Nevada South of the Fortieth Parallel and Adjacent Portions of California

Total Page:16

File Type:pdf, Size:1020Kb

Nevada South of the Fortieth Parallel and Adjacent Portions of California Bulletin No. 208 Series B, Descriptive Geology, 27 DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY CHARLES D. WALCOTT, DIKECTOK DESCRIPTIVE GEOLOGY OF NEVADA SOUTH OF THE FORTIETH PARALLEL AND ADJACENT PORTIONS OF CALIFORNIA BY JOSIAH EDWARD SPURR WASHINGTON GOVERNMENT PRINTING OFFICE 190.3 CONTENTS. Pago. Introduction. ............................^............................... 15 Explanation of formation names ---..---.-.....------_---.-..---..------- 18 Aubrey limestone and sandstone _..____..__..__._.------.____..------- 18 Chuar series ........................^................................. 18 Diamond Peak quartzite ._---___.__._------..-...--.-_...____.--..... 18 Esmeralda formation ............... ..--.--......--.--..........---.. 19 Eureka quartzite --__._...--._.._...__...._________.___.__.._._..__.___ 19 Grand Canyon group __._--__.__..___-..---. ...-------.-.---......... 19 Hamburg limestone and shale .^...................................... 19 Humboldt series.----..--...........:...-........-.--..-.-....-.--..- 20 Koipato formation..__._.----.__..___----._______.--_..._____'_--.___. 20 Lone Mountain limestone ....................'.....!.................. 20 Nevada limestone.. .^.^.............................................. 20 Ogden quartzite ..................................................... 20 Pogonip formation..................................................... 21 Prospect Mountain limestone and quartzite.........-....-......----.. 21 Red Wall limestone ................................................... 21 Secret Canyon shale:................................................. 22 Star Peak formation ................................................. 22 Tonto shale and sandstone ........................................... 22 Truckee formation. ......-.. ..................................._..... 22 Unkar formation ................................................^... 23 Wasatch limestone. -......----........--....... ..'.----........------- 23 Weber conglomerate.........-.......--..-.......-............------. 23 White Pine shale ..................................................... 23 Chapter I. Ranges of east-central Nevada. ...........-.............'.....'... 25 Snake Range ...-..--.....-.-..-......--.......""....-.-.-.......--..-.. 25 Topography...........'.......................................... 25 Archean rocks -.......--..-..........-........-..--.-.-..._....-.. 26 Sedimentary rocks ............................................... 27 Cambrian ................................................... 27 Silurian ...................................................... 30 Carboniferous ---,...-.-...-.-.--.-.---...---.-.-.-...--.-... 32 Mesozoic or Tertiary..................... ..............----. 33 Pliocene--.......-...........'.... .......................----. 34 Pleistocene ...._ ............................................. 34 Igneous rocks......................... ........................... 35 Lavas -.--.--....-.-..-.-.....---.----.-.----....-...--.-.-.- 35 Dike rocks......................... ........................... 35 Structure........................................................ 35 Folds......-..-......:.;.......................-.......-...... 35 Faults.-..-................................-...........--_-.. 35 Ores..-...-........-....--.......-.......--...-.-......-...--..-. 36 3 4 - CONTENTS. Chapter I. Ranges of east-central Nevada Continued. Page. Cedar Range and Clover Valley Mountains ..--......._............... 36 Antelope Range ....................'................................. 37 Sedimentary rocks---...-..--..---..----..--...-...-.....-----... 37 Igneous rocks... -.--_-.---_-..-_-_-----.-----__-_----._.----_--.-- 37 Structure.. .................................^........^.....'.....'. 38 SchellCreek and Highland ranges ........... .----.-.---.--.-...-...-..- 38 Sedimentary rocks ^.............-..^............................. 38 Cambrian ................................................... 38 Silurian .-----.._.-----.-..-. .--.--.--.-.---.-..--.----.--..- 42 Devonian...._............... .--..--....--.--.----.--'---.-... 43 Carboniferous ....'....--..-...--....... -_-_---_-----___-_---_ 43 Igneous rocks. -.-........-.--..--..--..'.---.--...-. .-..---......- 44 Lavas -..---.-...-....--- ._.-.------.---...-.-.-.....------.. 44 Dikes...-----.--___---------------------.------------_------- 44 Structure -__--._----..-.----------------------------------------. 44 Folding. ..........................,....^.................. ... - 44 Faulting.........:........ ................^................. 45 Egan Range......--.......,.--.-.-----.--.-...--------.-.----..-.... 47 Topography .............-..------.---..-.-..----.--....--...... - 47 Archean rocks -.........--..----..-.----.--....----...----..-.-.'- 47 Sedimentary rocks ---.--..--.-.---......-'--...-.------. ----.--....- 47 Cambrian .....'................1...................... ....... 47 Silurian ...................................................... 48 Devonian ---------- ...-._..----..---. .---..-....-- .-.----...- 49 Carboniferous .....-.'---.-------..-.. .'---.-----.---.--.--..- 51 Igneous rocks.-.-----.---.--------...---.--.------------.--.------ 52 Lavas ....-........-.---..-.---.--.---.----..:..----.- --.-.... 52 Dikes---..-----.------.-------.------------------------------ 53 Structure ....-----..--..-.---.--.---..-.-.---..----.-.-.-.--..--.. 53 Folding ..-........----...--.-..--..-----.-.---_-.--..-.-...- 53 Faulting ...........-------.-----.-.---...-----.--.--.-..--.- 54 Ores.----.---------------.--.------------ ------ ^----------------- 54. Long Valley Range ........-.... -.-.-.-.-.-... 1 --------------------- 54 Topography..................-.---.---.-...-...--.--.---.-....... 55 Sedimentary rocks .....-..........'.................................. 55 Carboniferous ...................... r .-...-.---.--..-..--.... 55 Igneous rocks............. ..---..--.--..----.----------------..- 56 Lavas _...... ..................................... ..^......... 56 Structure.....-.-.....----..------.------------------.-.------..- 56 Folding ............--..-..----------..------.-..- .---------.. 56 Golden Gate Range.. ............................'.............. ...... 57 Topography....-.....--_----.-.-.--....------.------.-----_-.--- 57 Sedimentary rocks ---------- .-.-------.--.-..-----..-.-.----.--.. 57 Silurian...-.-.....--..-.-.--.--.-------.------------.-----.- 57 Devonian. --------------------------------------------------- 58 Pleistocene ..........^........................................ 58 Igneous rocks. - --.--.---...----------- --------------------------- 58 Structure.------------------------------------------------------- 59 Folding ............-.------------------------------------.-. 59 Faulting _---..-_-_------------------------------------------ 59 Humboldt Range --.-.._--.----------.----.-----------------.-------- 59 Topography ...........-----.---------.-------.------------------ 59 Sedimentary rocks......---...----..--.-.------------.-----..---. 60 CONTENTS. 5 Chapter I. Ranges of east-central Nevada Continued. Page. Humboldt Range Continued. Igneous rocks.-.-----.-.--...---..---.._-_---._______.._____.__._.. 61 Structure....__-_--.-------..__--________.___________...______._.- 61 Folding ........................................................ 61 Faulting .................................................... 61 White Pine Range.....----.-.-......'...-...........----...-.-......- 61 Topography .................................^................... 62 Sedimentary rocks..-.. --....."... _..--..-...-.-.-.-....----.-...- 62 .Cambrian ................................................... 62 ' Silurian ..................................................... 63 Devonian.................................................... 63 Carboniferous ------.-...-.---.--------.-------.-----.......- 63 Rhyolite ash.--.-.-.----.-.....-.-....--.......--.--........-- 65 Igneous rocks .................................................... 65 Lava.... ...'..--........................ ....--..--'........... 65 G-ranite ...........-...-......-...--------.-.--..--.----...--. 65 Structure ................................... .-.------..........- 65 Folding ..................................................... 65 Faulting ..................................................... 66 Relation of topography to structure .--.._--.---_-..__-____._____. 67 Ores ...................................................._....... 68 Quinn Canyon and Grant ranges....-------....--...-._.-----........ 68 Topography..................................................... 68 Sedimentary rocks.....-....:....---......-..--..------.........-. 69 Cambrian..-----.-.-.-.._..--..............-...............- 69 Silurian.................................. ................... 69 Devonian _____.--.-..______.__._.______.____----__._________. 71 Carboniferous ............................................... 72 Pliocene-...-.----....-..-..--.-.---..........----.-.........- 72 Igneous rocks -.----.-.--..-.....----......----.--.-..-.--..--..-. 72 Rhyolite and granite.......................................... 72 Basaltic volcanics ........................................... 73 Quartz-latites -......--.---..------..--..-..-..--.-.-.-...--.. 73 Relative-age of lavas --......_.......-------'-----...----..._. 73 . Structure ......................................^..............i.. 73 Folding...........-.--.............--.--.--....---.........- 73 Faulting ......,..................:.....-........-...........
Recommended publications
  • Tectonic Influences on the Spatial and Temporal Evolution of the Walker Lane: an Incipient Transform Fault Along the Evolving Pacific – North American Plate Boundary
    Arizona Geological Society Digest 22 2008 Tectonic influences on the spatial and temporal evolution of the Walker Lane: An incipient transform fault along the evolving Pacific – North American plate boundary James E. Faulds and Christopher D. Henry Nevada Bureau of Mines and Geology, University of Nevada, Reno, Nevada, 89557, USA ABSTRACT Since ~30 Ma, western North America has been evolving from an Andean type mar- gin to a dextral transform boundary. Transform growth has been marked by retreat of magmatic arcs, gravitational collapse of orogenic highlands, and periodic inland steps of the San Andreas fault system. In the western Great Basin, a system of dextral faults, known as the Walker Lane (WL) in the north and eastern California shear zone (ECSZ) in the south, currently accommodates ~20% of the Pacific – North America dextral motion. In contrast to the continuous 1100-km-long San Andreas system, discontinuous dextral faults with relatively short lengths (<10-250 km) characterize the WL-ECSZ. Cumulative dextral displacement across the WL-ECSZ generally decreases northward from ≥60 km in southern and east-central California, to ~25 km in northwest Nevada, to negligible in northeast California. GPS geodetic strain rates average ~10 mm/yr across the WL-ECSZ in the western Great Basin but are much less in the eastern WL near Las Vegas (<2 mm/ yr) and along the northwest terminus in northeast California (~2.5 mm/yr). The spatial and temporal evolution of the WL-ECSZ is closely linked to major plate boundary events along the San Andreas fault system. For example, the early Miocene elimination of microplates along the southern California coast, southward steps in the Rivera triple junction at 19-16 Ma and 13 Ma, and an increase in relative plate motions ~12 Ma collectively induced the first major episode of deformation in the WL-ECSZ, which began ~13 Ma along the N60°W-trending Las Vegas Valley shear zone.
    [Show full text]
  • U.S. Department of the Interior Bureau of Land Management
    U.S. Department of the Interior Bureau of Land Management Final Environmental Assessment DOI-BLM-NV0S010-2009-1014-EA May 2016 Eastern Nevada Transmission Project APPLICANT Silver State Energy Association GENERAL LOCATION Clark County, Nevada BLM CASE FILE SERIAL NUMBER N-086357 PREPARING OFFICE U.S. Department of the Interior Bureau of Land Management Las Vegas Field Office 4701 N. Torrey Pines Drive Las Vegas, NV 89130 Phone: (702) 515-5172 Fax: (702) 515-5010 This page intentionally left blank. Table of Contents Chapter 1 - Purpose and Need ...................................................................................................1 1.1 Introduction ....................................................................................................................1 1.2 Project Background ........................................................................................................1 1.3 Purpose and Need for Action .........................................................................................2 1.4 Decisions to be Made .....................................................................................................7 1.5 BLM Policies, Plans, Authorizing Actions, and Permit Requirements .........................7 Chapter 2 - Proposed Action and Alternatives ........................................................................9 2.1 Introduction ....................................................................................................................9 2.1.1 Regulatory Framework for Alternatives
    [Show full text]
  • Stratigraphy and Structure of the Seaman Range and Fox Mountain, Lincoln and Nye Counties, Nevada
    Stratigraphy and Structure of the Seaman Range and Fox Mountain, Lincoln and Nye Counties, Nevada U.S. GEOLOGICAL SURVEY BULLETIN 1988-B I 1 r^Hr-~"r-^S »:-«>'°-;>-.'; '£ '. -"* °-"^^io-'oO;ol!i-..e>L ^? :^~ty-":- o\: s--b>^.'d- .? " ? o..bTvo-r» ?:.-!:.»:-. "o'.-o'-o .- *^-o?.°:.--o : : ° o£\*>: ^-°:* '.« - "o-o- .-o - ^-.o.*'. ^» ' - 1 .". '. O- ' "" "- "* -" no: ^--'*^-o.yvo:»-c)^ - *>- : p.-by :o.;--p-/.-'o."-',c>-( 0 = ?.o'VO -V "±« -* «?'.<?o-oi ^ .. «- .*».-:»: -* ^^»-^ Chapter B Stratigraphy and Structure of the Seaman Range and Fox Mountain, Lincoln and Nye Counties, Nevada By DONLON O. HURTUBISE and EDWARD A. DU BRAY A multidisciplinary approach to research studies of sedimentary rocks and their constituents and the evolution of sedimentary basins, both ancient and modern U.S. GEOLOGICAL SURVEY BULLETIN 1988 EVOLUTION OF SEDIMENTARY BASINS EASTERN GREAT BASIN HARRY E. COOK AND CHRISTOPHER J. POTTER, Project Coordinators U.S. DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government UNITED STATES GOVERNMENT PRINTING OFFICE: 1992 For sale by Book and Open-File Report Sales U.S. Geological Survey Federal Center, Box 25286 Denver, CO 80225 Library of Congress Cataloging-in-Publication Data Hurtubise, D.O. Stratigraphy and structure of the Seaman Range and Fox Mountain, Lincoln and Nye Counties, Nevada / by Donlon O. Hurtubise and Edward A. du Bray, p. cm. (Evolution of sedimentary basins Eastern Great Basin ; ch. B) (U.S. Geological Survey bulletin ; 1988-B) Includes bibliographical references.
    [Show full text]
  • The Desert Sage OUR 77Th SEASON MAY–JUNE 2018 ISSUE NO
    The Desert Sage OUR 77th SEASON MAY–JUNE 2018 ISSUE NO. 375 http://desertpeaks.org/ In this issue: Chair’s Corner Chair’s Corner Page 2 by Tina Bowman DPS Leadership Page 3 DPS Trips and Events Pages 4-7 Bob Michael’s pro- DPS Election Results Page 7 posal for adding DPS Banquet Flyer Pages 8-9 peaks to the DPS list Outings Chair Page 10 to bring the number Treasurer’s Report Page 10 up to one hundred is DPS List Update Page 10 a good one. So how Membership Report Page 11 do we add peaks? Conservation Chair Page 12 Here are some high- Letter to the Editor Page 12 lights of the process. Passages Page 13 Any member can Trip Reports: propose an addition Corkscrew Peak Page 14 or deletion in writing Smith Mtn. and Stewart Point Pages 14-15 to the Mountaineer- Pyramid Peak Pages 15-16 ing Committee, Mojave Desert Pages 16-17 chaired by the vice chair. Any proposed peak addi- Desert Books Pages 18-21 tion must be scheduled and climbed on a DPS- Great Basin Peaks Section News Page 21 sponsored outing and reported in the Sage before DPS Merchandise Page 22 the ballot appears, and there should be time for pro Sierra Club Membership Application Page 23 and con arguments in several issues of the Sage be- DPS Membership Application Page 23 fore the ballot is sent to members. A majority vote DPS Info Page 24 approves the listing (or delisting) of the peak. The bylaws give the full process here: THE NEXT SAGE SUBMISSION DEADLINE IS JUNE 10, 2018 http://desertpeaks.org/adobepdffiles/ The Desert Sage is published six times a year by bylawsmarch2012.pdf.
    [Show full text]
  • Shallow-Crustal Metamorphism During Late Cretaceous Anatexis in the Sevier Hinterland Plateau: Peak Temperature Conditions from the Grant Range, Eastern Nevada, U.S.A
    Shallow-crustal metamorphism during Late Cretaceous anatexis in the Sevier hinterland plateau: Peak temperature conditions from the Grant Range, eastern Nevada, U.S.A. Sean P. Long1*, Emmanuel Soignard2 1SCHOOL OF THE ENVIRONMENT, WASHINGTON STATE UNIVERSITY, PULLMAN, WASHINGTON 99164, USA 2LEROY EYRING CENTER FOR SOLID STATE SCIENCE, ARIZONA STATE UNIVERSITY, TEMPE, ARIZONA 85287, USA ABSTRACT Documenting spatio-temporal relationships between the thermal and deformation histories of orogenic systems can elucidate their evolu- tion. In the Sevier hinterland plateau in eastern Nevada, an episode of Late Cretaceous magmatism and metamorphism affected mid- and upper-crustal levels, concurrent with late-stage shortening in the Sevier thrust belt. Here, we present quantitative peak temperature data from the Grant Range, a site of localized, Late Cretaceous granitic magmatism and greenschist facies metamorphism. Twenty-two samples of Cambrian to Pennsylvanian metasedimentary and sedimentary rocks were analyzed, utilizing Raman spectroscopy on carbonaceous material, vitrinite reflectance, and Rock-Eval pyrolysis thermometry. A published reconstruction of Cenozoic extension indicates that the samples span pre-extensional depths of 2.5–9 km. Peak temperatures systematically increase with depth, from ~100 to 300 °C between 2.5 and 4.5 km, ~400 to 500 °C between 5 and 8 km, and ~550 °C at 9 km. The data define a metamorphic field gradient of ~60 °C/km, and are corroborated by quartz recrystallization microstructure and published conodont alteration indices. Metamorphism in the Grant Range is correlated with contemporary, upper-crustal metamorphism and magmatism documented farther east in Nevada, where metamorphic field gradients as high as ~50 °C/km are estimated.
    [Show full text]
  • Figure 3-72. Groundwater Usage in Nevada in 2000. (Source: DIRS 175964-Lopes and Evetts 2004, P
    AFFECTED ENVIRONMENT – CALIENTE RAIL ALIGNMENT Figure 3-72. Groundwater usage in Nevada in 2000. (Source: DIRS 175964-Lopes and Evetts 2004, p. 7.) There are a number of published estimates of perennial yield for many of the hydrographic areas in Nevada, and those estimates often differ by large amounts. The perennial-yield values listed in Table 3-35 predominantly come from a single source, the Nevada Division of Water Planning (DIRS 103406-Nevada Division of Water Planning 1992, for Hydrographic Regions 10, 13, and 14); therefore, the table does not show a range of values for each hydrographic area. In the Yucca Mountain area, the Nevada Division of Water Planning identifies a combined perennial yield for hydrographic areas 225 through 230. DOE obtained perennial yields from Data Assessment & Water Rights/Resource Analysis of: Hydrographic Region #14 Death Valley Basin (DIRS 147766-Thiel 1999, pp. 6 to 12) to provide estimates for hydrographic areas the Caliente rail alignment would cross: 227A, 228, and 229. That 1999 document presents perennial-yield estimates from several sources. Table 3-35 lists the lowest (that is, the most conservative) values cited in that document, which is consistent with the approach DOE used in the Yucca Mountain FEIS (DIRS 155970-DOE 2002, p. 3-136). DOE/EIS-0369 3-173 AFFECTED ENVIRONMENT – CALIENTE RAIL ALIGNMENT Table 3-35 also summarizes existing annual committed groundwater resources for each hydrographic area along the Caliente rail alignment. However, all committed groundwater resources within a hydrographic area might not be in use at the same time. Table 3-35 also includes information on pending annual duties within each of these hydrographic areas.
    [Show full text]
  • Railroad Valley As a Result of the Survey
    State of Nevada WATER PLANNING REPORT Prepared by the State Engineer's Office, the Agricultural Experiment Station ­ University of Nevada, Reno and the Soil Conservation Service, U.S.D.A. MAY 1971 1'1.WO ). DeMICCO ROlAND D. WESTERGAJlD D_ ..... - 89701 ~AUComm~b u.. Stole ~. D1.'O"Woft ofWCller~ TO THE CITIZENS OF THE STATE OF NEVADA This Report constitutes a part of the State Water Planning effort and was prepared cooperatively by the Division of Water Resources, the Agricultural Experiment Station, University of Nevada, Reno, and the soil Conser­ vation Service, United States Department of Agriculture. The statewide reconnaissance soil survey is designed to furnish basic soil data needed to evaluate a variety of potential uses. Soil Hydrologic Groups, Soil Materials Sources, Soil Erosion Potential and Soil Irrigability Classes are among the several interpretive evaluations made in Railroad Valley as a result of the survey. The soils of the Railroad Valley area were identified~ mapped, and named according to the U. S. Comprehensive System of Soil Classi­ fication. In addition to being used in the development of the State Water Plan, the progressive reconnaissance soil sur­ vey will also contribute to an eventual soil map of Nevada which will be a basic resource data source for state, re­ gional and local land evaluation and development planning. Respectfully, (J jl J~ ~~~we~tergar~11.0 KJZ} State Engineer LIST OF TABLES TABLE 1. Temperature and Precipitation Data for Diablo Highway Maintenance Station (1959·19691 .... 25 TABLE 2. Temperature and Precipitation Data for Currant Highway Maintenance Station (1963-19691 .. 26 TABLE 3.
    [Show full text]
  • Lunar Crater Volcanic Field (Reveille and Pancake Ranges, Basin and Range Province, Nevada, USA)
    Research Paper GEOSPHERE Lunar Crater volcanic field (Reveille and Pancake Ranges, Basin and Range Province, Nevada, USA) 1 2,3 4 5 4 5 1 GEOSPHERE; v. 13, no. 2 Greg A. Valentine , Joaquín A. Cortés , Elisabeth Widom , Eugene I. Smith , Christine Rasoazanamparany , Racheal Johnsen , Jason P. Briner , Andrew G. Harp1, and Brent Turrin6 doi:10.1130/GES01428.1 1Department of Geology, 126 Cooke Hall, University at Buffalo, Buffalo, New York 14260, USA 2School of Geosciences, The Grant Institute, The Kings Buildings, James Hutton Road, University of Edinburgh, Edinburgh, EH 3FE, UK 3School of Civil Engineering and Geosciences, Newcastle University, Newcastle, NE1 7RU, UK 31 figures; 3 tables; 3 supplemental files 4Department of Geology and Environmental Earth Science, Shideler Hall, Miami University, Oxford, Ohio 45056, USA 5Department of Geoscience, 4505 S. Maryland Parkway, University of Nevada Las Vegas, Las Vegas, Nevada 89154, USA CORRESPONDENCE: gav4@ buffalo .edu 6Department of Earth and Planetary Sciences, 610 Taylor Road, Rutgers University, Piscataway, New Jersey 08854-8066, USA CITATION: Valentine, G.A., Cortés, J.A., Widom, ABSTRACT some of the erupted magmas. The LCVF exhibits clustering in the form of E., Smith, E.I., Rasoazanamparany, C., Johnsen, R., Briner, J.P., Harp, A.G., and Turrin, B., 2017, overlapping and colocated monogenetic volcanoes that were separated by Lunar Crater volcanic field (Reveille and Pancake The Lunar Crater volcanic field (LCVF) in central Nevada (USA) is domi­ variable amounts of time to as much as several hundred thousand years, but Ranges, Basin and Range Province, Nevada, USA): nated by monogenetic mafic volcanoes spanning the late Miocene to Pleisto­ without sustained crustal reservoirs between the episodes.
    [Show full text]
  • Estimated Potentiometric Surface of the Death Valley Regional Groundwater Flow System, Nevada and California by Michael T
    U.S. Department of the Interior Prepared in cooperation with the Scientific Investigations Report 2016-5150 U.S. Geological Survey Bureau of Land Management, National Park Service, U.S. Department of Energy National Nuclear Security Administration Sheet 1 (Interagency Agreement DE–AI52–01NV13944), and Office of Civilian Radioactive Waste Management (Interagency Agreement DE–AI28–02RW12167), U.S. Fish and Wildlife Service, and Nye County, Nevada 650000 115° 117° 550000 116° 600000 118° 450000 500000 San Antonio Mts Monte Cristo Range Monitor Range Big Smokey Stone Valley Cabin Grant Range Valley Railroad 1600 Tonopah Valley Quinn Canyon Range Reveille Range 38° 38° Lincoln County Reveille Valley 4200000 4200000 Esmeralda County 1700 1500 1800 1500 Cactus Penoyer Valley Goldfield 00 00 16 Flat 16 (Sand Spring Worthington Range Hill Valley) Nye County 1600 Cactus Range Clayton Valley Stonewall Montezuma Range Flat Kawich Range Timpahute Range Hiko Range Kawich Fish Lake Valley 1700 1500 Gold Valley North Pahranagat Range 1600 Flat Palmetto Mts 1400 Stonewall 1400 4150000 4150000 1500 Mtn 1600 1500 East Pahranagat Range Pahranagat Range 1300 Magruder Mtn Tikaboo Valley Belted Range EmigrantValley Groom Range Last Chance Range 1500 Slate Ridge 1200 1300 Eureka Valley 1200 Pahute 1100 Black Mesa 1100 Mtn 1000 Gold Rainier Eleana 1500 Range Mtn Stonewall Mesa 1000 White Mts Pass Desert Range 900 Halfpint Range Shoshone Yucca 800 Grapevine Mts Flat 1300 Timber Mtn 1500 Sarcobatus Mtn 700 4100000 4100000 1700 Flat 37° 37° 1400 Desert 1600 Valley
    [Show full text]
  • Structure and Devonian Stratigraphy of the Timpahute Range, Nevada
    STRUCTURE AND DEVONIAN STRATIGRAPHY OF THE TIMPAHUTE RANGE, NEVADA Volume I by Alan K. Chamberlain © Copyright, 1999 A thesis submitted to the Faculty and Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Geology). Golden, Colorado Date____________ Signed:__________________________ Alan K. Chamberlain Approved:__________________________ Dr. John E. Warme Professor and Thesis Advisor Golden, Colorado Date____________ ____________________________________ Dr. Roger Slatt, Professor and Head, Department of Geology and Geological Engineering ii ABSTRACT Sequences of Devonian rocks are advantageously exposed along a unique 40- mile-long east-west traverse in the greater Timpahute Range, southeastern Nevada. Study of these rocks casts light upon Devonian paleogeography, the Devonian Antler orogeny, an Upper Devonian cosmolite impact basin, this part of the Cretaceous Sevier fold-and- thrust belt, and the effects of Cenozoic extension. The greater Timpahute Range lies within the Timpahute Range 30' X 60' quadrangle and includes the region from Tempiute Mountain on the west to the Pahroc Range on the east. Concealed major north-south trending normal faults caused by Cenozoic extension have been proposed to disrupt the Paleozoic rocks of the region. However, a structural interpretation using a new geologic map of the quadrangle requires no major north-south striking normal faults. Furthermore, the greater Timpahute Range is interpreted as a salient of stacked thrust sheets within the Sevier fold-and-thrust belt. The range is bounded on the north and south by thrust tear faults that may be related to basement fractures caused by the cosmolite impact. Evidence for the Late Devonian cosmolite impact includes shocked quartz, iridium anomalies, ejecta spherules, and disturbed shallowing-upward sequences exhibiting intrasequence folding, brecciation, carbonate liquefaction, and graded bedding.
    [Show full text]
  • Superposed Compressional and Extensional Strain in Lower Paleozic Rocks of the Northwestern Grant Range, Nevada
    AN ABSTRACT OF THE THESIS OF Phyllis A. Camilleri for the degree of Master ofScience in Geology presented on December 15, 1988. Title: Superposed Compressional and Extensional Strain in Lower Paleozoic Rocks in the Northwestern Grant Range, Nevada Redacted for Privacy Abstract approved: Karen Lund The Grant Range, in east-central Nevada, isa north-east trending range bounded on the west bya west-dipping normal fault system. Rocks within therange record a complex polyphase Mesozoic ductile compressional and Cenozoic brittle extensional deformational history. The northwestern Grant Range exposes deformed, regionally metamorphosed and unmetamorphosed, Cambrian to Mississippian carbonate and clastic strata, and minor Tertiary granitic and andesitic dikes. Cambrian and Ordovician rocks are ductilely strained and metamorphosed. Metamorphic grade decreases stratigraphically upwards, generally commensurate with the degree of ductile strain. Two Mesozoic compressional events are recorded in the rocks of the northwestern Grant Range. The first event produced mesoscopic, east-vergent folds with spaced axial-planar cleavage. These folds were overprinted by small-scale, west-vergent thrust faults and folds of the second event. Regional metamorphism began during the first folding event, but outlasted deformation. Static metamorphism was followed by west-vergent deformation, which marked the end of metamorphism. The compressional structures may have been part of an east-vergent anticline or the hanging wall of an east-vergent thrust fault. Ductile Mesozoic compressional structures and fabrics are cut by an arched, imbricate stack of Cenozoic low-angle normal faults of a more brittle character. The low-angle normal faults omit stratigraphic section, and each successively structurally higher fault is generally younger than the one below it.
    [Show full text]
  • University of Nevada Reno Analysis of the White River Groundwater Flow System Using a Deuterium-Calibrated Discrete-State Compar
    MINIS lilR A ftt University of Nevada Reno Analysis of the White River Groundwater Flow System Using a Deuterium-Calibrated Discrete-State Compartment Model A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Hydrology and Hydrogeology Mines Library University of Nevada - Reno Reno, Nevada 89557-0044 by Stephen T. Kirk i' * July 1987 II WINtS UMARY " i i t S ' S The thesis of Stephen Thomas Kirk is approved: \AAjiC&OjJ C. Cr Thesis Advisor " University of Nevada Reno July 1987 ACNOWLED GEMENTS The author gratefully acknowledges the advice and guidance of Dr. Michael Cam- pana throughout this project. Additional advice was provided by Dr. W. Miller and Dr. D. Tibbitts. Special thanks go to Marcia Olson Kirk for her advice, en­ couragement, and patience. Financial support for this project was provided by the State of Nevada’s Carbonate Aquifers Studies Program and Desert Research Institute, Water Resources Center. IV ABSTRACT The White River Flow System (WRFS), a regional carbonate flow system in eastern Nevada, can be delineated with a discrete-state compartment model using environmental isotope (deuterium) data. Calibrated model results yield the following differences with an earlier conceptual model of WRFS: 1) minimum underflow out of the system along the Pahranagat Shear Zone is 4,000 acre feet per year; 2) minimum recharge from the Sheep Range to Coyote Springs Valley is 5,000 acre feet per year; and 3) minimum underflow from Meadow Valley Wash to Upper Moapa Valley is 4,500 acre feet per year. Calibration of the model using a paleoclimatically induced shift in re­ charge amounts (+35%) and deuterium concentrations (-8<5D) during the Pleistocene support these results.
    [Show full text]