By David Kennedy and Leaf for Life 1993

Total Page:16

File Type:pdf, Size:1020Kb

By David Kennedy and Leaf for Life 1993 by David Kennedy and Leaf for Life 1993 ABOUT THIS MANUAL It is the purpose of this manual to help people interested in health, nutrition, agriculture and environmental is1sues to be able to begin making and using leaf concentrate in towns and villages in developing countries. This manual is an ongoing work that will be periodically updated. It deals almost exclusively with small or village scale production systems. There is very little information on industrial scale production. This manual should be useful to anyone involved in a small leaf concentrate program, but is not intended to substitute for hands on training. Eventually, the manual will be matched with a training film on videocassette and a 3 - 5 day training course offered at least once a year. You may want to photocopy some of the information and charts in this manual for people who need to refer to one aspect of leaf concentrate work, but who do not need the entire manual. Throughout the manual I use the terms "leaf concentrate", "LC", or occasionally "leaf curd" to describe a food made from coagulating green plant leaf juice. This food has also been called "leaf protein" and "leaf protein concentrate". Most of the references relate to projects linked with or run by a small voluntary organization called Find Your Feet in Great Britain and Leaf for Life in the USA. Information and ideas for this manual came from a lot of people, most importantly Walt Bray, Glyn Davys, and Boone Guyton. Drawings and help with layout also came from several people, including Beth Rosdatter, Alison Craig, Susan Lynn, Therese and Sherri Hildebrand, Jose Leon and Danne Lakin. You are most cordially invited to join in the development of this exciting 'Food for the Future'. Leaf For Life appreciates any criticisms or suggestions that may help to improve this course. We also like to hear of problems, solutions, recipes, or good ideas that people run into while working with leaf concentrate. Thank you and the best of luck. INTRODUCTION In the last half of the 18 th Century a Frenchman named Rouelle discovered that a vegetable curd could be made by simply heating the juice squeezed from hemlock leaves. Little was done with this information until World War II when the British, fearing that their food supplies could be cut off, began searching for alternative sources of protein. N.W. Pirie led a team of scientists in the development of equipment to extract protein from green leaves. Using alfalfa, wheat leaves, mustard greens, and other plants, the team did a great deal of research on the use of these leaf concentrates. While this team and a few other individuals continued working on leaf concentrates, it wasn't until the 1960's that interest in making curd from leaves picked up again. Work began advancing on two quite different fronts. In several highly developed countries work began on using dried leaf curd to enrich animal feeds. At the same time Find Your Feet ( LEAF FO R LIFE), a small voluntary organization based in London, England, began promoting the use of leaf concentrate to counter malnutrition in children living in tropical villages and towns. Several studies were undertaken to establish the safety and nutritional value of the leaf concentrate in the diets of children. Find Your Feet ( LEAF FOR LIFE) has since started programs to teach women how to prepare leaf concentrate for malnourished children in Mexico, India, Bolivia, Sri Lanka, Ghana, Nicaragua and Bangladesh.* These programs have received financial support from the United Nations, the European Economic Community, Mexico's DIF, the British Overseas Development Agency, the Rotary Club International, employee programs from Delta Airlines and Sun Microsystems, as well as many private trusts and individual supporters. In all of its projects Leaf For Life has worked to train women to make high quality leaf concentrate from local leaves, with the aim of improving the diet of members of their communities who are vulnerable to malnutrition. Usually this means children, pregnant and nursing mothers, and the elderly. Through the work done in these projects and work done in England, the U.S., India and Sweden the process of making and using leaf concentrate is gradually becoming easier and more economical Machinery is constantly being improved and new recipes are tried every year The workshops where leaf concentrate is made are becoming more efficiently organized and the cost of starting a program is dropping. * We know of two other organizations using leaf concentrate in small nutrition programs. Leaf Nutrient Program has begun a project in Coahuila, Mexico and the Pakistan Council for Scientific and Industrial Research did the same type of work at an orphanage near Lahore, Pakistan. Their addresses, along with those of other sources of information on subjects related to leaf concentrate are listed in the back of this manual. WHAT IS LEAF CONCENTRATE? Leaf concentrate is an extremely nutritious food made by mechanically separating indigestible fiber and soluble anti-nutrients from much of the protein, vitamins, and minerals in certain fresh green plant leaves. Because it is so rich in beta-carotene, iron, and high quality protein, leaf concentrate is very effective in combating malnutrition, especially the anemia and vitamin A deficiency which are prevalent among children and pregnant women in most developing countries. It is easily combined with a variety of inexpensive foods to make culturally acceptable dishes. Because it takes more direct advantage of solar energy, a leaf crop can produce more nutrients per hectare than any other agricultural system. Leaf crops can usually be produced with less environmental impact than grains. The simple technology of making leaf concentrate offers a means of capturing a much greater part of the leaf harvest for direct human consumption. The fiber that is separated can be used to feed animals, and the left over liquid, or "whey" can be used to fertilize plants, so nothing is lost. WHY LEAF CONCENTRATE WORKS Agriculture is basically a biological system for collecting the energy of the sun in ways that are useful to humans. Green leaves are the solar energy collectors. The more surface area of green leaves exposed to the sun's light, the more energy can be captured from a given parcel of land. Chlorophyll, the pigment that makes leaves (and leaf concentrate) so green, converts carbon dioxide from the air, water and sunlight into simple carbohydrates. These combine with each other to make sugars and starches, which supply our bodies with energy. They also combine to make fibers like cellulose and lignin that make useful things like paper, cotton cloth, and wood possible. These simple carbohydrates formed in the plant's green leaves also combine with nitrates from the soil to make proteins, which are often called the building blocks of life. The basic foods that we eat are almost all created in the green leaves of plants. They are then translocated to be stored in seeds, tubers, and fruits. When we eat a tortilla, a sweet potato, or a banana we are eating food made by the green leaves of the corn plant, the sweet potato plant, and the banana plant. Moving the food from the leaf to the seed or the tuber or the fruit costs the plant energy. This reduces the amount of available food because the plants burn their own sugars and starches to get this energy. Of course, much more of this food becomes unavailable when the seeds or tubers are fed to animals. This explains why animal products like meat, milk, and eggs are usually more expensive than plant products. When we grow wheat or other basic grains the young leaves of the plant are relatively efficient at converting the sun's energy to food. However, for much of the time that the grain occupies our best farmland it is producing very little food. As the leaves turn yellow and brown they stop producing food and the plant is simply drying the seed so that it will be a very compact food storage container. These grains are certainly convenient food. Because the grains have far less water and fiber than the green leaves, as well as generally milder flavor, they have been a more useful and popular food. The leaf concentrate technology offers a simple means of removing much of the water and almost all of the fiber from the green leaves. This can make green leaves a much more attractive food. While leaf concentrate will never replace grains, it does offer a major new source of food in the human diet. Combining inexpensive easily grown starchy crops like cassava, bananas, and breadfruit with leaf concentrate could provide superior nutrition to a grain based diet for millions of people in the tropics. By more directly tapping the tremendous productivity of leaf crops, leaf concentrate can produce more protein and most other important nutrients per hectare than other agricultural systems. How quickly this food technology is put into widespread practice will depend mainly on economics. The economics of leaf concentrate production is closely tied to the scale of operation and how well the fiber that remains when the concentrate is separated from the leaves is utilized. Usually the most economical use of this fiber is to feed it to cows, goats, sheep, horses, rabbits, or guinea pigs.. Because the fiber is so finely chopped up animals can absorb the nutrients in it more readily than they can from hay or forage crop. In a sense, the grinding of the leaves for making leaf concentrate acts in the same way as the animals chewing the leaves for a long time.
Recommended publications
  • Tomato & Fennel Ragu
    TOMATO & FENNEL RAGU From our garden: fennel, marjoram, fennel fronds, purple cauliflower NOTES TO STUDENTS and VOLUNTEERS: 1. Please focus on your chopping skills. 2. Prepare the recipe in the order as outlined below to ensure it is cooked within the allocated time. Equipment Ingredients Colander 1 fennel Chopping board ¼ purple cauliflower Large knife 1 stalk celery Vegetable peeler 1 clove of garlic Can opener 2 tablespoons olive oil Large Saucepan with lid 1 large can whole tomatoes Wooden spoon ½ cup vegetable stock Scissors Bay leaf Large mixing bowl Small bunch marjoram Small mixing bowl Fennel fronds for garnish Serving bowls Serving spoons What to do: Peel and finely chop the garlic. Wash and finely slice the fennel. Wash and cut the cauliflower into small florets. Wash the celery and slice finely. Heat the olive oil in a large heavy-based saucepan over medium heat. Add the garlic, celery and fennel. Cook, stirring, for 3 to 4 minutes or until vegetables have softened. Add the cauliflower. Cook, stirring, for 1 minute or until combined. Add the bay leaf, vegetable stock and tomatoes (and juice) to the saucepan. Cover. Cook, stirring occasionally for 20 minutes or until vegetables start to soften. Pick, wash and roughly chop the marjoram. Add to the pot and stir to combine. Pick the fennel fronds, wash and roughly chop. Divide the ragu into serving bowls and garnish with chopped fennel fronds. .
    [Show full text]
  • Mineral Biofortification of Vegetables As a Tool to Improve Human Diet
    foods Review Mineral Biofortification of Vegetables as a Tool to Improve Human Diet Camila Vanessa Buturi 1, Rosario Paolo Mauro 1,* , Vincenzo Fogliano 2, Cherubino Leonardi 1 and Francesco Giuffrida 1 1 Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, Via Valdisavoia, 5-95123 Catania, Italy; [email protected] (C.V.B.); [email protected] (C.L.); [email protected] (F.G.) 2 Department of Agrotechnology and Food Sciences, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands; [email protected] * Correspondence: [email protected] Abstract: Vegetables represent pillars of good nutrition since they provide important phytochemicals such as fiber, vitamins, antioxidants, as well as minerals. Biofortification proposes a promising strategy to increase the content of specific compounds. As minerals have important functionalities in the human metabolism, the possibility of enriching fresh consumed products, such as many vegetables, adopting specific agronomic approaches, has been considered. This review discusses the most recent findings on agronomic biofortification of vegetables, aimed at increasing in the edible portions the content of important minerals, such as calcium (Ca), magnesium (Mg), iodine (I), zinc (Zn), selenium (Se), iron (Fe), copper (Cu), and silicon (Si). The focus was on selenium and iodine biofortification thus far, while for the other mineral elements, aspects related to vegetable typology, genotypes, chemical form, and application protocols are far from being well defined. Even if agronomic fortification is considered an easy to apply technique, the approach is complex considering several interactions occurring at crop level, as well as the bioavailability of different minerals for the consumer.
    [Show full text]
  • The Gradual Loss of African Indigenous Vegetables in Tropical America: a Review
    The Gradual Loss of African Indigenous Vegetables in Tropical America: A Review 1 ,2 INA VANDEBROEK AND ROBERT VOEKS* 1The New York Botanical Garden, Institute of Economic Botany, 2900 Southern Boulevard, The Bronx, NY 10458, USA 2Department of Geography & the Environment, California State University—Fullerton, 800 N. State College Blvd., Fullerton, CA 92832, USA *Corresponding author; e-mail: [email protected] Leaf vegetables and other edible greens are a crucial component of traditional diets in sub-Saharan Africa, used popularly in soups, sauces, and stews. In this review, we trace the trajectories of 12 prominent African indigenous vegetables (AIVs) in tropical America, in order to better understand the diffusion of their culinary and ethnobotanical uses by the African diaspora. The 12 AIVs were selected from African reference works and preliminary reports of their presence in the Americas. Given the importance of each of these vegetables in African diets, our working hypothesis was that the culinary traditions associated with these species would be continued in tropical America by Afro-descendant communities. However, a review of the historical and contemporary literature, and consultation with scholars, shows that the culinary uses of most of these vegetables have been gradually lost. Two noteworthy exceptions include okra (Abelmoschus esculentus) and callaloo (Amaranthus viridis), although the latter is not the species used in Africa and callaloo has only risen to prominence in Jamaica since the 1960s. Nine of the 12 AIVs found refuge in the African- derived religions Candomblé and Santería, where they remain ritually important. In speculating why these AIVs did not survive in the diets of the New World African diaspora, one has to contemplate the sociocultural, economic, and environmental forces that have shaped—and continue to shape—these foodways and cuisines since the Atlantic slave trade.
    [Show full text]
  • Crithmum Maritimum L.)
    UNIVERSIDAD POLITÉCNICA DE CARTAGENA Máster en Técnicas Avanzadas en Investigación y Desarrollo Agrario y Alimentario Effect of salinity and methyl jasmonate on the production and quality of sea fennel (Crithmum maritimum L.) HAFİSE VAROL INDEX ABSTRACT 1. INTRODUCTION 1.1 The Importance of Baby Leaf as a Ready-To-Eat Food 1.2 Baby Leaf Growing Media 1.3 Floating System 1.4 Seeds and Sowing of Baby Leaf 1.5 Irrigation and Fertilization of Baby Leaf 1.6 Pest and Diseases of Baby Leaf 1.7 Post-Harvest Handling of Baby Leaf 1.8 Halophytes 1.8.1 Crithmum maritimum 1.8.2 Bioactive Compounds in C. maritimum 1.8.3 Mineral Contents of C. maritimum 1.8.4 Effects of Salt Stress in C. maritimum 1.8.5 Effect of Methyl Jasmonate (MeJa) under Salt Stress 1.8.6 Effects of MeJa as Elicitor of Phytochemicals 2. OBJECTIVES 3. MATERIAL and METODS 3.1 Cultivation and Experiment Designs 3.2 Experiment 1: Effect of Salinity on Postharvest 3.3 Experiment 2: Effect of MEJa in Salt-Stressed Plants 3.4 Fresh and Dry Weights of Shoots and Roots 3.5 Root Parameters 3.6 Colour 3.7 Sensory and Visual Quality Analysis 3.8 Contents of Mineral 3.9 Phenolic Compounds 3.10 Chlorophylls and Carotenoids 3.11 Flavonoids 3.12 Antioxidant Capacity 3.13 Shelf Life During Storage Analysis 3.14 Statistics 4. RESULTS 4.1 Experiment 1: Effect of Salinity on Growth Postharvest Parameters of C. maritimum 4.1.1 Biomass, Leaf Area and Root Growth Parameters 4.1.2 Mineral Ion Concentrations (Anions and Cations) 4.1.3 Postharvest Quality 4.1.3.1 Weightloss Percantage of C.maritimum Plants 4.1.3.2 L, a and b Values 4.1.3.3 HUE Values 4.1.3.4 Chromaticity Values 4.1.3.5 CO2 and O2 Values of C.
    [Show full text]
  • Homegrown Chinese Vegetables for the Houston Area Emily Chen Dunbar
    Homegrown Chinese Vegetables for the Houston Area Emily Chen Dunbar I love vegetables. As a child growing up in the countryside of Taiwan, I watched the rice farmers and their water buffaloes plow the fields. My brothers and I loved to chase each other up the narrow paths between the rice patties. After the farmer harvested the rice, the field became our playground. We would pick up pieces of dried clay and shape them into small square pieces to build an oven. We collected and burned dry hay to heat up the oven until the clay became red. While it heated, we would swipe some sweet potatoes from a nearby field and put them into the oven. After stomping down on the clay roof, the hot clay buried the potatoes and cooked them. After one hour we eager kids went back for the most delicious, baked sweet potatoes known to mankind. Even now, the sweet, earthy, hot flavors remain in my mind. I realized how much that I enjoyed eating and cooking on the day my husband pointed out that I scheduled my daily activities around shopping and cooking. Many Chinese people have this same trait. A typical meal for a Chinese housewife includes steamed rice with 3 dishes and a soup. One of the dishes would always be a stir-fried, green-leaf vegetable; another might be shredded meat with some kind of vegetable. Most soups also included vegetables. For Chinese people, vegetables are the major food source. I have grown Chinese vegetables in Houston for many years. I also often trade vegetables with my Chinese friends.
    [Show full text]
  • Nutritive Evaluation of Telfairia Occidentalis Leaf Protein Concentrate in Infant Foods
    African Journal of Biotechnology Vol. 7 (15), pp. 2721-2727, 4 August, 2008 Available online at http://www.academicjournals.org/AJB ISSN 1684–5315 © 2008 Academic Journals Full Length Research Paper Nutritive evaluation of Telfairia occidentalis leaf protein concentrate in infant foods Johnson Oluwasola Agbede*, Muyiwa Adegbenro, Gbenga Emmanuel Onibi, Christian Oboh and Valentine Ayobore Aletor Division of Nutritional Biochemistry, Department of Animal Production and Health, Federal University of Technology, P.M.B. 704, Akure, Nigeria. Accepted 11 April, 2008 Leaf meal (LM), leaf proteins concentrate (LPC) and LPC residues from Telfairia occidentalis were produced, chemically characterized and the protein quality of the LPC evaluated using rats. Five infant weaning foods were formulated using varying combinations of T. occidentalis LPC and soybean meal. These foods were compared with three coded commercial infant weaning foods (CFF, CFN and CFC) currently in trade in a 28-day performance study. Though fractionation increased crude protein in LPC by 34.8%, the amino acid values were in most cases lower than the FAO/WHO/UNU recommendation. Fractionation led to increase in the gross energy by 22.0% and decrease in the phytate and tannin contents by 60 and 81.3%, respectively in LPC. The LPC, when fed as sole protein source, led to weight loss in rats. The highest final weight was observed in rats fed 100% LPC + 0% soybean meal-based food (105.4 ± 16.4 g) and least in CFN (50.0 ± 4.2 g), a commercial food. The formulated foods had significant (P<0.05) effects on apparent N-digestibility, ‘operative’ protein efficiency ratio and haematological variables.
    [Show full text]
  • Urinary Amino Acids Profile of Vegetarians and Non-Vegetarians
    Ma1 J Nutr 12(1): 67-78, 2006 Urinary Amino Acids Profile of Vegetarians and Non-vegetarians Chia Yoke Yin & Ton So Ha Monash University Malaysia, No. 2 Jalan Kolej, Bandar Sunway, 46150 Petaling Jaya, Selangor Darul Ehsan, Malaysia ABSTRACT The objective of the study was to quantify and to profile the amino acids content in urine samples. The amino acids content in urine was determined in 162 individuals (62 young non-vegetarians aged 15-45 years, 24 elderly non-vegetarians aged 46-70 years, 40 young vegetarians and 36 elderly vegetarians) by high performance liquid chromatography (HPLC). The most common amino acids detected in the young and elderly individuals on vegetarian and non-vegetarian diets were phenylalanine, threonine, arginine and asparagine, while leucine, aspartic acid and alanine were not found in any urine samples in both groups. Isoleucine was not detected in the urine of vegetarians. The concentrations of the majority of essential amino acids were between 0.10 - 2.00 mgl24hrs except for histidine which had a range of 4.1 - 5.0 mgl24hrs. The concentrations of non-essential amino acids varied. Proline, glycine and tyrosine concentrations were between 0.10 - 1.00 mg/24hrs, while cysteine, glutamine, glutamic acid and cystine concentrations were between 11.0 - 21.0 mg124hrs. Asparagine and hydroxy-proline had a range of 0.10 - 5.00 mg/24hrs, while serine and arginine ranged between 31.0 - 50.0 mg124hrs. Isoleucine and serine were not detected in elderly vegetarians while histidine, glycine, glutamic acid and hydroxy-proline were not detected in elderly non-vegetarians.
    [Show full text]
  • Remarks on Brassica
    International Journal of AgriScience Vol. 3(6): 453-480, June 2013 www.inacj.com ISSN: 2228-6322© International Academic Journals The wild and the grown – remarks on Brassica Hammer K.¹*, Gladis Th.¹ , Laghetti G.² , Pignone D.² ¹Former Institute of Crop Science, University of Kassel, Witzenhausen, Germany. * Author for correspondence (email: [email protected]) ²CNR – Institute of Plant Genetics, Bari, Italy. Received mmmm yyyy; accepted in revised form mmmmm yyyy ABSTRACT Brassica is a genus of the Cruciferae (Brassicaceae). The wild races are concentrated in the Mediterranean area with one species in CE Africa (Brassica somaliensis Hedge et A. Miller) and several weedy races reaching E Asia. Amphidiploid evolution is characteristic for the genus. The diploid species Brassica nigra (L.) Koch (n = 8), Brassica rapa L. emend. Metzg. (n = 10, syn.: B. campestris L.) and Brassica oleracea L. (n = 9) all show a rich variation under domestication. From the naturally occurring amphidiploids Brassica juncea (L.) Czern. (n = 18), Brassica napus L. emend. Metzg. (n = 19) and the rare Brassica carinata A. Braun (n = 17) also some vegetable races have developed. The man-made Brassica ×harmsiana O.E. Schulz (Brassica oleracea × Brassica rapa, n = 29, n = 39), or similar hybrids, serve also for the development of new vegetables. Brassica tournefortii Gouan (n = 10) from another Brassica- cytodeme, different from the Brassica rapa group, is occasionally grown as a vegetable in India. Brassica has developed two hotspots under cultivation, in the Mediterranean area and in E Asia. Cultivation by man has changed the different Brassica species in a characteristic way. The large amount of morphologic variation, which exceeded in many cases variations occurring in distinct wild species, has been observed by the classical botanists by adding these variations to their natural species by using Greek letters.
    [Show full text]
  • Characterization and Bioavailability of Alfalfa Leaf Protein Concentrate. Sirous Kashefi Louisiana State University and Agricultural & Mechanical College
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1982 Characterization and Bioavailability of Alfalfa Leaf Protein Concentrate. Sirous Kashefi Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Kashefi, Sirous, "Characterization and Bioavailability of Alfalfa Leaf Protein Concentrate." (1982). LSU Historical Dissertations and Theses. 3810. https://digitalcommons.lsu.edu/gradschool_disstheses/3810 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1.The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)” . If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed.
    [Show full text]
  • Limiting Order of Amino Acid in Alfalfa Leaf Protein Concentrate (ALPC) for Growing Pigs
    Kansas Agricultural Experiment Station Research Reports Volume 0 Issue 10 Swine Day (1968-2014) Article 226 1980 Limiting order of amino acid in Alfalfa Leaf Protein Concentrate (ALPC) for growing pigs A Hsu G L. Allee Follow this and additional works at: https://newprairiepress.org/kaesrr Part of the Other Animal Sciences Commons Recommended Citation Hsu, A and Allee, G L. (1980) "Limiting order of amino acid in Alfalfa Leaf Protein Concentrate (ALPC) for growing pigs," Kansas Agricultural Experiment Station Research Reports: Vol. 0: Iss. 10. https://doi.org/ 10.4148/2378-5977.6066 This report is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Kansas Agricultural Experiment Station Research Reports by an authorized administrator of New Prairie Press. Copyright 1980 Kansas State University Agricultural Experiment Station and Cooperative Extension Service. Contents of this publication may be freely reproduced for educational purposes. All other rights reserved. Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned. K-State Research and Extension is an equal opportunity provider and employer. Limiting order of amino acid in Alfalfa Leaf Protein Concentrate (ALPC) for growing pigs Abstract Seventy-two crossbred pigs averaging 23.5 lb initially and 12 crossbred barrows averaging 31.5 lb initially were used to study the limiting order of amino acids in ALPC for growing pigs in a feeding trial and a nitrogen balance trial. The basal diet contained 20% ALPC, as the amino acids source, and dextrose, as the energy source.
    [Show full text]
  • Brassica Spp.) – 151
    II.3. BRASSICA CROPS (BRASSICA SPP.) – 151 Chapter 3. Brassica crops (Brassica spp.) This chapter deals with the biology of Brassica species which comprise oilseed rape, turnip rape, mustards, cabbages and other oilseed crops. The chapter contains information for use during the risk/safety regulatory assessment of genetically engineered varieties intended to be grown in the environment (biosafety). It includes elements of taxonomy for a range of Brassica species, their centres of origin and distribution, reproductive biology, genetics, hybridisation and introgression, crop production, interactions with other organisms, pests and pathogens, breeding methods and biotechnological developments, and an annex on common pathogens and pests. The OECD gratefully acknowledges the contribution of Dr. R.K. Downey (Canada), the primary author, without whom this chapter could not have been written. The chapter was prepared by the OECD Working Group on the Harmonisation of Regulatory Oversight in Biotechnology, with Canada as the lead country. It updates and completes the original publication on the biology of Brassica napus issued in 1997, and was initially issued in December 2012. Data from USDA Foreign Agricultural Service and FAOSTAT have been updated. SAFETY ASSESSMENT OF TRANSGENIC ORGANISMS: OECD CONSENSUS DOCUMENTS, VOLUME 5 © OECD 2016 152 – II.3. BRASSICA CROPS (BRASSICA SPP.) Introduction The plants within the family Brassicaceae constitute one of the world’s most economically important plant groups. They range from noxious weeds to leaf and root vegetables to oilseed and condiment crops. The cole vegetables are perhaps the best known group. Indeed, the Brassica vegetables are a dietary staple in every part of the world with the possible exception of the tropics.
    [Show full text]
  • Effect of Moringa Oleifera Leaf Protein Concentrate Supplemented Feed on Growth and Nutritional Parameters in Broilers
    World Applied Sciences Journal 32 (1): 133-138, 2014 ISSN 1818-4952 © IDOSI Publications, 2014 DOI: 10.5829/idosi.wasj.2014.32.01.84302 Effect of Moringa oleifera Leaf Protein Concentrate Supplemented Feed on Growth and Nutritional Parameters in Broilers 1I.N. Okafor, 1,2F.C. Ezebuo and 3N.T. Azodo 1Department of Biochemistry, Faculty of Natural Science, Anambra State University, P.M.B. 02, Uli, Nigeria 2Department of Biochemistry, Faculty of Biological Science, University of Nigeria, Nsukka, Nigeria 3National Root Crop Research Institute, Umudike, Abia State, Nigeria Abstract: The effect of moringa oleifera leaf protein concentrate MLPC supplemented feed on nutritional parameters and growth performance of broiler chicks was investigated. MLPC was prepared by a standardized method and was used to formulate a diet which contained a 20% replacement level of MLPC for soy bean meal. A control diet was prepared as well. Fifty (Sayed type) chicks were feed for four weeks with “Top” commercial feed after which they were starved for twelve hours. Forty of them each weighing 500 g were selected and shared into two dietary treatment groups (test and control groups). Each group contained four replicates of five chicks each. Daily records of feed intake and weekly records of weight gain were taken (and later used to calculate protein efficiency ratio (PER).Dried Feacal samples were weighed. The nitrogen contents of feed and feacal samples were determined. Result of analysis showed that the weekly feed intake for the control and test groups were not significantly (p < 0.05) different (1220±2.20 g and 1237.5±1.50 g respectively).
    [Show full text]