Fire & Global Change During Key Intervals of the Late Triassic & Early Jurassic with a Focus on the Central Polish Basin

Total Page:16

File Type:pdf, Size:1020Kb

Fire & Global Change During Key Intervals of the Late Triassic & Early Jurassic with a Focus on the Central Polish Basin FIRE & GLOBAL CHANGE DURING KEY INTERVALS OF THE LATE TRIASSIC & EARLY JURASSIC WITH A FOCUS ON THE CENTRAL POLISH BASIN Submitted by Robyn Pointer to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Geology, in November 2018. This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. I certify that all material in this thesis which is not my own work has been identified and that no material has been previously submitted and approved for the award of a degree by this or any other University. Signature……………………………………………… 2 ABSTRACT Core from modern-day Poland recovering fluvial and paralic strata provides an excellent record of climatic and environmental changes in the Central Polish Basin during two key intervals of the Early Jurassic. Thick successions of Rhaetian-Hettangian and Pliensbachian-Toarcian age are examined using a number of techniques in order to understand the wildfire activity history, carbon- cycle interactions, and organic matter composition of sediments at two sites in the Central Polish Basin. Physical and geochemical proxies for wildfire activity show evidence of increased wildfire activity both prior to and after the Toarcian Oceanic Anoxic Event (OAE) at the Kazewy-1 site, with suppression of wildfire activity during the negative carbon-isotope excursion of the OAE. Correlation with published wildfire activity proxy records from additional sites in the Tethyan realm shows that this pattern was not limited to the Central Polish Basin, but is part of a wider, regional change. Additionally, new wildfire activity proxy records show increased wildfire activity across the Triassic-Jurassic Boundary at the Kaszewy- 1 and Niekłań PIG-1 sites in the Central Polish Basin, correlating with other contemporaneous proxy records from Denmark and Greenland. New carbon- isotope records generated from terrestrial organic matter from the Niekłań PIG-1 core show trends towards heavier δ13C values immediately after the Triassic- Jurassic Boundary, providing evidence of a perturbation to the carbon-cycle at this time. Exploratory investigation of sediments from the Kaszewy-1 core provides a new record of BIT indices of Early Jurassic sediments, surpassing the oldest-known use of this terrestrial organic matter input proxy. Additionally, a newly-developed technique is used to investigate carbon-isotope variability in fossil terrestrial organic matter across the Toarcian Oceanic Anoxic Event carbon-isotope excursions. A new record of individual phytoclast δ13C values demonstrates that, despite δ13C variability between phytoclasts from a single horizon, larger overall trends in δ13C values can be identified from single phytoclast δ13C measurements. 3 4 ACKNOWLEDGEMENTS The work presented in this thesis would not have been possible without the assistance of the following people, and I would like to acknowledge and thank them for their help: Prof. Stephen P. Hesselbo, Camborne School of Mines, University of Exeter, for continuous, invaluable supervision, guidance, and support over the last 4 years. Without his assistance, this thesis simply would not be. Dr. Claire Belcher, wildFIRE Lab, University of Exeter, for continuous supervision, guidance, and support over the last 4 years. Dr. Kate Littler, Camborne School of Mines, University of Exeter, for continuous supervision, guidance, and support over the last 4 years, and for sample collection in the field. Prof. Grzegorz Pieńkowski, Polish Geological Institute – National Research Institute, for facilitating access to sample material held by the Polish Geological Institute, for guidance and assistance with sample collection in the field, and for general guidance on the topic of the Early Jurassic in the Polish Basin. Dr. Sarah Baker, wildFIRE Lab, University of Exeter, for guidance and assistance with processing of sample material for fossil charcoal analyses, and for providing sample material for the single phytoclast carbon-isotope values study. Sam Barker, formerly of the Environment and Sustainability Institute, University of Exeter, for guidance and assistance with carbon-isotope analyses of sample material from the Polish Basin. Dr. Sargent Bray and Dr. Jessica Whiteside, Organic Geochemistry and Compound Specific Isotope Ratio Mass Spectrometry Laboratory, University of Southampton, for facilitating collaborative polycyclic aromatic hydrocarbon analyses, and for guidance and assistance with laboratory work and data interpretation. Dr. Mark Grosvenor, wildFIRE Lab, University of Exeter, for guidance and assistance with processing of sample material for fossil charcoal analyses. 5 Dr. Marta Hodbod, Polish Geological Institute – National Research Institute, for providing sample material for carbon-isotope analyses. Prof. Melanie Leng, Stable Isotope Facility, British Geological Survey, for carbon-isotope analyses of sample material. Dr. Clemens V. Ullmann, Camborne School of Mines, University of Exeter, for assistance with sample collection in the field. Linda van Roij and Prof. Dr. Appy Sluijs, Department of Earth Sciences, Utrecht University, for facilitating collaborative single phytoclast carbon- isotope analyses, and for guidance and assistance with laboratory work and data interpretation. Dr. Christopher Vane and Dr. Raquel A. dos Santos, Organic Geochemistry Facility, British Geological Survey, for the processing and analysis of samples for the BIT index study. I would also like to thank my family and my partner for their unconditional support and encouragement over the last 4 years, as well as all of the new friends I’ve made during my time at Camborne School of Mines who helped to celebrate the good times, and to endure the hard times. 6 CONTENTS LIST OF FIGURES & TABLES IN THIS THESIS …………………………………………...16 ABBREVIATIONS USED IN THIS THESIS ………………………………………………...30 CHAPTER 1 INTRODUCTION ……………………………………………………...….31 CHAPTER 2 THESIS AIMS ……………………………………………………………35 CHAPTER 3 INDICATORS OF GLOBAL CHANGE AND VARIATIONS IN WILDFIRE ACTIVITY ………………………………………………………………………………………….36 3.1. Global Changes Across the Triassic-Jurassic Boundary …….…….……36 3.1.1. Defining the Triassic-Jurassic Boundary & Correlation Issues …....36 3.1.2. Environmental Conditions Across the T-J Boundary & Their Effects …………………………………………………………………………………...38 3.1.2.1. The End-Triassic Mass Extinction & Possible Causes ……..…39 3.1.3. Carbon-isotope Stratigraphy …………………………………….….…41 3.1.3.1. The Marine δ13Corg & δ13Ccarb Records ………………….……41 3.1.3.2. The Terrestrial δ13Corg Record ……………………………….….45 3.1.3.3. Possible Causes of the T-J Boundary Negative δ13C Excursions ………………………………………………………………………………..46 3.2. Global Changes During the Toarcian ………………………………………51 3.2.1. Environmental Conditions During the Toarcian ……………………..51 3.2.2. Organic and Inorganic Carbon-isotope Stratigraphy ……………….52 3.2.2.1. Causes of the Toarcian OAE Negative CIEs …………………..53 3.3. The Polish Basin: Early Jurassic Records ………………………………..54 3.3.1. Lower Jurassic Stratigraphy of the Polish Basin ……………………55 3.3.2. Environmental Conditions in the Polish Basin During the Early Jurassic ………………………………………………………………………...60 3.3.2.1. The Triassic-Jurassic Boundary ……………………………...…60 Contents 3.3.2.2. The Toarcian ……………………………………………….……..62 3.3.3. Previous Studies & Scope for Future Work ………………………....62 3.4. Carbon-isotopes in Organic Matter ………………………………………...64 3.4.1. A Brief Introduction to Stable Carbon-isotopes and δ13C Values ….64 3.4.2. Carbon-isotope Variability in Organic Matter ………………………..65 3.4.3. Carbon-isotope Signatures of Plants …………………………………66 3.4.3.1. Intrinsic Factors ……………………………………………………66 3.4.3.2. External Factors …………………………………………………..69 3.5. Wildfire Activity in the Fossil Record ………………………………………71 3.5.1. Physical Evidence: Fossil Charcoal ………………………………….71 3.5.1.1. Fossil Charcoal: Characteristics, Formation & Identification ...71 3.5.1.2. Fossil Charcoal as an Indicator of Past Wildfire Activity ……..72 3.5.2. Geochemical Evidence: Pyrolytic Polycyclic Aromatic Hydrocarbons …………………………………………………………………………………...76 3.5.2.1. Polycyclic Aromatic Hydrocarbons: Formation & Characteristics ………………………………………………………………………………..76 3.5.2.2. Pyrolytic PAHs as Indicators of Past Wildfire Activity ………...79 3.5.3. Causes of Changes in Wildfire Activity Levels ………………………80 3.5.3.1. Initiation of Wildfires ………………………………………………80 3.5.3.2. Factors Influencing Wildfire Activity Level ………………………82 3.5.4. Wildfire Activity During the Early Jurassic ……………………………87 3.5.4.1. The Triassic-Jurassic Boundary …………………………………87 3.5.4.2. The Toarcian Oceanic Anoxic Event ……………………………89 3.6. The BIT and MBT’-CBT indices …………………………………………….90 3.6.1. The BIT Index …………………………………………………………..90 8 Contents 3.6.2. The MBT’-CBT Index …………………………………………………..91 CHAPTER 4 LABORATORY METHODS USED IN THIS THESIS ………………………..93 4.1. Single-phytoclast δ13C Measurements …………………………………….93 4.1.1. St Audrie’s Bay, UK, Samples ………………………………………...93 4.1.2. Llanbedr, Wales, UK, Samples ………………………………………..97 4.2. Fossil Charcoal Quantification ……………………………………………..99 4.2.1. Acid Maceration & Sieving …………………………………………….99 4.2.2. Coarse Fraction Preparation & Particle Quantification …………….99 4.2.3. Fine Fraction Preparation & Particle Quantification ……………….101 4.3. Polycyclic Aromatic Hydrocarbon Quantification ………………………..102 4.3.1. Extraction & Separation of Polycyclic Aromatic Hydrocarbons from Sediments …………………………………………………………………….102 4.3.2. Analysis
Recommended publications
  • Ferns of the Lower Jurassic from the Mecsek Mountains (Hungary): Taxonomy and Palaeoecology
    PalZ (2019) 93:151–185 https://doi.org/10.1007/s12542-018-0430-8 RESEARCH PAPER Ferns of the Lower Jurassic from the Mecsek Mountains (Hungary): taxonomy and palaeoecology Maria Barbacka1,2 · Evelyn Kustatscher3,4,5 · Emese R. Bodor6,7 Received: 7 July 2017 / Accepted: 26 July 2018 / Published online: 20 September 2018 © The Author(s) 2018 Abstract Ferns are the most diverse group in the Early Jurassic plant assemblage of the Mecsek Mountains in southern Hungary and, considering their abundance and diversity, are an important element of the flora. Five families were recognized so far from the locality; these are, in order of abundance, the Dipteridaceae (48% of collected fern remains), Matoniaceae (25%), Osmun- daceae (21%), Marattiaceae (6%) and Dicksoniaceae (three specimens). Ferns are represented by 14 taxa belonging to nine genera: Marattiopsis hoerensis, Todites princeps, Todites goeppertianus, Phlebopteris angustiloba, Phlebopteris kirchneri Barbacka and Kustatscher sp. nov., Matonia braunii, Thaumatopteris brauniana, Clathropteris meniscoides, Dictyophyl- lum nilssoni, Dictyophyllum rugosum, Cladophlebis denticulata, Cladophlebis haiburnensis, Cladophlebis roessertii, and Coniopteris sp. Ferns from the Mecsek Mts. are rarely found in association with other plants. They co-occur mostly with leaves of Nilssonia, leaflets of Sagenopteris, and rarely with other plants. The most commonly co-occurring fern species is P. kirchneri Barbacka and Kustatscher sp. nov. According to our statistical approach (PCA, Ward cluster analysis), the fern taxa cluster in four groups corresponding to their environmental preferences, determined by moisture and disturbance. Most taxa grew in monospecific thickets in disturbed areas; a few probably formed bushes in mixed assemblages, whereas one taxon, P. kirchneri, probably was a component of the understorey in a stable, developed succession of humid environments.
    [Show full text]
  • Middle Jurassic Plant Diversity and Climate in the Ordos Basin, China Yun-Feng Lia, B, *, Hongshan Wangc, David L
    ISSN 0031-0301, Paleontological Journal, 2019, Vol. 53, No. 11, pp. 1216–1235. © Pleiades Publishing, Ltd., 2019. Middle Jurassic Plant Diversity and Climate in the Ordos Basin, China Yun-Feng Lia, b, *, Hongshan Wangc, David L. Dilchera, b, d, E. Bugdaevae, Xiao Tana, b, d, Tao Lia, b, Yu-Ling Naa, b, and Chun-Lin Suna, b, ** aKey Laboratory for Evolution of Past Life and Environment in Northeast Asia, Jilin University, Changchun, Jilin, 130026 China bResearch Center of Palaeontology and Stratigraphy, Jilin University, Changchun, Jilin, 130026 China cFlorida Museum of Natural History, University of Florida, Gainesville, Florida, 32611 USA dDepartment of Earth and Atmospheric Sciences, Indiana University, Bloomington, Indiana, 47405 USA eFederal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, 690022 Russia *e-mail: [email protected] **e-mail: [email protected] Received April 3, 2018; revised November 29, 2018; accepted December 28, 2018 Abstract—The Ordos Basin is one of the largest continental sedimentary basins and it represents one major and famous production area of coal, oil and gas resources in China. The Jurassic non-marine deposits are well developed and cropped out in the basin. The Middle Jurassic Yan’an Formation is rich in coal and con- tains diverse plant remains. We recognize 40 species in 25 genera belonging to mosses, horsetails, ferns, cycadophytes, ginkgoaleans, czekanowskialeans and conifers. This flora is attributed to the early Middle Jurassic Epoch, possibly the Aalenian-Bajocian. The climate of the Ordos Basin during the Middle Jurassic was warm and humid with seasonal temperature and precipitation fluctuations.
    [Show full text]
  • A Biographical Index of British and Irish Botanists
    L Biographical Index of British and Irish Botanists. TTTEN & BOULGER, A BIOaEAPHICAL INDEX OF BKITISH AND IRISH BOTANISTS. BIOGRAPHICAL INDEX OF BRITISH AND IRISH BOTANISTS COMPILED BY JAMES BEITTEN, F.L.S. SENIOR ASSISTANT, DEPARTMENT OF BOTANY, BBITISH MUSEUM AKD G. S. BOULGEE, E.L. S., F. G. S. PROFESSOR OF BOTANY, CITY OF LONDON COLLEGE LONDON WEST, NEWMAN & CO 54 HATTON GARDEN 1893 LONDON PRINTED BY WEST, NEWMAN AND HATTON GAEDEN PEEFACE. A FEW words of explanation as to the object and scope of this Index may fitly appear as an introduction to the work. It is intended mainly as a guide to further information, and not as a bibliography or biography. We have been liberal in including all who have in any way contributed to the literature of Botany, who have made scientific collections of plants, or have otherwise assisted directly in the progress of Botany, exclusive of pure Horticulture. We have not, as a rule, included those who were merely patrons of workers, or those known only as contributing small details to a local Flora. Where known, the name is followed by the years of birth and death, which, when uncertain, are marked with a ? or c. [circa) ; or merely approximate dates of "flourishing" are given. Then follows the place and day of bu'th and death, and the place of burial ; a brief indication of social position or occupation, espe- cially in the cases of artisan botanists and of professional collectors; chief university degrees, or other titles or offices held, and dates of election to the Linnean and Eoyal Societies.
    [Show full text]
  • Geol. Quart. 49 (3)
    Geological Quarterly, 2005, 49 (3): 317–330 The Ciechocinek Formation (Lower Jurassic) of SW Poland: petrology of green clastic rocks Paulina LEONOWICZ Leonowicz P. (2005) — The Ciechocinek Formation (Lower Jurassic) of SW Poland: petrology of green clastic rocks. Geol. Quart., 49 (3): 317–330. Warszawa. The Lower Jurassic Ciechocinek Formation from the Czêstochowa-Wieluñ region of SW Poland comprises greenish-grey muds and silts as well as poorly consolidated mudstones and siltstones with lenticular intercalations of fine-grained sands, sandstones and siderites. Analysis of a mineral composition indicates that the detrital material was derived mainly from the weathering of metamorphic and sedi- mentary rocks of the eastern Sudetes with their foreland and of the Upper Silesia area, and that this material underwent repeated redeposition. The Fe-rich chlorites which give the green colour to the mudstones of the Ciechocinek Formation are most probably early diagenetic minerals, genetically linked with the deposition in a brackish sedimentary basin. Paulina Leonowicz, Institute of Geology, University of Warsaw, ¯wirki i Wigury 93, PL-02-089 Warszawa, Poland, e-mail: [email protected] (received: June 8, 2004; accepted: March 3, 2005). Key words: Lower Jurassic, Cracow-Silesian Upland, provenance, petrology, sandstones, mudstones. INTRODUCTION and Wieluñ (Fig. 2). Its main purpose is recognition of the provenance of clastic material in these rocks, based on their mineral composition, and investigation of the origin of the The Ciechocinek Formation (Pieñkowski, 2004), earlier characteristic green colour of the mudstones, generally consid- known as the Lower £ysiec, Gryfice, Ciechocinek or Estheria ered as the characteristic feature of the Ciechocinek Formation.
    [Show full text]
  • A Synoptic Review of the Vertebrate Fauna from the “Green Series
    A synoptic review of the vertebrate fauna from the “Green Series” (Toarcian) of northeastern Germany with descriptions of new taxa: A contribution to the knowledge of Early Jurassic vertebrate palaeobiodiversity patterns I n a u g u r a l d i s s e r t a t i o n zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Ernst-Moritz-Arndt-Universität Greifswald vorgelegt von Sebastian Stumpf geboren am 9. Oktober 1986 in Berlin-Hellersdorf Greifswald, Februar 2017 Dekan: Prof. Dr. Werner Weitschies 1. Gutachter: Prof. Dr. Ingelore Hinz-Schallreuter 2. Gutachter: Prof. Dr. Paul Martin Sander Tag des Promotionskolloquiums: 22. Juni 2017 2 Content 1. Introduction .................................................................................................................................. 4 2. Geological and Stratigraphic Framework .................................................................................... 5 3. Material and Methods ................................................................................................................... 8 4. Results and Conclusions ............................................................................................................... 9 4.1 Dinosaurs .................................................................................................................................. 10 4.2 Marine Reptiles .......................................................................................................................
    [Show full text]
  • Non-Marine Carbon-Isotope Stratigraphy of the Triassic-Jurassic
    Earth-Science Reviews 210 (2020) 103383 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Review article Non-marine carbon-isotope stratigraphy of the Triassic-Jurassic transition in T the Polish Basin and its relationships to organic carbon preservation, pCO2 and palaeotemperature ⁎ Grzegorz Pieńkowskia, , Stephen P. Hesselbob, Maria Barbackac,e, Melanie J. Lengd,f a Polish Geological Institute – National Research Institute, Rakowiecka 4, PL-00-975 Warszawa, Poland b Camborne School of Mines and Environment and Sustainability Institute, University of Exeter, Penryn TR10 9FE, UK c W. Szafer Institute of Botany, PAN, ul. Lubicz 46, PL- 31-512 Kraków, Poland d National Environmental Isotope Facility, British Geological Survey, Nottingham NG12 5GG, UK e Department of Botany, Hungarian Natural History Museum, H-1476 Budapest, P.O. Box 222, Hungary f Centre for Environmental Geochemistry, School of Biosciences, University of Nottingham, LE12 5RD, UK ARTICLE INFO ABSTRACT 13 Keywords: New carbon-isotope data obtained from homogenous organic material (separated microfossil wood; δ Cwood) Chemostratigraphy from the upper Rhaetian and entire Lower Jurassic permit chemostratigraphic correlation of these marginal/ Correlation non-marine deposits with the biostratigraphically well-constrained Llanbedr (Mochras Farm) core in N Wales Paralic facies and other marine profiles, supported by sequence stratigraphic correlation and biostratigraphical markers. Palaeoclimate 13 Statistically significant (Rs = 0.61) positive exponential correlation between δ Cwood values and continental Carbon isotopes 13 TOC (TOCcont) concentrations occurs and can be defined empirically by equation. Changes of δ Cwood observed 13 in C3 plants depends on δ CO2 of atmosphere and can be modulated by other factors such as pCO2 causing fractionation (enrichment in 12C) of C isotopes in source C3 plants and, to lesser extent, by soil moisture content.
    [Show full text]
  • The Thick- Ness
    BLUMEA 38 (1993) 167-172 A taxonomic study of the genus Matonia(Matoniaceae) Masahiro Kato Botanical Gardens, Faculty of Science, University of Tokyo, 3-7-1 Hakusan, Tokyo 112, Japan Summary A morphological comparison shows that Matonia consists of two species, M. foxworthyi and M. pectinata, which are distinguished by a few characters including the number of pinnae and the presence/absence of hairs on the costae. Introduction Matoniais a small genus which together withPhanerosorus, with two species (Kato & Iwatsuki, 1985), constitutes the phylogenetically and systematically isolatedfamily Matoniaceae(Andrews & Boureau, 1970; Kramer, 1990). A few species have been describedunderMatonia.Matoniapectinata was first described from the Malay Pe- ninsula Brown who established the by R. (Wallich, 1829) genus Matonia.Matonia sarmentosa was a second species, described by Baker (1887) and later transferred to the genus Phanerosorus by Copeland (1908). Matoniafoxworthyi was described from Sarawak by Copeland (1908). Matoniadiffers distinctly fromPhanerosorus in its pedate leaves with a central pinna. The species taxonomy of Matonia is not settled. Christensen & Holttum (1934) and Kramer (1990) doubted distinctness of M. pectinata and M. foxworthyi, and Parris et al. (1992) combined the two species into M. pectinata. Copeland (1908), Holttum (1968) and Tan & Tolentino (1987) regarded them as independent species. The differencesin these treatments are due to different evaluationof whetherthe vari- ation of diagnostic characters is continuous or discontinuous between the species (Christensen & Holttum, 1934). The most disputed character is the shape of pinna- in segments: they are falcate M. pectinata and only weakly so in M. foxworthyi. In revise the of the author an attempt to taxonomy Matonia, tested in the present study whether the two species are morphologically separable or not.
    [Show full text]
  • Osmunda Pulchella Sp. Nov. from the Jurassic of Sweden
    Bomfleur et al. BMC Evolutionary Biology (2015) 15:126 DOI 10.1186/s12862-015-0400-7 RESEARCH ARTICLE Open Access Osmunda pulchella sp. nov. from the Jurassic of Sweden—reconciling molecular and fossil evidence in the phylogeny of modern royal ferns (Osmundaceae) Benjamin Bomfleur1*, Guido W. Grimm1,2 and Stephen McLoughlin1 Abstract Background: The classification of royal ferns (Osmundaceae) has long remained controversial. Recent molecular phylogenies indicate that Osmunda is paraphyletic and needs to be separated into Osmundastrum and Osmunda s.str. Here, however, we describe an exquisitely preserved Jurassic Osmunda rhizome (O. pulchella sp. nov.) that combines diagnostic features of both Osmundastrum and Osmunda, calling molecular evidence for paraphyly into question. We assembled a new morphological matrix based on rhizome anatomy, and used network analyses to establish phylogenetic relationships between fossil and extant members of modern Osmundaceae. We re-analysed the original molecular data to evaluate root-placement support. Finally, we integrated morphological and molecular data-sets using the evolutionary placement algorithm. Results: Osmunda pulchella and five additional Jurassic rhizome species show anatomical character suites intermediate between Osmundastrum and Osmunda. Molecular evidence for paraphyly is ambiguous: a previously unrecognized signal from spacer sequences favours an alternative root placement that would resolve Osmunda s.l. as monophyletic. Our evolutionary placement analysis identifies fossil species as probable ancestral members of modern genera and subgenera, which accords with recent evidence from Bayesian dating. Conclusions: Osmunda pulchella is likely a precursor of the Osmundastrum lineage. The recently proposed root placement in Osmundaceae—based solely on molecular data—stems from possibly misinformative outgroup signals in rbcL and atpA genes.
    [Show full text]
  • Systematics and Biogeography of the Clusioid Clade (Malpighiales) Brad R
    Eastern Kentucky University Encompass Biological Sciences Faculty and Staff Research Biological Sciences January 2011 Systematics and Biogeography of the Clusioid Clade (Malpighiales) Brad R. Ruhfel Eastern Kentucky University, [email protected] Follow this and additional works at: http://encompass.eku.edu/bio_fsresearch Part of the Plant Biology Commons Recommended Citation Ruhfel, Brad R., "Systematics and Biogeography of the Clusioid Clade (Malpighiales)" (2011). Biological Sciences Faculty and Staff Research. Paper 3. http://encompass.eku.edu/bio_fsresearch/3 This is brought to you for free and open access by the Biological Sciences at Encompass. It has been accepted for inclusion in Biological Sciences Faculty and Staff Research by an authorized administrator of Encompass. For more information, please contact [email protected]. HARVARD UNIVERSITY Graduate School of Arts and Sciences DISSERTATION ACCEPTANCE CERTIFICATE The undersigned, appointed by the Department of Organismic and Evolutionary Biology have examined a dissertation entitled Systematics and biogeography of the clusioid clade (Malpighiales) presented by Brad R. Ruhfel candidate for the degree of Doctor of Philosophy and hereby certify that it is worthy of acceptance. Signature Typed name: Prof. Charles C. Davis Signature ( ^^^M^ *-^£<& Typed name: Profy^ndrew I^4*ooll Signature / / l^'^ i •*" Typed name: Signature Typed name Signature ^ft/V ^VC^L • Typed name: Prof. Peter Sfe^cnS* Date: 29 April 2011 Systematics and biogeography of the clusioid clade (Malpighiales) A dissertation presented by Brad R. Ruhfel to The Department of Organismic and Evolutionary Biology in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Biology Harvard University Cambridge, Massachusetts May 2011 UMI Number: 3462126 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.
    [Show full text]
  • Matoniaceae (Pteridophyta) - a New Family Record for Thailand
    THAI FOR. BULL. (BOT.) 31: 47– 52. 2003. Matoniaceae (Pteridophyta) - a new family record for Thailand STUART LINDSAY*, SOMRAN SUDDEE**, DAVID J. MIDDLETON* & RACHUN POOMA** ABSTRACT. The fern species Matonia pectinata R.Br. has recently been collected in two provinces in Peninsular Thailand (Trang and Yala). These collections represent the first records for this species, the genus Matonia and the family Matoniaceae in Thailand. Trang is also the new northern limit of the known distributional range of M. pectinata. During a plant collecting trip to the Khao Banthat Mountain Range in Trang province during 2003 a very unusual fern species, clearly absent from the pteridological literature for Thailand (see Tagawa & Iwatsuki, 1979, 1985, 1988, 1989; Boonkerd & Pollawatn, 2000), was found near the summit of Phu Pha Mek. Subsequent research revealed that this species was Matonia pectinata R.Br. and that another plant (specimen at BKF but its existence unpublished) had been collected in Yala province in February 2000. These two collections represent not only the first records for M. pectinata in Thailand but also the first records for the genus Matonia and the family Matoniaceae in Thailand. Matoniaceae is a small family of primitive leptosporangiate ferns. It has a widespread and diverse fossil record (interpreted as 11 or more genera; see Holttum, 1954, 1968, Kramer, 1990, Tryon & Lugardon, 1990, Nishida et al., 1998) but, today, the family is represented by only four species in two genera that are restricted to Southeast Asia. The two genera (which differ most noticeably in their ecological preferences and frond architecture) are Matonia and Phanerosorus.
    [Show full text]
  • 9Th International Congress on the Juras Ic Ys Em, Jaipur, India Abstracts
    9th International Congress on the Juras ic ys em, Jaipur, India Abstracts 9th International Congress on the Jurassic System, Jaipur, India Abstracts Dhirendra K. Pandey, Franz T. Fiirsich & Matthias Alberti (Eds.) Beringeria Special Issue 8 - Erlangen 2 014 Cover photographs Front: The facade of the Hawa Mahal or Palace of Winds in Jaipur. Back: A mural in the Nahargarh Fort near Jaipur. Addresses of the editors: DHIRENDRA K. PANDEY, Department of Geology, University of Rajasthan, Jaipur, 302004, India; E-mail: [email protected] FRANZ T. FiiRSICH, GeoZentrum Nordbayern, Fachgruppe PaUioumwelt der Friedrich-Alexander­ Universitat Erlangen-Niirnberg, Loewenichstr. 28, D-91054 Erlangen, Germany; E-mail: franz. [email protected] MATTHIAS ALBERTI, Institut fiir Geowissenschaften, Christian-Albrechts-Universitat zu Kiel, Ludewig-Meyn-Str. 10, D-24118 Kiel, Germany; E-mail: [email protected] Beringeria, Special Issue 8: 213 pages Erlangen, 01.12.2013 ISSN 093 7-0242 Publisher: Freunde der nordbayerischen Geowissenschaftene. V. Editorial Office: GeoZentrum Nordbayern, Fachgruppe Palaoumwelt, Friedrich-Alexander-Universitat Erlangen-N iirnberg Loewenichstr. 28, D-91054 Erlangen, Germany. Print: Tiwari Printers Jhotwara,Jaipur, 302012, India. 9th International Congress on the Jurassic System - Abstracts 3 Contents A sequence stratigraphic interpretation of the contact between the Lathi and 11 Jaisalmer formations, Jaisalmer Basin, Rajasthan, India by A. Agarwal, A. S. Kale & P. B. Jadhav Ammonites of the family Mayaitidae SPATH, 1928 from the Oxfordian of Kachchh, 13 western India by M. Alberti, D. K. Pandey,M. Hethke & F. T. Fiirsich Stratigraphy, facies analysis and reservoir characterization of the Upper Jurassic 16 Arab "C", Qatar, Arabian Gulf by H. Al-Saad & F.
    [Show full text]
  • University of Michigan University Library
    CONTRIBUTIONS FROM THE MUSEUM OF PALEONTOLOGY THE UNIVERSITY OF MICHIGAN VOL.XXI, NO.8, pp. 139-203 (4 pls., 9 figs.) JUNE 30,1967 EVOLUTION OF THE FERN GENUS OSMUNDA BY CHARLES N. MILLER, JR. MUSEUM OF PALEONTOLOGY THE UNIVERSITY OF MICHIGAN ANN ARBOR CONTRIBUTIONS FROM THE MUSEUM OF PALEONTOLOGY Director: LEWISB. KELLUM The series of contributions from the Museum of Paleontology is a medium for the publication of papers based chiefly upon the collection in the Museum. When the number of pages issued is sufficient to make a volume, a title page and a table of contents will be sent to libraries on the mailing list, and to individuals upon request. A list of the separate papers may also be obtained. Correspondence should be directed to the Museum of Paleontology, The University of Michigan, Ann Arbor, Michigan. VOLS.11-XX. Parts of volumes may be obtained if available. VOLUMEXXI 1. Fossils from the Seymour Formation of Knox and Baylor Counties, Texas, and their bearing on the Late Kansan Climate of that Region, by Claude W. Hibbard and Walter W. Dalquest, Pages 1-66, with 5 plates and 8 figures. 2. Planalveolitella, a new genus of Devonian Tabulate Corals, with a rede- scription of Planalveolites faughti (Edwards and Haime), by Erwin C. Stumm, Pages 67-72, with 1 plate. 3. Neopalaeaster enigmeticus, New Stadish from Upper Mississippian Paint Creek Formation in Illinois, by Robert V. Kesling, Pages 73-85, with plates and 3 figures. 4. Tabulate Corals of the Silica Shale (Middle Devonian) of Northwestern Ohio and Southeastern Michigan, by Erwin C.
    [Show full text]