Liquids
University of Pisa Department of Chemistry and Industrial Chemistry CHIM/06 Synthesis and Applications of New Ionic Liquids Tutor Prof. Cinzia Chiappe Candidate Angelo, Fabrizio Sanzone PhD in Chemical Sciences “Galileo Galilei” XXIV Cycle Abstract Ionic liquids (ILs) are promising new media constituted exclusively by ions which can be helpful in a variety of applications. The organic and ionic nature gives to these systems unique properties; a high solvent power towards organic, inorganic and polymeric compounds (including biopolymers) and a very low volatility (if any). This latter property determines the absence of solvent vapour in atmosphere thus avoiding explosive risk linked to that and the toxic effects for workers normally associated to the use of volatile organic solvents (VOC). Nevertheless, they have high polarity values, many have high conductivity values and low viscosity values as well. These properties are normally associated to an high thermal and electrochemical stability. It is to note that all the physico-chemical and biological properties of ionic liquids depend on the anion cation combination: the choice of the best combination of cation and anion is important to meet the requirements of any application. Due to their low volatility, high solvent power, recyclability ionic liquids are generally considered promising alternative solvents with a low environmental impact (green solvents). However, nowadays to increase the sustainability of many important chemical processes it is necessary not only to use eco-friendly reagents and solvents but it is important also reduce wastes (e.g. through the use of catalyst and solvent recovery) and to take into account these principles also when solvents or reagents are produced. -
List of Reactive Chemicals
LIST OF REACTIVE CHEMICALS Chemical Prefix Chemical Name Reactive Reactive Reactive CAS# Chemical Chemical Chemical Stimulus 1 Stimulus 2 Stimulus 3 111-90-0 "CARBITOL" SOLVENT D 111-15-9 "CELLOSOLVE" ACETATE D 110-80-5 "CELLOSOLVE" SOLVENT D 2- (2,4,6-TRINITROPHENYL)ETHYL ACETATE (1% IN ACETONE & BENZENE S 12427-38-2 AAMANGAN W 88-85-7 AATOX S 40487-42-1 AC 92553 S 105-57-7 ACETAL D 75-07-0 ACETALDEHYDE D 105-57-7 ACETALDEHYDE, DIETHYL ACETAL D 108-05-4 ACETIC ACID ETHENYL ESTER D 108-05-4 ACETIC ACID VINYL ESTER D 75-07-0 ACETIC ALDEHYDE D 101-25-7 ACETO DNPT T 126-84-1 ACETONE DIETHYL ACETAL D 108-05-4 ACETOXYETHYLENE D 108-05-4 1- ACETOXYETHYLENE D 37187-22-7 ACETYL ACETONE PEROXIDE, <=32% AS A PASTE T 37187-22-7 ACETYL ACETONE PEROXIDE, <=42% T 37187-22-7 ACETYL ACETONE PEROXIDE, >42% T S 644-31-5 ACETYL BENZOYL PEROXIDE (SOLID OR MORE THAN 45% IN SOLUTION) T S 644-31-5 ACETYL BENZOYL PEROXIDE, <=45% T 506-96-7 ACETYL BROMIDE W 75-36-5 ACETYL CHLORIDE W ACETYL CYCLOHEXANE SULFONYL PEROXIDE (>82% WITH <12% WATER) T S 3179-56-4 ACETYL CYCLOHEXANE SULFONYL PEROXIDE, <=32% T 3179-56-4 ACETYL CYCLOHEXANE SULFONYL PEROXIDE, <=82% T 674-82-8 ACETYL KETENE (POISON INHALATION HAZARD) D 110-22-5 ACETYL PEROXIDE, <=27% T 110-22-5 ACETYL PEROXIDE, SOLID, OR MORE THAN 27% IN SOLUTION T S 927-86-6 ACETYLCHOLINE PERCHLORATE O S 74-86-2 ACETYLENE D 74-86-2 ACETYLENE (LIQUID) D ACETYLENE SILVER NITRATE D 107-02-08 ACRALDEHYDE (POISON INHALATION HAZARD) D 79-10-7 ACROLEIC ACID D 107-02-08 ACROLEIN, INHIBITED (POISON INHALATION HAZARD) D 107-02-08 ACRYLALDEHYDE (POISON INHALATION HAZARD) D 79-10-7 ACRYLIC ACID D 141-32-2 ACRYLIC ACID BUTYL ESTER D 140-88-5 ACRYLIC ACID ETHYL ESTER D 96-33-3 ACRYLIC ACID METHYL ESTER D Stimulus - Stimuli is the thermal, physical or chemical input needed to induce a hazardous reaction. -
Mechanistic Studies of Π-Activation Catalysis by Cationic Gold(I)
Mechanistic Studies of -Activation Catalysis by Cationic Gold(I) and Brønsted-acid by Rachel Elizabeth McKinney Brooner Department of Chemistry Duke University Date:_______________________ Approved: ___________________________ Ross A. Widenhoefer, Supervisor ___________________________ Steven W. Baldwin ___________________________ Katherine J. Franz ___________________________ Qiu Wang Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry in the Graduate School of Duke University 2013 ABSTRACT Mechanistic Studies of -Activation Catalysis by Cationic Gold(I) and Brønsted-acid by Rachel Elizabeth McKinney Brooner Department of Chemistry Duke University Date:_______________________ Approved: ___________________________ Ross A. Widenhoefer, Supervisor ___________________________ Steven W. Baldwin ___________________________ Katherine J. Franz ___________________________ Qiu Wang An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry in the Graduate School of Duke University 2013 i v Copyright by Rachel Brooner 2013 Abstract Soluble gold(I) complexes are highly efficient catalysts for the functionalization of C–C multiple bonds through the addition of carbon- or heteroatom-nucleophiles across -bonds or cycloisomerizations of enynes and related -systems. Mechanisms involving outer-sphere attack of a nucleophile on the electrophilic -ligand of a cationic gold -complex are typically invoked for gold(I)-catalyzed hydrofunctionalization and cycloisomerization processes, but direct experimental evidence for this mechanism is limited. As an extension of the pioneering research in the Widenhoefer lab on the synthesis and characterization of gold(I) -complexes, a diverse family of 15 gold(I) - complexes in three distinct series are reported herein. First, the synthesis, characterization, and solution behavior of a series of seven gold(I) -diene complexes is reported. -
Hyponitrites ; Their Properties, and Their Pre- Paration by Sodium Or Potassium
View Article Online / Journal Homepage / Table of Contents for this issue DIVERS : HYPONITRfTES ; THEfR PROPERTfES, ETC. $5 XV.-Hyponitrites ; their Properties, and their Pre- paration by Sodium or Potassium. Published on 01 January 1899. Downloaded by Heinrich Heine University of Duesseldorf 12/11/2013 22:18:32. By EDWARDDIVERS, M.D.; D.Sc., F.R.8. THE hyponitrites have received the attention of many chemists besides myself since their discovery in 1871, and even this year new ways of forming them and the new working of an old method have been published, Yet much has been left to be put on record before a fairly correct and full history of these salts can be said to have been given, and the present paper is meant to be the necessary supplement to what has already been published. Way8 fmming Hyponitrites. No writer on hyponitrites in recent years has ahown himself acquainted with all the known ways of getting these salts, or even with the most productive. The following complete list is valuable, H2 View Article Online 96 DIVERS : HYPONITRITES ; THEIR PROPERTIES, AND THEIR therefore, and is of special interest as bringing togehr the various modes of formation of these salts. 1, Reduction of an alkali nitrite by the amalgam of its metal (Divers, 1871). 2. Reduction of an alkali nitrite by ferrous hydroxide (Zorn, 1882 ; Dunstap and Dymond). 3. Reduction of (hypo)nitrososulphates by sodium amalgam (Divers and Haga, 1885). 4. Reduction of nitric oxide by alkali stannite (Divers and Hagn, 1885). 5. Reduction of nitric oxide by ferrous hydroxide (Dunstan and Dymond, 1887). -
Nitroxyl (HNO): a Reduced Form of Nitric Oxide with Distinct Chemical, Pharmacological, and Therapeutic Properties
Hindawi Publishing Corporation Oxidative Medicine and Cellular Longevity Volume 2016, Article ID 4867124, 15 pages http://dx.doi.org/10.1155/2016/4867124 Review Article Nitroxyl (HNO): A Reduced Form of Nitric Oxide with Distinct Chemical, Pharmacological, and Therapeutic Properties Mai E. Shoman and Omar M. Aly Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt Correspondence should be addressed to Omar M. Aly; [email protected] Received 5 May 2015; Revised 14 August 2015; Accepted 1 September 2015 Academic Editor: Lezanne Ooi Copyright © 2016 M. E. Shoman and O. M. Aly. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Nitroxyl (HNO), the one-electron reduced form of nitric oxide (NO), shows a distinct chemical and biological profile from that of NO. HNO is currently being viewed as a vasodilator and positive inotropic agent that can be used as a potential treatment for heart failure. The ability of HNO to react with thiols and thiol containing proteins is largely used to explain the possible biological actions of HNO. Herein, we summarize different aspects related to HNO including HNO donors, chemistry, biology, and methods used for its detection. 1. Nitric Oxide (NO) cGMP in platelets, and this is thought to be the mechanism by which it inhibits platelet function [7]. In the vasculature, Biological activities associated with nitrogen oxide species are NO also prevents neutrophil/platelet adhesion to endothelial the subject of intense and current research interest. -
United States Patent Office Patented Nov
2,913,481 United States Patent Office Patented Nov. 17, 1959 arimanoramitroverwar 2 the solvent at low temperature or by crystallisation at 2,913,481 low temperature. The pure hyponitrous esters are how ever dangerous detonating explosives and isolation is ESTERS OF HYPONTROUSACD usually avoided. Hyponitries can be prepared from un John Wooley Batty, Arthur Lambert, and Gerald Scott, 5 stable halides which can be generated in situ. Blackley, Manchester, and Leslie Seed, Northwich, Eng The yield of the new hyponitrites is greater than the land, assignors to Imperial Chemical Industries Lim: yield of alkyl hyponitrites described in the prior art when ited, Milburne, London, England, a corporation of prepared by the same general reaction. Thus, for ex Great Britain ample, whereas the yield of isobutyl hyponitrite by inter No Drawing. Application April 29, 1957 0 action between silver hyponitrite and isobutyl iodide is Serial No. 655,478 about 10%, the yield of methoxymethylhyponitrite from chloromethyl ether under similar conditions is about 95%. Claims priority, application Great Britain May 2, 1956 Other hyponitrites included within the general class 8 Claims. (CI. 260-466) provided by this invention include esters (which may be 5 polymeric) of the general structure This invention relates to esters and more particularly to hyponitrous esters especially useful as catalysts for X-O-CHY-O-N-N-O-CHY-O-X the polymerisation of ethylenically unsaturated com wherein X may be alkyl, alkoxyalkyl, cycloalkyl or aryl pounds. and Y may be hydrogen, alkyl, cycloalkyl, aryl, alkoxy, This application is a continuation-in-part of our appli 20 alkoxyalkyl or may form part of a ring with X. -
Potassium Hydroxide Pellets
SAFETY DATA SHEET Preparation Date: 3/13/2015 Revision Date: 3/13/2015 Revision Number: G1 Product identifier Product code: P1315 Product Name: POTASSIUM HYDROXIDE, PELLETS, REAGENT, ACS Other means of identification Synonyms: Caustic Potash CAS #: 1310-58-3 RTECS # TT2100000 CI#: Not available Recommended use of the chemical and restrictions on use Recommended use: Electroplating; photoengraving & lithography; printing inks; in analytical chemistry & in organic synthesis; manfufacturing of liquid soap; pharmaceutical aid (as alkalizing agent); mordant for woods; absorbing carbon dioxide; mercerizing cotton; paint & varnish removers. Principle uses of KOH include chemicals, particularly the production of potassium carbonate and potassium permaganate; pesticides, fertilizers, and other agricultural products; soaps and detergents; scrubbing and cleaning operations, e.g., industrial gases; dyes and colorants; and rubber chemicals. Uses advised against No information available Supplier: Spectrum Chemicals and Laboratory Products, Inc. 14422 South San Pedro St. Gardena, CA 90248 (310) 516-8000 Order Online At: https://www.spectrumchemical.com Emergency telephone number Chemtrec 1-800-424-9300 Contact Person: Martin LaBenz (West Coast) Contact Person: Ibad Tirmiz (East Coast) 2. HAZARDS IDENTIFICATION Classification This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200) Acute toxicity - Oral Category 3 Skin corrosion/irritation Category 1 Serious eye damage/eye irritation Category 1 Corrosive