Abrupt and Gradual Extinction Among Late Permian Land

Total Page:16

File Type:pdf, Size:1020Kb

Abrupt and Gradual Extinction Among Late Permian Land R EPORTS synergistic combination of these (6), among Abrupt and Gradual Extinction Among others. An important test of any mechanism is a consideration of the pattern of extinc- Late Permian Land Vertebrates in the tions. The marine extinctions are well de- scribed in several areas, notably Meishan, China (7). Here, we report new chemostrati- Karoo Basin, South Africa graphic, biostratigraphic, and magnetostrati- Peter D. W ard,1* Jennifer Botha,3 Roger Buick,2 graphic data from multiple stratigraphic Michiel O. De Kock,5 Douglas H. Erwin,6 Geoffrey H. Garrison,2 sections located in the K aroo basin of South Africa that provide an exceptionally detailed Joseph L. Kirschvink,4 Roger Smith3 record of the terrestrial extinctions. The Karoo basin of South Africa exposes a succession of Upper Permian to Permian-Triassic (P-T) strata in the central Lower Triassic terrestrial strata containing abundant terrestrial vertebrate K aroo basin provide the most intensively fossils. Paleomagnetic/magnetostratigraphic and carbon-isotope data allow investigated record of vertebrate fossils from sections to be correlated across the basin. With this stratigraphy, the verte- 1Department of Biology, 2Department of Earth and brate fossil data show a gradual extinction in the Upper Permian punctuated Space Sciences, University of Washington, Seattle, by an enhanced extinction pulse at the Permian-Triassic boundary interval, WA 98195, USA. 3Karoo Paleontology, Iziko: South 4 particularly among the dicynodont therapsids, coinciding with negative African Museum, Cape Town, South Africa. Division of Geological and Planetary Sciences, California carbon-isotope anomalies. Institute of Technology, Pasadena, CA 91125, USA. 5Department of Geology, Rand Afrikaans University, Johannesburg, South Africa. 6Department of Paleo- The Permian extinction is universally por- ses include climate change due to increased biology, MRC-121 Smithsonian Institution, Washing- trayed as the most catastrophic of all atmospheric CO2 and/or CH4 (2), the effects ton, DC 20013, USA. Phanerozoic mass extinctions (1), yet its of extraterrestrial impact (3–5), the effects of *To whom correspondence should be addressed. cause remains problematic. V arious hypothe- the eruption of the Siberian Traps, and some E-mail: [email protected] www.sciencemag.org SCIENCE VOL 307 4 FEBRUARY 2005 709 R EPORTS the Upper Permian through the Triassic (8). identified a reversed polarity magnetozone Arctic. Although there is some uncertainty These strata are dominantly fluvial overbank (R1) È5 m beneath the Unit I-II contact about the reversal pattern near the P-T sediments deposited near the center of a (14). At Lootsberg and Wapadsberg, the boundary (16), recent records in Europe subsiding retroarc foreland basin (9). We have normal-polarity zone extends well up into suggest that the boundary occurs just above sampled across 200 m of the Palingkloof the Katberg Formation (Unit IV). At Loots- the base of a reversed-to-normal-polarity Member of the Balfour Formation and the berg, where the youngest strata were transition in Germany, although there has overlying Katberg Formation, where we sampled of all the sections, there is a change been a recent report placing it slightly lower, recognize four units spanning the Upper to reversed polarity (R2) above about 130 m in the uppermost part of the reversed chron Permian and Lower Triassic (10). Fossils and a final switch back to normal (N2) at the (17). The base of Unit II is thus approxi- were collected from these strata at five top. Given paleontological constraints (8), mately coincident with the P-T boundary. different areas. Hence, correlating the sec- we correlate the long normal found in Units These correlations were tested by mea- 13 tions, which is difficult between fluvial II, III, and most of IV with magnetozone suring sedimentary carbon isotope (d Ccarb 13 sections and has been notably problematic in SN1 of the classic German Trias sections and d Corg) stratigraphy at all the sections at the Karoo (11), is critical. (15) and thus define the top and bottom of meter or submeter sampling frequency (12) To correlate the stratigraphy, we obtained the Griesbachian stage in the Karoo. The (Fig. 2), a finer resolution than has been a magnetostratigraphic record (Fig. 1) (12) superjacent reversal at Lootsberg Pass is done before (18). This earlier P-T isotope from three sections Esome data are also in most parsimoniously correlated with magne- study in the Karoo found a single negative ^ 13 (13) . Samples from Unit II and Unit III are tozone SR1 of central Germany, R2 of the d Ccarb excursion approximately coincident all of normal polarity (Chron N1), and we Southern Alps, and GR1 of the Canadian with the last occurrence of the latest Permian Fig. 1. Magnetostratigraphic correlation across the Karoo basin. The dashed lines represent the correlated positions between the stratigraphic sections. 710 4 FEBRUARY 2005 VOL 307 SCIENCE www.sciencemag.org R EPORTS zonal index fossil Dicynodon. The global d13C ues maintain a broad minimum in Unit II, a of these sections are extensively intruded by 13 record for the P-T boundary period is known pattern similar to global marine d Ccarb re- Mesozoic dolerite dikes and sills. We suggest in varying detail from several dozen marine cords. The lowermost negative excursion in that this igneous activity has homogenized the 13 13 and fewer nonmarine sites (e.g., 19, 20). In- d Ccarb observed in the Karoo most parsi- primary d Corg record at these two sections. tensively sampled sections show a gradual moniously correlates with the singular, lower Fossil vertebrate biostratigraphy confirms 13 12 13 decline in the sedimentary C: Cratio Griesbachian negative d Ccarb excursion that Unit II is essentially contemporaneous upward through the Upper Permian, then a reported recently from a Late Permian–Late across the Karoo basin. At all sections, the sudden decline of 92° at or near the pa- Triassic carbonate platform in the Nanpan- highest occurrence of the uppermost Permian leontologically defined extinction boundary, jiang Basin, Guizhou Province, China (22). zonal index, Dicynodon lacerticeps, is found 13 13 followed by a gradual increase in d C. The Furthermore, the broad swings in d Ccarb either immediately below (at the fossiliferous sudden d13C decline precedes the formal P-T values that were measured higher in the Karoo Lootsberg, Wapadsberg, and Bethulie sections) boundary based on the first occurrence of the sections (Fig. 2) appear to be consistent with or at most several meters below the base of 13 Triassic conodont Hindeodus parvus at the Smithian and Spathian age d Ccarb excur- Unit II (at the fossil-poor Carlton Heights 13 global stratotype section and point (GSSP) sions in the same marine d Ccarb record. and Kommandodrift Dam sections). Dicynodon P-T stratotype in Meishan, China, where the The bulk sedimentary organic carbon lacerticeps was never found in or above Unit 13 boundary has been placed at Bed 27. At isotope records (d Corg) from the Carlton II, and the first Triassic fossil common to all Meishan, the lowest d13C values are found in Heights and Lootsberg sections provide fur- sections—Lystrosaurus sp. C—was found in Bed 25 (7), coincident with the level of ther support for these conclusions (Fig. 2). The the lower strata of Unit III but never in Unit II. maximal species disappearance (94% loss of data also supports the magnetostratigraphic In summary, three independent correlation then-extant marine invertebrates). Thus, the correlation of Unit II between the northern methods support our contention that Unit II is mass extinction and sharp negative excursion (Carlton Heights and Bethulie regions) and both essentially isochronous across the Karoo in d13C are slightly older than the formal southern (Lootsberg and Wapadsberg re- basin and also time equivalent with the P-T stratigraphic boundary. gions) parts of the basin. At the Carlton boundary in China. This allows us to use this 13 We sampled both bulk sediment and Heights and Lootsberg sections, d Corg de- unit as a datum surface against which our carbonate paleosol nodules for carbon iso- creases from È –24° Vienna Pee Dee vertebrate range taxa can be plotted and to tope stratigraphy from our measured sec- belemnite (VPDB) to È –26° VPDB across compare the patterns of extinction with those 13 13 tions. Soil carbonate d C(d Ccarb)isa the uppermost meter of Unit I and remains observed at other P-T sections. function of both the d13C of atmospheric there through Unit II and into Unit III. Over a period of 7 years, we collected 13 13 CO2 (d CCO2) and the partial pressure of Between 15 m and 22 m (Unit III), d Corg 126 skulls assigned to 21 vertebrate taxa È ° CO2 in the atmosphere (pCO2), and thus soil increases in both sections to –21 and from the sections shown here (reptile or 13 È ° d Ccarb records can be more scattered than then decreases 1 at the base of Unit IV. amphibian) (Fig. 3) (23). We treat these taxa 13 13 marine d Ccarb records (21). Nevertheless, This pattern is typical of P-T d C records as species, although further study will prob- 13 the d Ccarb results show a prominent drop measured elsewhere in the world. The ably result in an even greater number of taxa. 13 within Unit I that is consistent with our Wapadsberg and Bethulie d Corg records do We found 13 taxa in Unit I (Upper Permian), assessment that Unit I/Unit II contact marks not show any substantial negative excursions, only 4 of which persist into Unit II, and 12 13 the P-T extinction (Fig. 2). The d Ccarb val- particularly not at the P-T boundary, but both taxa in Units II to IV. Six of the 13 taxa 13 13 Fig.
Recommended publications
  • University of Birmingham Endocranial Anatomy
    University of Birmingham Endocranial anatomy and life habits of the Early Triassic archosauriform Proterosuchus fergusi Brown, Emily; Butler, Richard; Ezcurra, Martin; Bhullar, Bhart-Anjan; Lautenschlager, Stephan DOI: 10.1111/pala.12454 License: Other (please specify with Rights Statement) Document Version Peer reviewed version Citation for published version (Harvard): Brown, E, Butler, R, Ezcurra, M, Bhullar, B-A & Lautenschlager, S 2020, 'Endocranial anatomy and life habits of the Early Triassic archosauriform Proterosuchus fergusi', Palaeontology, vol. 63, no. 2, pp. 255-282. https://doi.org/10.1111/pala.12454 Link to publication on Research at Birmingham portal Publisher Rights Statement: This is the peer reviewed version of the following article: Brown, E. E., Butler, R. J., Ezcurra, M. D., Bhullar, B. S. and Lautenschlager, S. (2019), Endocranial anatomy and life habits of the Early Triassic archosauriform Proterosuchus fergusi. Palaeontology, which has been published in final form at https://doi.org/10.1111/pala.12454. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
    [Show full text]
  • 8. Archosaur Phylogeny and the Relationships of the Crocodylia
    8. Archosaur phylogeny and the relationships of the Crocodylia MICHAEL J. BENTON Department of Geology, The Queen's University of Belfast, Belfast, UK JAMES M. CLARK* Department of Anatomy, University of Chicago, Chicago, Illinois, USA Abstract The Archosauria include the living crocodilians and birds, as well as the fossil dinosaurs, pterosaurs, and basal 'thecodontians'. Cladograms of the basal archosaurs and of the crocodylomorphs are given in this paper. There are three primitive archosaur groups, the Proterosuchidae, the Erythrosuchidae, and the Proterochampsidae, which fall outside the crown-group (crocodilian line plus bird line), and these have been defined as plesions to a restricted Archosauria by Gauthier. The Early Triassic Euparkeria may also fall outside this crown-group, or it may lie on the bird line. The crown-group of archosaurs divides into the Ornithosuchia (the 'bird line': Orn- ithosuchidae, Lagosuchidae, Pterosauria, Dinosauria) and the Croco- dylotarsi nov. (the 'crocodilian line': Phytosauridae, Crocodylo- morpha, Stagonolepididae, Rauisuchidae, and Poposauridae). The latter three families may form a clade (Pseudosuchia s.str.), or the Poposauridae may pair off with Crocodylomorpha. The Crocodylomorpha includes all crocodilians, as well as crocodi- lian-like Triassic and Jurassic terrestrial forms. The Crocodyliformes include the traditional 'Protosuchia', 'Mesosuchia', and Eusuchia, and they are defined by a large number of synapomorphies, particularly of the braincase and occipital regions. The 'protosuchians' (mainly Early *Present address: Department of Zoology, Storer Hall, University of California, Davis, Cali- fornia, USA. The Phylogeny and Classification of the Tetrapods, Volume 1: Amphibians, Reptiles, Birds (ed. M.J. Benton), Systematics Association Special Volume 35A . pp. 295-338. Clarendon Press, Oxford, 1988.
    [Show full text]
  • Clippety Clop), Kwelera, East London, Great Kei Municipality, Eastern Cape
    PALAEONTOLOGICAL ASSESSMENT: COMBINED FIELD ASSESSMENT AND DESKTOP STUDY Proposed development of Portion 3 of Farm 695 (Clippety Clop), Kwelera, East London, Great Kei Municipality, Eastern Cape. JOHN E. ALMOND (PhD, Cantab) Natura Viva cc, PO Box 12410 Mill Street, CAPE TOWN 8010, RSA. [email protected] October 2011 1. SUMMARY The proposed holiday housing development on Portion 3 of Farm 695 (Clippety Clop), Kwelera, East London, is situated on the northern banks of the tidal Kwelera River, some 20 km northeast of East London, Eastern Cape. The development footprint is largely underlain by Late Permian continental sediments of the Adelaide Subgroup (Lower Beaufort Group, c. 253-251 million years old). These rocks are overlain by Early Triassic sandstones of the Katberg Formation (Tarkastad Subgroup) that build the cliffs and higher ground to the northeast. South of the river the Beaufort Group sediments are intruded and baked by Early Jurassic igneous intrusions of the Karoo Dolerite Suite. The Balfour Formation fluvial sediments are potentially fossiliferous, having yielded elsewhere a wide range of terrestrial vertebrates (bones and teeth of pareiasaurs, therapsids, amphibians et al.), bivalves, trace fossils and vascular plants. The overall impact of this project on local palaeontological heritage is likely to be very minor, however, because the potentially fossiliferous Beaufort Group sediments here are (a) deeply weathered, (b) sparsely fossiliferous, (c) have probably been extensively baked by nearby dolerite intrusions, and (d) are mostly covered with a thick (> 3m) mantle of fossil-poor alluvium. No fossils were observed within good exposures of the Balfour Formation rocks at the coast and in excellent roadcuts inland.
    [Show full text]
  • Umsobomvu Wind Energy Facility Near Middelburg, Pixley Ka Seme & Chris Hani District Municipalities, Northern and Eastern Ca
    1 Palaeontological specialist assessment: combined desktop and field-based study Umsobomvu Wind Energy Facility near Middelburg, Pixley ka Seme & Chris Hani District Municipalities, Northern and Eastern Cape John E. Almond PhD (Cantab.) Natura Viva cc, PO Box 12410 Mill Street, Cape Town 8010, RSA [email protected] April 2015 EXECUTIVE SUMMARY InnoWind (Pty) Ltd is proposing to develop a wind energy facility (WEF) of up to 140 MW generation capacity in the mountainous Agter-Renosterberg region of the eastern Karoo, situated some 25 km to the northwest of Middelburg, on the border between the Northern Cape and Eastern Cape Provinces. Land parcels concerned in the proposed WEF total over 18 200 hectares and include 60/1, 133/RE, 133/1, 133/3, 61/0, 61/2, 61/4, 61/6, 135/1, 135/RE, 3/RE, 3/2, 3/3, 3/4, 3/7, 3/8, 120/RE and 136/RE, falling under the Pixley ka Seme & Chris Hani District Municipalities. The electrical energy generated by the WEF will be fed directly into 400 kV power lines from a small on-site substation. The proposed Umsobomvu WEF study area is largely underlain by continental (fluvial, lacustrine) sediments of the Beaufort Group (Karoo Supergroup). These include (1) latest Permian to earliest Triassic rocks forming the uppermost portion of the Adelaide Subgroup (equivalents of the Balfour Formation of the eastern Main Karoo Basin) that crop out in low-lying, hilly terrain around the periphery of the Klein-Renosterberg massif, as well as (2) Early Triassic sediments of the Katberg Formation (Tarkastad Group) that build the Klein-Renosterberg escarpment and large parts of the upland plateau.
    [Show full text]
  • Early Triassic
    www.nature.com/scientificreports OPEN A new specimen of Prolacerta broomi from the lower Fremouw Formation (Early Triassic) of Received: 12 June 2018 Accepted: 21 November 2018 Antarctica, its biogeographical Published: xx xx xxxx implications and a taxonomic revision Stephan N. F. Spiekman Prolacerta broomi is an Early Triassic archosauromorph of particular importance to the early evolution of archosaurs. It is well known from many specimens from South Africa and a few relatively small specimens from Antarctica. Here, a new articulated specimen from the Fremouw Formation of Antarctica is described in detail. It represents the largest specimen of Prolacerta described to date with a nearly fully articulated and complete postcranium in addition to four skull elements. The study of this specimen and the re-evaluation of other Prolacerta specimens from both Antarctica and South Africa reveal several important new insights into its morphology, most notably regarding the premaxilla, manus, and pelvic girdle. Although well-preserved skull material from Antarctica is still lacking for Prolacerta, a detailed comparison of Prolacerta specimens from Antarctica and South Africa corroborates previous fndings that there are no characters clearly distinguishing the specimens from these diferent regions and therefore the Antarctic material is assigned to Prolacerta broomi. The biogeographical implications of these new fndings are discussed. Finally, some osteological characters for Prolacerta are revised and an updated diagnosis and phylogenetic analysis are provided. Prolacerta broomi is a medium sized non-archosauriform archosauromorph with a generalized, “lizard-like” body type. Many specimens, mostly consisting of cranial remains, have been described and Prolacerta is considered one of the best represented early archosauromorphs1–3.
    [Show full text]
  • The Tarsus of Erythrosuid Archosaurs, and Implications for Early Diapsid
    Zoological Journal of the Linnean Society (1996), 116: 347–375. With 11 figures The tarsus of erythrosuchid archosaurs, and implications for early diapsid phylogeny DAVID J. GOWER Department of Geology, University of Bristol, Wills Memorial Building, Queens Road, Bristol, BS8 1RJ, UK and Institut und Museum f¨ur Geologie und Pal¨aontologie, Universit¨at T¨ubingen, Sigwartstrasse 10, D-72076 T¨ubingen, Germany Received September 1994, accepted for publication February 1995 The morphology of the erythrosuchid ankle joint is reassessed. Two specimens, recently thought to have been incorrectly referred to Erythrosuchus africanus, are shown without doubt to belong to this taxon. Furthermore, the morphology is essentially similar to that of other early archosaurs. The tarsus of Erythrosuchus is poorly ossified and consists of a calcaneum, astragalus, and two distal tarsals. The calcanea of Erythrosuchus, Vjushkovia triplicostata, and Shansisuchus shansisuchus are all similar in being dorsoventrally compressed, possessing a lateral tuber, and lacking a perforating foramen. The astragalus of V. triplicostata is currently unknown. The astragalus of Shansisuchus is apparently unique in form. The erythrosuchid pes is therefore more derived than has been recently proposed. The tarsal morphology of several other archosauromorph taxa is reviewed and many details are found to be at variance with the literature. The plesiomorphic condition for the Archosauromorpha consists of four distal tarsals and a proximal row of three elements; two of which articulate with the tibia. These proximal elements are interpreted as the astragalus, calcaneum, and a centrale, and the same pattern is retained in the earliest archosaurs. This reassessed tarsal morphology has implications for the homology of the centrale and reconstruction of early diapsid phylogeny.
    [Show full text]
  • Archosauria Crown-Clade Archosauria Ornithodira
    Pterosauria Dinosauria Crocodylomorpha “Rauisuchia” Ornithosuchidae Ornithodira Crurotarsi Basal archosaurs Crown-clade Archosauria Archosauria Tanystropheus Prolacertiform Basal archosaur? Maybe... or it split off before archosauria prolacertiform? Archosauria Archosauromorpha Archosauria: synapomorphies Antorbital fenestra (in front of eye) Teeth with serrated margins Mandibular fenestra Proterosuchus Basal Archosaur Faculatative biped vs. Obligate biped Euparkeria (Facultative biped) Derived, Basal Archosaur Bony dermal plates down back Stances: sprawling <=> semi-erect <=> erect aquatic <=> terrestrial Locomotion (Pelvis) Rauisuchians -Pillar-Erect Posture Buttress-Erect Ornithodirans Mammals Locomotion: Pelvic/Hind leg conditions: Buttress-Erect Pillar-Erect Crocodylomorpha “Rauisuchia” Ornithosuchidae Ornithodira Crurotarsi Buttress-Erect Crown-clade Archosauria Basal archosaurs Archosauria Barrel-like articulation Constrained ‘twisting’ motion to the plane parallel with its body Digitigrade vs. Plantigrade PM: Primitive Metatarsal CN: Crocodyle Normal Hinge Crocodylomorphs/Rauisuchians calcaneum astragalus CR: Crocodyle Reversed Ornithosuchids Rotation Rotation AM: Advanced Mesotarsal Pterosaurs, Dinosaurs Hinge Proterosuchus The importance of a twisting ankle for animals with sprawling-erect posture The importance of a twisting ankle for animals with sprawling-erect posture Buttress-erect* Rotation Pillar-Erect Buttress-erect Rotation Hinge Buttress-erect Rotation Crocodylomorpha “Rauisuchia” Ornithosuchidae Ornithodira Crurotarsi
    [Show full text]
  • Early Archosauromorph Remains from the Permo-Triassic Buena Vista Formation of North-Eastern Uruguay
    Early archosauromorph remains from the Permo-Triassic Buena Vista Formation of north-eastern Uruguay Mart´ın D. Ezcurra1, Pablo Velozo2, Melitta Meneghel3 and Graciela Pineiro˜ 2 1 School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK 2 Departamento de Evolucion´ de Cuencas, Facultad de Ciencias, Igua,´ Montevideo, Uruguay 3 Laboratorio de Sistematica´ e Historia Natural de Vertebrados, Facultad de Ciencias, Igua,´ Montevideo, Uruguay ABSTRACT The Permo-Triassic archosauromorph record is crucial to understand the impact of the Permo-Triassic mass extinction on the early evolution of the group and its subsequent dominance in Mesozoic terrestrial ecosystems. However, the Permo- Triassic archosauromorph record is still very poor in most continents and hampers the identification of global macroevolutionary patterns. Here we describe cranial and postcranial bones from the Permo-Triassic Buena Vista Formation of northeast- ern Uruguay that contribute to increase the meagre early archosauromorph record from South America. A basioccipital fused to both partial exoccipitals and three cervical vertebrae are assigned to Archosauromorpha based on apomorphies or a unique combination of characters. The archosauromorph remains of the Buena Vista Formation probably represent a multi-taxonomic assemblage composed of non-archosauriform archosauromorphs and a ‘proterosuchid-grade’ animal. This assemblage does not contribute in the discussion of a Late Permian or Early Triassic age for the Buena Vista Formation, but reinforces the broad palaeobiogeographic distribution of ‘proterosuchid grade’ diapsids in Permo-Triassic beds worldwide. Submitted 9 December 2014 Accepted 28 January 2015 Published 19 February 2015 Subjects Biogeography, Evolutionary Studies, Paleontology, Taxonomy, Zoology Keywords Corresponding author Diapsida, Archosauromorpha, Permian, Proterosuchidae, Extinction, South America, Mart´ın D.
    [Show full text]
  • 46 John E. Almond (2015) Natura Viva Cc Fig. 57. Distribution of Recorded
    46 Fig. 57. Distribution of recorded fossil vertebrate localities within the Beaufort Group (Main Karoo Basin) showing the concentration of sites to the northwest of Middelburg, Eastern Cape (yellow circle) (Map abstracted from Nicolas 2007). 3.1. Fossils within the uppermost Adelaide Subgroup Adelaide Subgroup sediments close to the Katberg sandstone lower contact can be correlated with the Balfour Formation recognised elsewhere in the eastern portion of the Main Karoo Basin, the greater part of is characterised by Late Permian fossil biotas of the Dicynodon Assemblage Zone (Fig. 8). This biozone has been assigned to the Changhsingian Stage (= Late Tartarian) right at the end of the Permian Period, with an approximate age range of 253.8-251.4 million years (Rubidge 1995, 2005). Good accounts, with detailed faunal lists, of the fossil biotas of the Dicynodon Assemblage Zone have been given by Kitching (in Rubidge 1995) and by Cole et al. (2004). See also the reviews by Cluver (1978), MacRae (1999), McCarthy & Rubidge (2005), Almond et al. (2008) and Smith et al. (2012) as well as recent papers on Permo-Triassic boundary tetrapod faunas of the Main Karoo Basin by Smith and Botha (2005) as well as Botha and Smith (2006, 2007). In general, the following broad categories of fossils might be expected within the Balfour Formation near Middelburg: isolated petrified bones as well as articulated skeletons of terrestrial vertebrates such as true reptiles (notably large pareiasaurs, small millerettids) and therapsids (diverse dicynodonts such as Dicynodon and the much smaller Diictodon, gorgonopsians, therocephalians such as Theriognathus, primitive cynodonts like Procynosuchus, and biarmosuchians) (Fig.
    [Show full text]
  • 1 the Proposed Relocation of Dwellers at Ingula Pumped Storage
    The Proposed Relocation of Dwellers at Ingula Pumped Storage Scheme Phumelela and Maluti A - Phofung Local Municipalities, Thabo Mofutsanyana District Municipality, Free State Province Farm: Wilge Rivier 319 Palaeontological Impact Assessment: Phase 1: Field Study Tsimba Archaeological Footprints 24 Lawson Mansions, 74 Loveday Street, Johannesburg, 2000 Tel: 061 912 5118 2020/11/30 Ref: Pending Regisaurus (ESI) (H. Fourie) B. Executive summary Outline of the development project: Tsimba Archaeological Footprints (Pty) Ltd has been appointed by Myezo Environmental Management Services to undertake a Palaeontological Impact Assessment (PIA), Desktop Study 1 of the suitability of The Proposed Relocation of Dwellers at Ingula Pumped Storage Scheme, Phumelela and Maluti A - Phofung Local Municipalities, Thabo Mofutsanyana District Municipality, Free State Province on the Farm: Wilge Rivier 319. The applicant, Eskom Holdings SOC Limited (Eskom) intends to embark on a relocation programme for six families at Ingula Pumped Storage Scheme, within the Ingula Nature Reserve. It was decided to relocate the remaining six families to the Farm Wilge Rivier 319. The Project includes one locality Option (see map): Option 1: An area outlined in red located about 23 km north east of Van Reenen, approximately 10 km north of the Ingula Pumped Storage Scheme, and about 42 km north-east-east of Harrismith. The approximate size of the site is X hectares. The National Heritage Resources Act (Act No. 25 of 1999) (NHRA) requires that all heritage resources, that is, all places or objects of aesthetic, architectural, historical, scientific, social, spiritual, linguistic or technological value or significance are protected. The Republic of South Africa (RSA) has a remarkably rich fossil record that stretches back in time for some 3.5 billion years and must be protected for its scientific value.
    [Show full text]
  • Barendskraal, a Diverse Amniote Locality from the Lystrosaurus Assemblage Zone, Early Triassic of South Africa
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Wits Institutional Repository on DSPACE Barendskraal, a diverse amniote locality from the Lystrosaurus Assemblage Zone, Early Triassic of South Africa Ross Damiani1*, Johann Neveling2, Sean Modesto3 & Adam Yates1 1Bernard Price Institute for Palaeontological Research, School of Geosciences, University of the Witwatersrand, Private Bag 3, WITS, 2050 South Africa 2Council for Geoscience, Private Bag X112, Pretoria, 0001 South Africa 3Section of Vertebrate Paleontology, Carnegie Museum of Natural History, 4400 Forbes Avenue, Pittsburgh, Pennsylvania 15213, U.S.A. Received 11 April 2003. Accepted 10 September 2003 A diverse amniote fauna has been recovered from Lower Triassic Lystrosaurus Assemblage Zone exposures on the farm Barendskraal, near Middelburg in Eastern Cape Province, South Africa. The fauna includes the dicynodont therapsid Lystrosaurus sp., the therocephalian therapsids Tetracynodon darti, Moschorhinus kitchingi and Ericiolacerta parva, the archosauromorph reptiles Proterosuchus fergusi and Prolacerta broomi, and the procolophonoid reptiles Owenetta kitchingorum, Sauropareion anoplus and Saurodectes rogersorum. The locality is remarkable in that although it is fossil-rich, Lystrosaurus fossils do not appear to be as abundant as elsewhere in this assem- blage zone, and the diversity of taxa at Barendskraal (at least nine species) is surpassed only by that of the famous Harrismith Common- age locality in the northeastern Free State province (at least 13 species). However, the fauna at Harrismith Commonage is typical of most other Lystrosaurus biozone localities in being dominated numerically by Lystrosaurus. Study of the tetrapod taxa from Barendskraal is providing new insights into procolophonoid phylogeny and survivorship across the Permo-Triassic boundary, as well as the stratigraphic ranges of various taxa in the Lower Triassic deposits of the Karoo Basin.
    [Show full text]
  • Palaeontological Society of Southern Africa 16Th Biennial Conference, University of Cape Town 5–8 September 2012 (An Index to Authors Is Given on Page 58)
    Palaeontological Society of Southern Africa 16th Biennial Conference, University of Cape Town 5–8 September 2012 (An index to authors is given on page 58) Basal therocephalian from the Middle Permian 2 Vancouver, British Columbia, Canada. Former postdoctoral fellow in the Zoology of South Africa: taxonomy and geographic and Department, University of Cape Town, Rondebosch, South Africa [email protected] temporal distribution We present a detailed study on variation of the dental Abdala, Fernando; Day, Michael; Rubidge, Bruce morphology and replacement in the Early Triassic Bernard Price Institute for Palaeontological Research, Palaeosciences Centre, cynodont Thrinaxodon liorhinus. For this study we analysed University of the Witwatersrand, East Campus, Private Bag 3, WITS 2050, Johannesburg, South Africa five specimens ranging from 37–87 mm in skull length [email protected] using micro computed tomography (microCT) scanning Important changes in amniote taxonomic representation techniques, which were supplemented by detailed ana- occurred during the Middle Permian, the most significant tomical analysis of 41 specimens with a basal skull length being an explosive emergence of therapsids. The Middle of 30–96 mm. Our results confirm the alternate replace- Permian tetrapod record of the South African Karoo ment of the postcanines and the posterior migration of the Supergroup has the oldest advanced theriodonts, includ- postcanine series (including the loss without replacement ing gorgonopsians and therocephalians. The oldest of the anteriormost postcanines). Even when most of the therocephalians are the largest members of this lineage observations point to a posterior-to-anterior replacement and clearly were top predators in the Middle Permian. wave, the evidence is not clear-cut.
    [Show full text]