Mechanochemical Preparation of Hydantoins from Amino Esters

Total Page:16

File Type:pdf, Size:1020Kb

Mechanochemical Preparation of Hydantoins from Amino Esters Mechanochemical Preparation of Hydantoins from Amino Esters: Application to the Synthesis of the Antiepileptic Drug Phenytoin Laure Konnert, Benjamin Reneaud, Renata Marcia de Figueiredo, Jean-Marc Campagne, Frédéric Lamaty, Jean Martinez, Evelina Colacino To cite this version: Laure Konnert, Benjamin Reneaud, Renata Marcia de Figueiredo, Jean-Marc Campagne, Frédéric Lamaty, et al.. Mechanochemical Preparation of Hydantoins from Amino Esters: Application to the Synthesis of the Antiepileptic Drug Phenytoin. Journal of Organic Chemistry, American Chemical Society, 2014, 79 (21), pp.10132-10142. 10.1021/jo5017629. hal-01082359 HAL Id: hal-01082359 https://hal.archives-ouvertes.fr/hal-01082359 Submitted on 12 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Article pubs.acs.org/joc Mechanochemical Preparation of Hydantoins from Amino Esters: Application to the Synthesis of the Antiepileptic Drug Phenytoin † † ‡ ‡ Laure Konnert, Benjamin Reneaud, Renata Marcia de Figueiredo, Jean-Marc Campagne, † † † Fredérić Lamaty, Jean Martinez, and Evelina Colacino*, † UniversitéMontpellier II, Institut des Biomoleculeś Max Mousseron UMR 5247 CNRS − Universiteś Montpellier I & II − ENSCM, Place E. Bataillon, cc 1703, 34095 Montpellier, France ‡ Institut Charles Gerhardt Montpellier (ICGM), UMR 5253 CNRS-UM2-UM1-ENSCM, Ecole Nationale Superieuré de Chimie, 8 Rue de l’Ecole Normale, 34296 Montpellier Cedex 5, France *S Supporting Information ABSTRACT: The eco-friendly preparation of 5- and 5,5- disubstituted hydantoins from various amino ester hydrochlorides and potassium cyanate in a planetary ball-mill is described. The one-pot/two-step protocol consisted in the formation of ureido ester intermediates, followed by a base-catalyzed cyclization to hydantoins. This easy-handling mechanochemical methodology was applied to a large variety of α- and β-amino esters, in smooth conditions, leading to hydantoins in good yields and with no need of purification steps. As an example, the methodology was applied to the “green” synthesis of the antiepileptic drug Phenytoin, with no use of any harmful organic solvent. ■ INTRODUCTION preparation of spirohydantoins.26 Trimethylsilyl-isocyanate 2,4-Imidazolidinediones, also known as hydantoins, are a class (TMS-NCO) and chlorosulfonyl-isocyanate are alternatives to cyanate salts for the preparation of 1,3-unsubstituted of well-known molecules that have demonstrated a wide 27,28 therapeutic interest,1 including antiepileptic,2 anticonvulsant,3 hydantoins. Recently, our group has described the solid- 4 5 6 phase synthesis of 5-substituted hydantoins under microwave- antiandrogenic, antidiabetic or antifungal activities. From the 29 synthetic point of view, hydantoins are precursors of choice of irradiation from supported amino acids and isocyanates. The α 7 8 condensation of benzil and urea in excess according to Biltz -amino acids, or provide access to optically active polymers 7,30,31 or metal complexes.9,10 A particular hydantoin, 1,3-dibromo- reaction remains the main pathway to the obtention of ′ 5,5-disubstituted hydantoins and was historically used for the 5,5 -dimethylhydantoin (DBDMH), is used for bromination 2,31 reactions11,12 and acts as a catalyst in a number of organic synthesis of the antiepileptic drug phenytoin. Several 13−15 improvements were described using enabling technologies transformations. There are three main pathways to access 32,33 1,7,16 such as ultrasonication, heating via microwave irradiation 1,3-unsubstituted hydantoins, the choice of which depends − (in solution or neat34 37), in polar solvents [water,2 poly- not only on the synthetic easiness to access the precursors, but 38 34 fi (ethylene glycol) or DMSO ] or grinding the reactants (with also on the nal target that includes 5-substituted or 5,5- 39 disubstituted hydantoins (Scheme 1). mortar and pestle). In view of the REACH (Registration, − 17,18 Evaluation, Authorisation and Restriction of Chemicals) Under Bucherer Bergs conditions involving a carbonyl 40 compound, toxic potassium cyanide and ammonium carbonate, legislation, regulating chemical substances and directed to mainly 5-substituted hydantoins were obtained. A few examples both the protection of the human health and the environment 8 from the risks of potentially toxic chemicals, the use of certain exploited this approach to access 5,5-disubstituted derivatives, ff and very recently a variant methodology, starting from a chemicals will be phased out, a ecting industries throughout methylene aziridine instead of a carbonyl compound, was also the world. Thus, the use of possible alternative substances and/ reported for the synthesis of this class of compounds.19 or technologies, including present and future research and Reactions were mainly performed in solution under reflux or development processes, will enhance innovation and com- microwaves20 (MW). Neat conditions21 were also reported, petitiveness. In this perspective, reduction or elimination of involving Fe O nanoparticles as catalyst.22 The second major harmful chemicals includes the possibility to perform organic 3 4 synthesis in the absence of solvents, in neat conditions41 or via pathway to obtain 1,3-unsubstituted hydantoins is the reaction 42,43 6 7,23 mechanochemistry. Ball-milling technology has been, for of cyanate salts with either amino acids or their ester, amide fi or nitrile24 derivatives, known as the Read synthesis. The the past decade, more and more used in the eld of organic corresponding ureido derivative was cyclized under acidic conditions, although the base catalyzed-cyclization has also Received: July 31, 2014 been reported.25 This reaction has been notably used for the Published: October 3, 2014 © 2014 American Chemical Society 10132 dx.doi.org/10.1021/jo5017629 | J. Org. Chem. 2014, 79, 10132−10142 The Journal of Organic Chemistry Article Scheme 1. Main Retrosynthetic Pathways to the Synthesis of 1,3-Unsubstituted Hydantoins Table 1. Screening of the Conditions for the Synthesis of 5-Benzyl-hydantoin 2 conversion (HPLC %) ball-milling apparatusb/jar materialb/rotation speed (rpm) entry basea or frequency (Hz) time (h) 12 1K2CO3 VM/SS/30 Hz 2 0 0 2 NaHCO3 VM/SS/30 Hz 4 70 0 3 NaHCO3 PM/SS/500 rpm 4 70 0 c 4 NaHCO3 PM/SS/500 rpm 6 90 traces c 5 NaHCO3 PM/WC/500 rpm 6 84 traces c 6K2CO3 PM/SS/500 rpm 4 00 c 7Et3N (excess) PM/SS/500 rpm 4 00 d,e e 8 Et3N/H2O/ 24090 f c 9 Et3N/H2O PM/SS/500 rpm 6 37 21 g c h 10 NaHCO3 (step 1) PM/SS/300 rpm 3 91 n.d. c h Et3N/H2O (step 2) PM/SS/500 rpm 6 n.a. 31 a b 2 equiv of base were used. Typical procedure: L-phenylalanine methyl ester hydrochloride (1 equiv), KNCO (1 equiv) and the base (2 equiv) were milled in a vibrational ball-mill (VM), 10 mL stainless steel (SS) jar, 2 stainless steel balls (5 mm diameter) at 30 Hz or in a planetary ball-mill (PM), 12 mL stainless steel or 50 mL tungsten carbide (WC) jar, 25 stainless steel balls (or 50 tungsten carbide balls, 5 mm diameter) at 500 (or 300 rpm) for the specified time. cCycled milling of 10 min cycles followed by 5 min of standby in between, with reverse rotation, for the specified time. dThe e f phenylalanyl-urea 1 was the starting material. The reaction was performed under stirring at room temperature. The reaction was carried out using L- μ g phenylalanine methyl ester hydrochloride (3.48 mmol), Et3N (6.96 mmol) and H2O (200 L). Step 1: NaHCO3 (6.96 mmol); Step 2:Et3N (6.96 h mmol) and H2O (1 mL). n.d. = not determined; n.a. = not attributed. − chemistry.44 46 The mechanosynthesis of heterocyclic com- methyl esters and potassium cyanate (Scheme 1). The ureido pounds has been notably explored.47,48 However, as far as we intermediate could be either isolated, or cyclized in the know, no mechanochemical procedure for the preparation of presence of base, to afford pure hydantoins in good to excellent hydantoins has ever been developed. In our ongoing work on yields without purification. The methodology was also applied − organic mechanochemistry,49 56 investigation of a solvent-free to the synthesis of the 5,5-disubstituted antiepileptic drug, methodology for the synthesis of hydantoins starting from phenytoin. Compared to solution synthesis, simpler reaction amino ester derivatives in a ball-mill seemed promising. It is conditions, better yields and easier workup are the major fi worth noting that the use of mechanochemistry for the bene ts of this environmentally friendly procedure. synthesis of heterocycles from amino acid derivatives remains a quite unexplored field, with only one example describing the ■ RESULTS AND DISCUSSION 57 synthesis of (R)-thiazolidine from L-cysteine. 5-Benzyl-hydantoin 2 (Table 1) served for the optimization of Herein we describe a systematic investigation and a general the reaction conditions. Several ball-milling parameters (type of method for the eco-friendly mechanochemical synthesis of 5- ball-mill apparatus, material of the jars, speed) were tested, as substituted hydantoins from a large variety of amino acid well as the nature of the base used in the reaction (Table 1). 10133 dx.doi.org/10.1021/jo5017629 | J. Org. Chem. 2014, 79, 10132−10142 The Journal of Organic Chemistry Article The classical conditions of Read synthesis involved a two-step step 2). After ball-milling, the corresponding hydantoin 2 was reaction. The hydantoic ester, formed in the first step was obtained in a moderate conversion (31%), which could be cyclized by the addition of an acid in the second step (Scheme explained, in comparison with the solution-synthesis in water, 1).
Recommended publications
  • Old Time Chemical Names
    Old Time Chemical Names 1080------------------------------------------------Sodium fluroacetate 2-Propanone-------------------------------------Acetone Absinthe-------------------------------------------Distillate of worm wood Abstinthium--------------------------------------Distillate of worm wood Acarcia gum-------------------------------------Gum arabic Acetaldehyde------------------------------------Acetic aldehyde Acetate of alumina-----------------------------Aluminium acetate Acetate of ammonia---------------------------Ammonium acetate Acetate of amyl---------------------------------Amyl acetate Acetate of baryta-------------------------------Barium acetate Acetate of cobalt-------------------------------Cobalt acetate Acetate of copper------------------------------Copper acetate Acetate of ethyl---------------------------------Ethyl acetate Acetate of iron----------------------------------Iron acetate Acetate of lead----------------------------------Lead acetate Acetate of lime----------------------------------Calcium acetate Acetate of manganese------------------------Manganous acetate Acetate of oxide of ethyl---------------------Ethyl acetate Acetate of potassa-----------------------------Potassium acetate Acetate of potassium--------------------------Potassium acetate Acetate of protoxide of Manganese-------Manganous acetate Acetate of soda---------------------------------Sodium acetate Acetate of zinc----------------------------------Zinc acetate Acetic aid basic bismuth---------------------Bismuth subacetate CH3COOBiO Acetic
    [Show full text]
  • Working with Hazardous Chemicals
    A Publication of Reliable Methods for the Preparation of Organic Compounds Working with Hazardous Chemicals The procedures in Organic Syntheses are intended for use only by persons with proper training in experimental organic chemistry. All hazardous materials should be handled using the standard procedures for work with chemicals described in references such as "Prudent Practices in the Laboratory" (The National Academies Press, Washington, D.C., 2011; the full text can be accessed free of charge at http://www.nap.edu/catalog.php?record_id=12654). All chemical waste should be disposed of in accordance with local regulations. For general guidelines for the management of chemical waste, see Chapter 8 of Prudent Practices. In some articles in Organic Syntheses, chemical-specific hazards are highlighted in red “Caution Notes” within a procedure. It is important to recognize that the absence of a caution note does not imply that no significant hazards are associated with the chemicals involved in that procedure. Prior to performing a reaction, a thorough risk assessment should be carried out that includes a review of the potential hazards associated with each chemical and experimental operation on the scale that is planned for the procedure. Guidelines for carrying out a risk assessment and for analyzing the hazards associated with chemicals can be found in Chapter 4 of Prudent Practices. The procedures described in Organic Syntheses are provided as published and are conducted at one's own risk. Organic Syntheses, Inc., its Editors, and its Board of Directors do not warrant or guarantee the safety of individuals using these procedures and hereby disclaim any liability for any injuries or damages claimed to have resulted from or related in any way to the procedures herein.
    [Show full text]
  • Chemical Mechanical Planarization for Tungsten-Containing Substrates
    (19) TZZ _ T (11) EP 2 779 217 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 17.09.2014 Bulletin 2014/38 H01L 21/321 (2006.01) C09G 1/02 (2006.01) (21) Application number: 14158825.1 (22) Date of filing: 11.03.2014 (84) Designated Contracting States: • Zhou, Hongjun AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Chandler, AZ Arizona 85248 (US) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO • Lew, Blake J. PL PT RO RS SE SI SK SM TR Scottsdale, AZ Arizona 85251 (US) Designated Extension States: • Schlueter, James Allen BA ME Phoenix, AZ Arizona 85045 (US) •Schwartz,Jo- Ann Theresa (30) Priority: 12.03.2013 US 201361777165 P Fountain Hills, AZ Arizona 85268 (US) 27.12.2013 US 201314142087 (74) Representative: Beck Greener (71) Applicant: AIR PRODUCTS AND CHEMICALS, INC. Fulwood House Allentown, PA 18195-1501 (US) 12 Fulwood Place London WC1V 6HR (GB) (72) Inventors: • Shi, Xiaobo Chandler, AZ Arizona 85224 (US) (54) Chemical mechanical planarization for tungsten-containing substrates (57) Chemical mechanical polishing (CMP) compo- of piperazine derivatives, salts of cyanate, and combina- sitions for polishing tungsten or tungsten- containing sub- tions thereof; and a liquid carrier. Systems and processes strates comprise an abrasive, at least one solid catalyst, use the aqueous formulations for polishing tungsten or a chemical additive selected from the groups consisting tungsten-containing substrates. EP 2 779 217 A2 Printed by Jouve, 75001 PARIS (FR) EP 2 779 217 A2 Description BACKGROUND OF THE INVENTION 5 [0001] This invention relates generally to the chemical-mechanical planarization (CMP) of tungsten-containing sub- strates on semiconductor wafers.
    [Show full text]
  • JOURNAL of SCIENCE Published on Tho First Day of October, January, April and July
    IOWA STATE COLLEGE JOURNAL OF SCIENCE Published on tho first day of October, January, April and July. EDITORIAL BOARD EDITOR-IN-CHIEF, R. E. Buchanan. ASSOCIATE EDITORS: P. E. Brown, Secretary; C. J. Drake, A H. Fuller, I. E. Melhus, E. A. Benbrook, P. Mabel Nelson, V. E. Nelson. ADVISORY EDITORS: R. E. Buchanan, Chairman; C. J. Drake, E. W. Lind­ strom, I. E. Melhus, P. Mabel Nelson, 0. R. Sweeney. BUSINESS CoMMITTEE: P. E. Brown, Chairman; A.H. Fuller, V: E. Nelson, Jay W. Woodrow. All manuscripts submitted for publication should be addressed to R. E. Buchanan, Room 101 Science Building, Iowa State College, Ames, Iowa_ All remittances should be addressed to P_ E. Brown, Bus. Mgr., Room 25 Hall of Agriculture, Iowa State College, Ames, Iowa. Single Copies: One Dollar; Annual Sub-scription Three Dollars; In Canada, Three Dollars and a Quarter; Foreign, Thre€ Dollars and a Half. ,..· ... J.. .:·::: . ... • . ... Entered as seco1.<u class matter.. at. ...... the . 0I'ost. 0 i!JtJ;;,. Ames, Iowa. .-·:.. ....·:::: :.·. .. ... : : :. ··: : . : ·... : .... ·.. ··: .··.··.: ~ ·. ·.. · ..... .·. ... : . .. .·. ...... .·.... THE QUANTITATIVE DETERMINATION OF FORMIC ACID IN THE PRE:SENCE OF ACETIC ACID BY A CONDUCTOMETRIC TITRATION• BY EDMOND E. MOORE WITH ELLIS I. FULMER. From the laboratory of biophysical chemistry, Iowa State College. Accepted for publication Juiie 3, 1929. OUTLINE I. Introduction. II. Review of quantitative methods for the determination of formic acid. III. Theoretical discussion of conductometric titration. IV. Equipment and procedure. V. Experimental results. VI. The use of the curves and diagram in analysis. VII. Summary. VIII. Literature cited. I. INTRODUCTION Quantitative studies of the chemical activities of microorganisms are at present handicapped by the lack of adequate analytical methods.
    [Show full text]
  • 1274 Potassium Cyanate
    Material Safety Data Sheet EMERGENCY NUMBERS: (USA) CHEMTREC : 1(800) 424-9300 (24hrs) (CAN) CANUTEC : 1(613) 996-6666 (24hrs) (USA) Anachemia : 1(518) 297-4444 (CAN) Anachemia : 1(514) 489-5711 WHMIS Protective Clothing TDG Road/Rail Not controlled under WHMIS (Canada). Not controlled under TDG (Canada). PIN: Not applicable. PG: Not applicable. Section I. Product Identification and Uses Product name POTASSIUM CYANATE CI# Not available. Chemical formula KCNO CAS# 590-28-3 Synonyms Aero cyanate, Potassium isocyanate, Cyanic acid Code AC-7613 potassium salt, AC-7613, 73232 Formula weight 81.12 Supplier Anachemia Canada. Supersedes 255 Norman. Lachine (Montreal), Que H8R 1A3 Material uses For laboratory use only. Section II. Ingredients Name CAS # % TLV 1) POTASSIUM CYANATE 590-28-3 >96 Not established by ACGIH Toxicity values of the POTASSIUM CYANATE: hazardous ingredients ORAL (LD50): Acute: 841 mg/kg (Mouse). 1500 mg/kg (Rat). INTRAPERITONEAL (LD50): Acute: 320 mg/kg (Mouse). Section III. Physical Data POTASSIUM CYANATE page 2/4 Physical state and Solid. (White crystalline powder.) appearance / Odor pH (1% soln/water) Not available. Odor threshold Not available. Percent volatile 0% at 21°C Freezing point Decomposes at 700°C. Boiling point Not applicable. Specific gravity 2.1 (Water = 1) Vapor density Not available. Vapor pressure Not available. Water/oil dist. coeff. Not available. Evaporation rate Not available. Solubility Easily soluble in cold water. Section IV. Fire and Explosion Data Flash point Not available. Flammable limits Not available. Auto-ignition temperature Not available. Fire degradation Oxides of carbon, potassium and nitrogen. Cyanides. products Fire extinguishing Use DRY chemical, carbon dioxide, foam or water spray.
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • Cyanate Formation Following 2-Chloroacrylonitrile Exposure and the Role of Cytochrome P-450 Paul Malichky
    Duquesne University Duquesne Scholarship Collection Electronic Theses and Dissertations Spring 2011 Cyanate Formation Following 2-Chloroacrylonitrile Exposure and the Role of Cytochrome P-450 Paul Malichky Follow this and additional works at: https://dsc.duq.edu/etd Recommended Citation Malichky, P. (2011). Cyanate Formation Following 2-Chloroacrylonitrile Exposure and the Role of Cytochrome P-450 (Doctoral dissertation, Duquesne University). Retrieved from https://dsc.duq.edu/etd/860 This Immediate Access is brought to you for free and open access by Duquesne Scholarship Collection. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Duquesne Scholarship Collection. For more information, please contact [email protected]. CYANATE FORMATION FOLLOWING 2-CHLOROACRYLONITRILE EXPOSURE AND THE ROLE OF CYTOCHROME P-450 A Dissertation Submitted to the Graduate School of Pharmaceutical Sciences Duquesne University In partial fulfillment of the requirements for the degree of Doctor of Philosophy By Paul Malichky March 2011 Copyright by Paul Malichky 2011 CYANATE FORMATION FOLLOWING 2-CHLOROACRYLONITRILE EXPOSURE AND THE ROLE OF CYTOCHROME P-450 By Paul Malichky Approved March 16, 2011 ________________________________ ________________________________ David A. Johnson, Ph.D. Paula Witt-Enderby, Ph.D. Dissertation Chairperson Professor of Pharmacology-Toxicology Associate Professor of Pharmacology- Graduate School of Pharmaceutical Toxicology Sciences Graduate School of Pharmaceutical Duquesne University, Pittsburgh, PA Sciences Duquesne University, Pittsburgh, PA ________________________________ ________________________________ Frederick W. Fochtman, Ph.D. Janet M. Mostowy, Ph.D. Director, Forensic Science and Law Vice President School of Natural and Environmental Product Safety & Regulatory Affairs Sciences Bayer Material Science, Pittsburgh, PA Duquesne University, Pittsburgh, PA ________________________________ ________________________________ J.
    [Show full text]
  • 111-11ST(I)INS ACT 1964 . No. 51] PERTH
    [2723] az OF WESTERN AUSTRALIA (Published by Authority at 3 .30 p.m.) No. 51] PERTH : THURSDAY, 9 JULY [1981 -rl f--j -111-11ST(I)INS ACT 1964 . 9July1981 .] GOVERNMENT GAZETTE, W.A. 2725 3 POISONS ACT 1964. POISONS (SCHEDULED SUBSTANCES) AMENDMENT ORDER 1981 . MADE by His Excellency the Governor in Executive Council . Citation . 1. This Order may be cited as the Poisons (Scheduled Substances) Amendment Order 1981 . Schedules Each of the schedules referred to in section 20 of the Poisons Act d-in Appe- 2. "A" to the 1964, as amended, is amended by deleting all of the items in each of Act subs. those schedules, as amended, and substituting the items set out in the appendix to this Order so that the items appear in the respective schedules as set out in that appendix . APPENDIX. "A" First Schedule. A substance specified in this Schedule includes any compound and all preparations and admixtures containing any proportion thereof and these are therefore subject to all the restrictions of this Schedule unless specifically exempted or specifically included in any other Schedule . ACONITE (ROOT OF ACONITUM NAPELLUS) . ANTIMONY and substances containing more than the equivalent of 1 per cent of antimony trioxide, except antimony chlorides in polishes . ATROPINE and substances containing more than 0 .25 per cent of atropine, except atropine methonitrate or when included in the Second Schedule . BELLADONNA and substances containing more than 0 .25 per cent of the alkaloids of belladonna calculated as hyoscyamine . BROMINE as such . BRUCINE and substances containing more than 0 .2 per cent of brucine .
    [Show full text]
  • United States Patent Office Patented Feb
    3,235,519 United States Patent Office Patented Feb. 15, 1966 2 3,235,519 I have discovered that organic sulfonyl semicarbazides, SULFONY SEMICARBAZDES AS BELOWING like the parent sulfonyl hydrazides, decompose smoothly AGENTS FOR POLYMEREC MATERALS Byron A. Hunter, Woodbridge, Conn., assignor to United and controllably to produce nitrogen gas at elevated tem States Rubber Company, New York, N.Y., a corpora peratures. Further, I have discovered that my sulfonyl tion of New Jersey 5 Semicarbazide compounds produce more gas per unit No Drawing. Original application Dec. 31, 1959, Ser. weight than the sulfonyl hydrazides from which they are No. 863,129, now Patent No. 3,152,176, dated Oct. 6, derived. This is surprising in that the quantity of gas 1964. Divided and this application Oct. 31, 1963, Ser. produced by the new compounds exceeds the amount nor No. 320,523 mally to be expected as available nitrogen. I have dis 2 Claims. (CI. 260-2.5) 10 covered that carbon dioxide is produced in the decom This invention relates to the production of gas-expanded position of my semicarbazides as well as nitrogen gas. products with a new class of chemical blowing agents I have also observed that my sulfonyl semicarbazide denoted organic sulfonyl semicarbazides, and to certain compounds possess greater heat stability than the parent of them as new chemicals. sulfonyl hydrazides and can be heated to higher tempera The use of certain heat sensitive organic hydrazine 5 tures without danger of premature decomposition. For compounds as blowing agents is known. U.S. Patent No. tunately, the decomposition temperature of my preferred 2,626,933, dated January 27, 1953, to Friedrich Lober, sulfonyl semicarbazides lie in a range which permit their Max Bogemann, and Richard Wegler, discloses the use application as practical blowing agents in so-called "high of hydrazides of organic sulfonic acids for this purpose.
    [Show full text]
  • Chemical Compatibility Storage Group
    CHEMICAL SEGREGATION Chemicals are to be segregated into 11 different categories depending on the compatibility of that chemical with other chemicals The Storage Groups are as follows: Group A – Compatible Organic Acids Group B – Compatible Pyrophoric & Water Reactive Materials Group C – Compatible Inorganic Bases Group D – Compatible Organic Acids Group E – Compatible Oxidizers including Peroxides Group F– Compatible Inorganic Acids not including Oxidizers or Combustible Group G – Not Intrinsically Reactive or Flammable or Combustible Group J* – Poison Compressed Gases Group K* – Compatible Explosive or other highly Unstable Material Group L – Non-Reactive Flammable and Combustible, including solvents Group X* – Incompatible with ALL other storage groups The following is a list of chemicals and their compatibility storage codes. This is not a complete list of chemicals, but is provided to give examples of each storage group: Storage Group A 94‐75‐7 2,4‐D (2,4‐Dichlorophenoxyacetic acid) 94‐82‐6 2,4‐DB 609-99-4 3,5-Dinitrosalicylic acid 64‐19‐7 Acetic acid (Flammable liquid @ 102°F avoid alcohols, Amines, ox agents see SDS) 631-61-8 Acetic acid, Ammonium salt (Ammonium acetate) 108-24-7 Acetic anhydride (Flammable liquid @102°F avoid alcohols see SDS) 79‐10‐7 Acrylic acid Peroxide Former 65‐85‐0 Benzoic acid 98‐07‐7 Benzotrichloride 98‐88‐4 Benzoyl chloride 107-92-6 Butyric Acid 115‐28‐6 Chlorendic acid 79‐11‐8 Chloroacetic acid 627‐11‐2 Chloroethyl chloroformate 77‐92‐9 Citric acid 5949-29-1 Citric acid monohydrate 57-00-1 Creatine 20624-25-3
    [Show full text]
  • The Action of Semicarbazide Hydrochloride on the P-Quinones 1
    The Action of Semicarbazide Hydrochloride on the P-quinones 1 Contribution to the Study of Hydroxyazo-bodies. by James Alexander Russell Henderson,B.Sc.„ ProQuest Number: 13915827 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 13915827 Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 Contents. Introduction and theory 3 Conclusions 17 Experimental 3.9 Action of ultra-violet light 50 Optical investigation 53. A Contribution to the Study of Hydroxyazo-bodies. The researches which have been made in recent years with regard to the constitution of "quinone hydrazones" prove conclusively that these bodies under the conditions of examination are not quinone derivatives but hydroxyazo-compounds; where quinone hydrazones might have been expected rearrangement invariably seems to take place with formation of hydroxyazo-bodies. Thus Borsche (Ann.1907, 357,171) found that by condensing o-nitrophenylhydrazine with p-benzoquinone there resulted not the quinone hydrazone but the isomeric hydroxyazo-body:- o h2h n h c 6h 4no2 n :n c 6h 4k o 2 o o 0 OH The spectroscopic evidence,at any rate for the para-quinones, also supports the view that where quinone hydrazones might be ex­ pected hydroxyazo-bodies are formed.
    [Show full text]
  • Chemical Resistance of SIGRATHERM® Foil and Sheets
    Chemical resistance of SIGRATHERM® foil and sheets This technical information is valid for SIGRATHERM flexible graphite foil and sheets, including SIGRATHERM L (lightweight graphite board), which are ● manufactured from expanded natural graphite ● free from additives, e.g. PCM's (Phase Change Material). Chemical properties Graphite is insoluble and infusible. It counts as one of the most chemically resistant materials. Organic chemistry Graphite is resistant to virtually all media in the field of organic chemistry. These typically include, for example, the intermedi- ate and/or final products of the following industries: ● Petrochemistry ● Coal conversion ● Synthetics ● Varnish and paint ● Cosmetics ● Food and stimulants industry ● Photochemicals ● Cooling agents ● Anti-freezing agents Inorganic chemistry Graphite is resistant to almost all inorganic media as well, for example to many acids and bases, as well as probably all ↑ SIGRATHERM flexible graphite foil aqueous salt solutions and to most technical gases. The following media resistance list shall provide an overview. individual cases. It should be noted, that mixtures can be For media which are not included it is generally advised to partly more critical than pure media or vice versa. confer with SGL Carbon. Four different cases can be distinguished: 1. resistant The resistance data apply to operating temperatures of the 2. not resistant medium mentioned which are known to us. However for media 3. limited resistance being operated at above 400 °C or 752 °F, we generally ask for 4. insufficient data – consultation. The third case depends on the stability of operation, operating The information is based on experience, laboratory tests and is temperatures or the concentration.
    [Show full text]