Characterization of Soybean Genome Based on Synteny Analysis with Lotus Japonicus

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of Soybean Genome Based on Synteny Analysis with Lotus Japonicus Breeding Science 58: 157–167 (2008) Characterization of soybean genome based on synteny analysis with Lotus japonicus Yasutaka Tsubokura†1), Ryutaku Onda†2), Shusei Sato†3), Zhengjun Xia1), Masaki Hayashi1), Yukie Fukushima2), Satoshi Tabata3) and Kyuya Harada*1) 1) National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan 2) Graduate School of Science and Technology, Chiba University, 648 Matsudo, Matsudo, Chiba 271-8510, Japan 3) Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan To apply genomic information of the model legume Lotus japonicus to soybean, the characteristics of the soybean genome in reference to the genome of L. japonicus were investigated. Macrosynteny between soy- bean and L. japonicus was analyzed by mapping the same cDNA clones on the maps of both species by the RFLP method, and by identifying the positions of orthologs on the L. japonicus map for cDNA markers lo- cated on the soybean map. Relatively large synteny blocks were observed between a few linkage groups of L. japonicus and soybean. The major parts of the soybean linkage groups consisted of mosaics of smaller segments syntenic with the L. japonicus genome. The presence of many homoeologous regions on different soybean linkage groups was suggested from the distribution of paralogs and orthologs. To investigate the microsynteny between soybean and L. japonicus, three soybean BAC clones were selected for the GmNFR1a, GmNFR1b and Nts1 genes mapped on the macrosyntenic regions of the linkage groups D1b, B2 and H, re- spectively. We revealed a significantly high level of collinearity between these BAC clones and correspond- ing homologous genomic regions of L. japonicus. The information of L. japonicus could be used for the development of DNA markers, map-based cloning and assembling process of genome sequencing in soybean. Key Words: Glycine max (L) Merrill, Lotus japonicus (Regel) Larsen, macrosynteny, microsynteny, homoeologous region, genome duplication, paralog. Introduction and high transformability with Agrobacterium tumefaciense. The genome resources of L. japonicus, such as the The Fabaceae family is the third largest family of an- sequence and positional information of TAC/BAC clones giosperm plants including around 20000 species of legumes. (http://www.kazusa.or.jp/lotus/index.html), EST libraries The subfamily Papilionoideae includes agriculturally impor- (http://www.kazusa.or.jp/en/plant/lotus/EST/index.html), and tant species such as soybean, pea and common bean, and the complete sequence data of chloroplast and symbiotic model legumes, Lotus japonicus and Medicago truncatula. rhizobium bacteria Mesorhizobium loti (http://www. Additionally, legumes are able to fix nitrogen through sym- kazusa.or.jp/rhizobase/Mesorhizobium/index.html) has been biotic infection with rhizobium bacteria and are character- exploited. In addition to the linkage map of TAC/BAC istized by a high protein content in their seeds. The genomics clones (http://www.kazusa.or.jp/lotus), another linkage map of legumes enables to identify agriculturally useful genes of L. japonicus was also constructed using AFLP, SSR and for efficient breeding as well as accumulation of academic dCAPS markers (Hayashi et al. 2001). knowledge. Soybean is the most important leguminous crop in the L. japonicus is a model plant for the genomics of the world. The genome size of soybean is estimated at 1.12 Gb family Fabaceae, as well as M. truncatula. It displays appro- (Arumunganathan and Earle 1991), a value approximately priate features as a model plant (Handberg and Stougaard 2.5 times larger than that of L. japonicus. It was suggested 1992), including diploidy, self-fertility, small genome size that the soybean genome is the product of a diploid ancestor (432 Mb, Pedrosa et al. 2002, 442 Mb, Ito et al. 2000, 494 (n = 11), which underwent aneuploid loss (n = 10), and sub- Mb, Kawasaki and Murakami 2000), short life cycle (ap- sequent polyploidization (Lackey 1980). The occurrence of proximately 3 months), small number of chromosomes (n = 6) two rounds of genome duplications or hybridizations and rearrangements was estimated by many researchers Communicated by J. Abe (Shoemaker et al. 1996, Shoemaker et al. 2002, Blanc and Received December 27, 2007. Accepted March 25, 2008. Wolfe 2004, Schlueter et al. 2004). *Corresponding author (e-mail: [email protected]) The rapid accumulation of genome sequence informa- † These authors contributed equally to this work tion for L. japonicus and M. truncatula provides a unique 158 Tsubokura, Onda, Sato, Xia, Hayashi, Fukushima, Tabata and Harada opportunity for comparative studies between the model le- N-hydroxycinnamoyl / benzoyltransferase (HCBT) genes gumes and leguminous crops. Though syntenic relationships (Schlueter et al. 2006), fatty acid desaturase 2 (FAD2) genes within Fabaceae are less well characterized compared with (Schlueter et al. 2007a), and LysM kinase genes (Zhang et those of Gramineae, an increasing number of studies has be- al. 2007). gun to reveal extensive synteny between the species of the In the present study, we analyzed the synteny between family. A high level of synteny on entire linkage groups was soybean and L. japonicus to reveal the characteristics of the observed between mung bean (Vigna radiata) and cowpea genome structure of soybean, in reference to the genome of (Vigna unguiculata) (Menanciohautea et al. 1993). Though L. japonicus. comparable levels of synteny were identified between mung bean and common bean (Phaseolus vulgaris), synteny Materials and Methods blocks were more limited between these species and soy- bean (Boutin et al. 1995). Grant et al. (2000) revealed the Plant materials and DNA extraction presence of genome conservation between the soybean link- For L. japonicus, 127 F2 plants derived from a single age group A2 and chromosome 1 of Arabidopsis thaliana. cross between Gifu B-129 and Miyakojima MG-20 were uti- Lee et al. (2001) observed a high level of conservation be- lized as the mapping population. Total DNA from leaves tween the chromosomes of mung bean and common bean, was extracted and purified using a DNeasy Plant Mini Kit and chromosome segments of soybean, where A. thaliana (QIAGEN). The 94 RILs developed by the single seed de- also showed conserved regions to those of legumes which scent method from the same F2 population were also used as enabled to analyze duplicated regions in soybean. Choi et al. the mapping population. The genomic DNAs of RILs were (2004) reported genome-wide macrosynteny among le- extracted by the CTAB method (Murray and Thompson gumes (M. truncatula, M. sativa, L. japonicus, Pisum 1980). sativum, Cicer arietinum, mung bean, common bean and For soybean, 190 F2 plants derived from a single cross soybean), using a large set of cross-species gene-specific between Misuzudaizu and Moshidou Gong 503 or 156 RILs markers. Though the length of the synteny blocks was re- developed by the single seed descent method from the same duced by chromosomal rearrangements in some regions, cross were used as the mapping population. The genomic chromosomes from a variety of Papilionoid species could be DNA of these samples was extracted by the CTAB method aligned, based on the chromosomes of M. truncatula . How- (Murray and Thompson 1980). ever only small synteny blocks were observed between M. truncatula and soybean. Framework maps used and assignments of new markers Yan et al. (2003) analyzed the synteny between BAC The F2 and RIL framework markers of L. japonicus contigs of soybean and M. truncatula, based on hybridiza- were selected from the map of Miyakojima MG-20 previ- tion using soybean RFLP clones and BAC end-sequences as ously constructed (Hayashi et al. 2001). The F2 and RIL probes and observed a microsynteny in 54% of soybean con- framework maps of soybean used in the present study were tigs. Yan et al. (2004) further analyzed three homologous reported by Yamanaka et al. (2001) and Watanabe et al. BAC contig groups in detail by comparative physical map- (2004), respectively. Assignments of the loci detected by the ping and cross-hybridization and identified a microsynteny new markers to linkage groups were performed based on a between soybean and M. truncatula in six of the eight re- comparison between the segregation data of new loci and gions tested. The order and orientation of at least six genes those used for the construction of the framework maps. The was found to be conserved in a 70 kb region, including MAPMAKER/EXP. Ver 3.0b program was used for map apyrase genes from soybean and M. truncatula (Cannon construction. Map distance was estimated from recombi- et al. 2003). Choi et al. (2004) examined two BAC clones nation frequencies using the Kosambi function. The loci from the region containing the cyst nematode resistance detected by the new markers were added to the revised frame- gene, rhg1, of soybean and homologous BAC clones of work map using the try command. A LOD score of 3.0 and a M. truncatula, and revealed that the order and orientation of maximum distance of 32.0 cM were used as linkage criteria. fourteen genes were conserved between these genomes. They also analyzed ten homologous pairs of BAC clones Mapping of TAC/BAC clones of L. japonicus based on SSR from M. truncatula and TAC clones from L. japonicus and length polymorphisms and single nucleotide polymorphisms found that 72 genes (82%) were syntenic between the ge- For the generation of simple sequence repeat (SSR) nomes. Mudge et al. (2005) uncovered two large soybean re- markers, sequence repeats such as (AT)n, (GT)n and gions surrounding the cyst nematode resistance genes, rhg1 (AAT)n above 15 bp were sought on the TAC/BAC nucleo- and Rhg4, that exhibited a synteny with M. truncatula. tide sequences. Design of the primer pairs, PCR and poly- Microsynteny between homoeologous regions within morphism detection were performed as previously reported the soybean genome was also revealed, based on BAC fin- (Harada et al.
Recommended publications
  • A Chromosome-Scale Lotus Japonicus Gifu Genome Assembly Indicates That Symbiotic Islands Are Not General Features of Legume Genomes
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.17.042473; this version posted April 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Title: A chromosome-scale Lotus japonicus Gifu genome assembly indicates that symbiotic islands are not general features of legume genomes Authors: Nadia Kamal1, Terry Mun2, Dugald Reid2, Jie-shun Lin2, Turgut Yigit Akyol3, Niels Sandal2, Torben Asp2, Hideki Hirakawa4, Jens Stougaard2, Klaus F. X. Mayer1,5, Shusei Sato3, and Stig Uggerhøj Andersen2 Author affiliations: 1: Helmholtz Zentrum München, German Research Center for Environmental Health, Plant Genome and Systems Biology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany. 2: Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK- 8000 Aarhus C, Denmark. 3: Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan 4: Kazusa DNA Research Institute, 2-1-1 Kazusa-Kamatari, Kisarazu, Chiba, 292-0816, Japan 5: Technical University Munich, Munich Germany Authors for correspondence: Klaus F. X. Mayer ([email protected]), Shusei Sato ([email protected]), and Stig U. Andersen ([email protected]) Page 1 of 37 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.17.042473; this version posted April 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Phylogeny of the Genus Lotus (Leguminosae, Loteae): Evidence from Nrits Sequences and Morphology
    813 Phylogeny of the genus Lotus (Leguminosae, Loteae): evidence from nrITS sequences and morphology G.V. Degtjareva, T.E. Kramina, D.D. Sokoloff, T.H. Samigullin, C.M. Valiejo-Roman, and A.S. Antonov Abstract: Lotus (120–130 species) is the largest genus of the tribe Loteae. The taxonomy of Lotus is complicated, and a comprehensive taxonomic revision of the genus is needed. We have conducted phylogenetic analyses of Lotus based on nrITS data alone and combined with data on 46 morphological characters. Eighty-one ingroup nrITS accessions represent- ing 71 Lotus species are studied; among them 47 accessions representing 40 species are new. Representatives of all other genera of the tribe Loteae are included in the outgroup (for three genera, nrITS sequences are published for the first time). Forty-two of 71 ingroup species were not included in previous morphological phylogenetic studies. The most important conclusions of the present study are (1) addition of morphological data to the nrITS matrix produces a better resolved phy- logeny of Lotus; (2) previous findings that Dorycnium and Tetragonolobus cannot be separated from Lotus at the generic level are well supported; (3) Lotus creticus should be placed in section Pedrosia rather than in section Lotea; (4) a broad treatment of section Ononidium is unnatural and the section should possibly not be recognized at all; (5) section Heineke- nia is paraphyletic; (6) section Lotus should include Lotus conimbricensis; then the section is monophyletic; (7) a basic chromosome number of x = 6 is an important synapomorphy for the expanded section Lotus; (8) the segregation of Lotus schimperi and allies into section Chamaelotus is well supported; (9) there is an apparent functional correlation be- tween stylodium and keel evolution in Lotus.
    [Show full text]
  • Molecular Characterization of Carbonic Anhydrase Genes in Lotus Japonicus and Their Potential Roles in Symbiotic Nitrogen Fixation
    International Journal of Molecular Sciences Article Molecular Characterization of Carbonic Anhydrase Genes in Lotus japonicus and Their Potential Roles in Symbiotic Nitrogen Fixation Longlong Wang * , Jianjun Liang, Yu Zhou, Tao Tian, Baoli Zhang and Deqiang Duanmu * State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; [email protected] (J.L.); [email protected] (Y.Z.); [email protected] (T.T.); [email protected] (B.Z.) * Correspondence: [email protected] (L.W.); [email protected] (D.D.) Abstract: Carbonic anhydrase (CA) plays a vital role in photosynthetic tissues of higher plants, whereas its non-photosynthetic role in the symbiotic root nodule was rarely characterized. In this study, 13 CA genes were identified in the model legume Lotus japonicus by comparison with Ara- bidopsis CA genes. Using qPCR and promoter-reporter fusion methods, three previously identified nodule-enhanced CA genes (LjaCA2, LjaCA6, and LjbCA1) have been further characterized, which exhibit different spatiotemporal expression patterns during nodule development. LjaCA2 was ex- pressed in the central infection zone of the mature nodule, including both infected and uninfected cells. LjaCA6 was restricted to the vascular bundle of the root and nodule. As for LjbCA1, it was expressed in most cell types of nodule primordia but only in peripheral cortical cells and uninfected Citation: Wang, L.; Liang, J.; Zhou, cells of the mature nodule. Using CRISPR/Cas9 technology, the knockout of LjbCA1 or both LjaCA2 Y.; Tian, T.; Zhang, B.; Duanmu, D. and its homolog, LjaCA1, did not result in abnormal symbiotic phenotype compared with the wild- Molecular Characterization of type plants, suggesting that LjβCA1 or LjαCA1/2 are not essential for the nitrogen fixation under Carbonic Anhydrase Genes in Lotus normal symbiotic conditions.
    [Show full text]
  • Review: Medicago Truncatula As a Model for Understanding Plant Interactions with Other Organisms, Plant Development and Stress Biology: Past, Present and Future
    CSIRO PUBLISHING www.publish.csiro.au/journals/fpb Functional Plant Biology, 2008, 35, 253-- 264 Review: Medicago truncatula as a model for understanding plant interactions with other organisms, plant development and stress biology: past, present and future Ray J. Rose Australian Research Council Centre of Excellence for Integrative Legume Research, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia. Email: [email protected] Abstract. Medicago truncatula Gaertn. cv. Jemalong, a pasture species used in Australian agriculture, was first proposed as a model legumein 1990.Sincethat time M. truncatula,along withLotus japonicus(Regal) Larsen, hascontributed tomajor advances in understanding rhizobia Nod factor perception and the signalling pathway involved in nodule formation. Research using M. truncatula as a model has expanded beyond nodulation and the allied mycorrhizal research to investigate interactions with insect pests, plant pathogens and nematodes. In addition to biotic stresses the genetic mechanisms to ameliorate abiotic stresses such as salinity and drought are being investigated. Furthermore, M. truncatula is being used to increase understanding of plant development and cellular differentiation, with nodule differentiation providing a different perspective to organogenesis and meristem biology. This legume plant represents one of the major evolutionary success stories of plant adaptation to its environment, and it is particularly in understanding the capacity to integrate biotic and abiotic plant responses with plant growth and development that M. truncatula has an important role to play. The expanding genomic and genetic toolkit available with M. truncatula provides many opportunities for integrative biological research with a plant which is both a model for functional genomics and important in agricultural sustainability.
    [Show full text]
  • Lotus Japonicus Related Species and Their Agronomic Importance
    A.J. Márquez (Editorial Director). 2005. Lotus japonicus Handbook. pp. 25-37. http://www.springer.com/life+sci/plant+sciences/book/978-1-4020-3734-4 Chapter 1.2 LOTUS-RELATED SPECIES AND THEIR AGRONOMIC IMPORTANCE Pedro Díaz*, Omar Borsani, and Jorge Monza Laboratorio de Bioquímica; Departamento de Biología Vegetal; Facultad de * Agronomía; CP12900 Montevideo; URUGUAY; Corresponding author. Email: [email protected] Phone: +598 23 54 0229 Fax: +598 23 59 0436 Keywords: L. corniculatus, L. uliginosus , L. glaber, L. subbiflorus, botanical features, pastures, environmental adaptation, plant breeding. More than 180 species within the genus Lotus occur worldwide. Four have been domesticated and improved through selection and plant breeding: Lotus corniculatus, L. uliginosus, L. glaber and L. subbiflorus. Since the model legume L. japonicus is related taxonomically to these species, knowledge can be transferred to the agronomical arena. The slow progress observed in Lotus cultivar improvements to date could be explained by the polyploid nature of some of these species, a feature not present in L. japonicus. This chapter reviews briefly the taxonomical relationships among these species. Secondly, it illustrates how Lotus species are currently used to improve pastures for which other forage legume species are not suitable. Finally, it touches on beneficial microorganism-plant interactions and the benefits of using Lotus species as animal fodder. INTRODUCTION One of the principal protein sources of the human diet comes from animal origin. Beef and sheep meat production is based on natural, cultivated pastures and feedlot system with nutrient supplement. Cultivated pastures can be composed of a single cultivated species or a mixture of forage species.
    [Show full text]
  • An Integrated Information Portal for the Model Legume Lotus Japonicus Received: 12 July 2016 Terry Mun1, Asger Bachmann1,2, Vikas Gupta1,2, Jens Stougaard1 & Stig U
    www.nature.com/scientificreports OPEN Lotus Base: An integrated information portal for the model legume Lotus japonicus Received: 12 July 2016 Terry Mun1, Asger Bachmann1,2, Vikas Gupta1,2, Jens Stougaard1 & Stig U. Andersen1 Accepted: 22 November 2016 Lotus japonicus is a well-characterized model legume widely used in the study of plant-microbe Published: 23 December 2016 interactions. However, datasets from various Lotus studies are poorly integrated and lack interoperability. We recognize the need for a comprehensive repository that allows comprehensive and dynamic exploration of Lotus genomic and transcriptomic data. Equally important are user-friendly in- browser tools designed for data visualization and interpretation. Here, we present Lotus Base, which opens to the research community a large, established LORE1 insertion mutant population containing an excess of 120,000 lines, and serves the end-user tightly integrated data from Lotus, such as the reference genome, annotated proteins, and expression profiling data. We report the integration of expression data from the L. japonicus gene expression atlas project, and the development of tools to cluster and export such data, allowing users to construct, visualize, and annotate co-expression gene networks. Lotus Base takes advantage of modern advances in browser technology to deliver powerful data interpretation for biologists. Its modular construction and publicly available application programming interface enable developers to tap into the wealth of integrated Lotus data. Lotus Base is freely accessible at: https://lotus.au.dk. Lotus japonicus is a popular, well-characterized model legume1, widely used to study plant-microbe interactions due to its ability to establish a range of different types of relationship with microorganisms along the symbio- sis–pathogenesis spectrum—ranging from biological nitrogen fixation2 and arbuscular mycorrhizal symbiosis3, to bacterial4 and fungal5 pathogenesis.
    [Show full text]
  • A Comparative Morphological and Anatomical Study of the Model Legume Lotus Japonicus and Related Species Rimma P
    © Landesmuseum für Kärnten; download www.landesmuseum.ktn.gv.at/wulfenia; www.biologiezentrum.at Wulfenia 13 (2006): 33–56 Mitteilungen des Kärntner Botanikzentrums Klagenfurt A comparative morphological and anatomical study of the model legume Lotus japonicus and related species Rimma P. Barykina & Tatiana E. Kramina Summary: A comparative anatomical study of main vegetative organs in three members of the genus Lotus section Lotus (namely L. corniculatus L., L. japonicus (Regel) Larsen, and a new described species L. miyakojimae Kramina) has been conducted. The plants investigated were collected in natural populations or grown from seeds. Quantitative data were analysed by several methods of statistics. The results obtained allow to extend anatomical and morphological descriptions of the studied species and to reveal their important diagnostic characters. Keywords: Leguminosae, Lotus, anatomy, morphology, Japan, new species The Lotus corniculatus species complex (Leguminosae-Papilionoideae-Loteae) is known as a complicated taxonomic group including both, diploid and tetraploid taxa. The typical form of L. corniculatus L. sensu stricto has a tetraploid chromosome number 2n=24 (GRANT 1965, 1995). Several other tetraploid forms described under the specifi c namesL . ambiguus Bess., L. arvensis Pers., L. balticus Min., L. callunetorum (Juxip) Min., L. dvinensis Min. et Ulle, L. komarovii Min., L. ruprechtii Min., L. zhegulensis Klok., and some others were proved to be so close to L. corniculatus s. str. by their morphological characters, that their recognition at the specifi c level has been rejected, and they have been included in L. corniculatus sensu lato. Several diploid races of the studied species complex with the chromosome number 2n=12 (i.e.
    [Show full text]
  • Transgenic Approaches to Study Nodulation in the Model Legume, Lotus Japonicus
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2003 Transgenic Approaches to Study Nodulation in the Model Legume, Lotus japonicus Crystal Bickley McAlvin University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Microbiology Commons Recommended Citation McAlvin, Crystal Bickley, "Transgenic Approaches to Study Nodulation in the Model Legume, Lotus japonicus. " PhD diss., University of Tennessee, 2003. https://trace.tennessee.edu/utk_graddiss/2151 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Crystal Bickley McAlvin entitled "Transgenic Approaches to Study Nodulation in the Model Legume, Lotus japonicus." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Microbiology. Dr. Gary Stacey, Major Professor We have read this dissertation and recommend its acceptance: Dr. Beth Mullin, Dr. Jeff Becker, Dr. Albrecht VonArnim, Dr. Pam Small Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a dissertation written by Crystal Bickley McAlvin entitled “Transgenic approaches to study nodulation in the model legume, Lotus japonicus”.
    [Show full text]
  • Genome-Wide Identification of Nodule-Specific Transcripts in the Model Legume Medicago Truncatula1
    Genome Analysis Genome-Wide Identification of Nodule-Specific Transcripts in the Model Legume Medicago truncatula1 Maria Fedorova, Judith van de Mortel, Peter A. Matsumoto, Jennifer Cho, Christopher D. Town, Kathryn A. VandenBosch, J. Stephen Gantt, and Carroll P. Vance* Departments of Agronomy and Plant Genetics, 1991 Upper Bedford Circle (M.F., J.v.d.M., P.A.M., C.P.V.) and Plant Biology, 1445 Gortner Avenue (K.A.V., J.S.G.), University of Minnesota, St. Paul, Minnesota 55108; United States Department of Agriculture-Agricultural Research Service, St. Paul, Minnesota 55108 (C.P.V.); and The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, Maryland 20850 (J.C., C.D.T.) The Medicago truncatula expressed sequence tag (EST) database (Gene Index) contains over 140,000 sequences from 30 cDNA libraries. This resource offers the possibility of identifying previously uncharacterized genes and assessing the frequency and tissue specificity of their expression in silico. Because M. truncatula forms symbiotic root nodules, unlike Arabidopsis, this is a particularly important approach in investigating genes specific to nodule development and function in legumes. Our analyses have revealed 340 putative gene products, or tentative consensus sequences (TCs), expressed solely in root nodules. These TCs were represented by two to 379 ESTs. Of these TCs, 3% appear to encode novel proteins, 57% encode proteins with a weak similarity to the GenBank accessions, and 40% encode proteins with strong similarity to the known proteins. Nodule-specific TCs were grouped into nine categories based on the predicted function of their protein products. Besides previously characterized nodulins, other examples of highly abundant nodule-specific transcripts include plantacyanin, agglutinin, embryo-specific protein, and purine permease.
    [Show full text]
  • National Science Foundation-Sponsored Workshop Report
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln U.S. Department of Agriculture: Agricultural Publications from USDA-ARS / UNL Faculty Research Service, Lincoln, Nebraska 5-2004 National Science Foundation-Sponsored Workshop Report. Draft Plan for Soybean Genomics Gary Stacey University of Missouri, Columbia, [email protected] Lila n Vodkin University of Illinois, Urbana Wayne A. Parrott The University of Georgia, Athens, Georgia Randy C. Shoemaker Iowa State University Follow this and additional works at: https://digitalcommons.unl.edu/usdaarsfacpub Part of the Agricultural Science Commons Stacey, Gary; Vodkin, Lila n; Parrott, Wayne A.; and Shoemaker, Randy C., "National Science Foundation- Sponsored Workshop Report. Draft Plan for Soybean Genomics" (2004). Publications from USDA-ARS / UNL Faculty. 297. https://digitalcommons.unl.edu/usdaarsfacpub/297 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications from USDA-ARS / UNL Faculty by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Meeting Report National Science Foundation-Sponsored Workshop Report. Draft Plan for Soybean Genomics1 Gary Stacey*, Lila Vodkin, Wayne A. Parrott, and Randy C. Shoemaker National Center for Soybean Biotechnology, Department of Plant Microbiology and Pathology, University of Missouri, Columbia, Missouri
    [Show full text]
  • Exploring the Phylogeny of Rosids with a Five-Locus Supermatrix from Genbank
    bioRxiv preprint doi: https://doi.org/10.1101/694950; this version posted July 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Exploring the phylogeny of rosids with a five-locus supermatrix from GenBank 2 Miao Sun1, 2, 3*, Ryan A. Folk1, Matthew A. Gitzendanner2, 6, Stephen A. Smith4, Charlotte 3 Germain-Aubrey1, Robert P. Guralnick1, 6, Pamela S. Soltis1, 5, 6, Douglas E. Soltis1, 2, 5, 6, 4 Zhiduan Chen3* 5 6 1. Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA 7 2. Department of Biology, University of Florida, Gainesville, FL 32611, USA 8 3. State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the 9 Chinese Academy of Sciences, Beijing 100093, China 10 4. Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 11 48109, USA 12 5. Genetics Institute, University of Florida, Gainesville, FL 32608, USA 13 6. Biodiversity Institute, University of Florida, Gainesville, FL 32611, USA 14 15 *Corresponding authors: 16 Miao Sun: [email protected] 17 Zhiduan Chen: [email protected] 18 1 bioRxiv preprint doi: https://doi.org/10.1101/694950; this version posted July 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • Control of Petal Shape and Floral Zygomorphy in Lotus Japonicus
    Control of petal shape and floral zygomorphy in Lotus japonicus Xianzhong Feng*†, Zhong Zhao†‡, Zhaoxia Tian*†, Shilei Xu*, Yonghai Luo*, Zhigang Cai*, Yumei Wang*, Jun Yang*, Zheng Wang*, Lin Weng*, Jianghua Chen*, Leiying Zheng*, Xizhi Guo*, Jianghong Luo*, Shusei Sato§, Satoshi Tabata§, Wei Ma¶, Xiangling Cao*, Xiaohe Hu*, Chongrong Sun‡ʈ, and Da Luo*¶ʈ *National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China; ‡School of Life Sciences, Fudan University, Shanghai 200433, China; §Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan; and ¶School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China Communicated by Enrico Coen, John Innes Centre, Norwich, United Kingdom, January 26, 2006 (received for review November 8, 2005) Zygomorphic flowers, with bilateral (dorsoventral) symmetry, are genes (15–17). When both CYC and DICH are mutated, more considered to have evolved several times independently in flow- petals and stamens are developed in the dorsal region, and all petals ering plants. In Antirrhinum majus, floral dorsoventral symmetry resemble the shape of ventral petal. Thus, CYC and DICH could depends on the activity of two TCP-box genes, CYCLOIDEA (CYC) have a dual role in the control of zygomorphic development: an and DICHOTOMA (DICH). To examine whether the same molecular early one affecting primordium initiation and controlling floral mechanism of floral asymmetry operates in the distantly related asymmetry, and a later one affecting organ asymmetry and other Rosid clade of eudicots, in which asymmetric flowers are thought morphological characters (11, 12).
    [Show full text]