Ferns of the Lower Jurassic from the Mecsek Mountains (Hungary): Taxonomy and Palaeoecology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Middle Jurassic Plant Diversity and Climate in the Ordos Basin, China Yun-Feng Lia, B, *, Hongshan Wangc, David L
ISSN 0031-0301, Paleontological Journal, 2019, Vol. 53, No. 11, pp. 1216–1235. © Pleiades Publishing, Ltd., 2019. Middle Jurassic Plant Diversity and Climate in the Ordos Basin, China Yun-Feng Lia, b, *, Hongshan Wangc, David L. Dilchera, b, d, E. Bugdaevae, Xiao Tana, b, d, Tao Lia, b, Yu-Ling Naa, b, and Chun-Lin Suna, b, ** aKey Laboratory for Evolution of Past Life and Environment in Northeast Asia, Jilin University, Changchun, Jilin, 130026 China bResearch Center of Palaeontology and Stratigraphy, Jilin University, Changchun, Jilin, 130026 China cFlorida Museum of Natural History, University of Florida, Gainesville, Florida, 32611 USA dDepartment of Earth and Atmospheric Sciences, Indiana University, Bloomington, Indiana, 47405 USA eFederal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, 690022 Russia *e-mail: [email protected] **e-mail: [email protected] Received April 3, 2018; revised November 29, 2018; accepted December 28, 2018 Abstract—The Ordos Basin is one of the largest continental sedimentary basins and it represents one major and famous production area of coal, oil and gas resources in China. The Jurassic non-marine deposits are well developed and cropped out in the basin. The Middle Jurassic Yan’an Formation is rich in coal and con- tains diverse plant remains. We recognize 40 species in 25 genera belonging to mosses, horsetails, ferns, cycadophytes, ginkgoaleans, czekanowskialeans and conifers. This flora is attributed to the early Middle Jurassic Epoch, possibly the Aalenian-Bajocian. The climate of the Ordos Basin during the Middle Jurassic was warm and humid with seasonal temperature and precipitation fluctuations. -
A Biographical Index of British and Irish Botanists
L Biographical Index of British and Irish Botanists. TTTEN & BOULGER, A BIOaEAPHICAL INDEX OF BKITISH AND IRISH BOTANISTS. BIOGRAPHICAL INDEX OF BRITISH AND IRISH BOTANISTS COMPILED BY JAMES BEITTEN, F.L.S. SENIOR ASSISTANT, DEPARTMENT OF BOTANY, BBITISH MUSEUM AKD G. S. BOULGEE, E.L. S., F. G. S. PROFESSOR OF BOTANY, CITY OF LONDON COLLEGE LONDON WEST, NEWMAN & CO 54 HATTON GARDEN 1893 LONDON PRINTED BY WEST, NEWMAN AND HATTON GAEDEN PEEFACE. A FEW words of explanation as to the object and scope of this Index may fitly appear as an introduction to the work. It is intended mainly as a guide to further information, and not as a bibliography or biography. We have been liberal in including all who have in any way contributed to the literature of Botany, who have made scientific collections of plants, or have otherwise assisted directly in the progress of Botany, exclusive of pure Horticulture. We have not, as a rule, included those who were merely patrons of workers, or those known only as contributing small details to a local Flora. Where known, the name is followed by the years of birth and death, which, when uncertain, are marked with a ? or c. [circa) ; or merely approximate dates of "flourishing" are given. Then follows the place and day of bu'th and death, and the place of burial ; a brief indication of social position or occupation, espe- cially in the cases of artisan botanists and of professional collectors; chief university degrees, or other titles or offices held, and dates of election to the Linnean and Eoyal Societies. -
(Early Jurassic) in the Réka Valley Section, Hungary
Review of Palaeobotany and Palynology 235 (2016) 51–70 Contents lists available at ScienceDirect Review of Palaeobotany and Palynology journal homepage: www.elsevier.com/locate/revpalbo Multiphase response of palynomorphs to the Toarcian Oceanic Anoxic Event (Early Jurassic) in the Réka Valley section, Hungary Viktória Baranyi a,⁎,JózsefPálfyb,c, Ágnes Görög a, James B. Riding d,BélaRaucsike a Department of Palaeontology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary b Department of Physical and Applied Geology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary c MTA-MTM-ELTE Research Group for Paleontology, POB 137, Budapest H-1431, Hungary d British Geological Survey, Environmental Science Centre, Keyworth, Nottingham NG12 5GG, United Kingdom e Department of Mineralogy, Geochemistry and Petrology, University of Szeged, Egyetem utca 2, Szeged H-6722, Hungary article info abstract Article history: Major palaeoenvironmental and palaeoceanographical changes occurred during the Early Jurassic Toarcian Oce- Received 2 September 2015 anic Anoxic Event (T-OAE), due to a perturbation of the global carbon cycle and a crisis in marine ecosystems. The Received in revised form 13 September 2016 sequence of environmental change and regional differences during the T-OAE are not yet fully understood and Accepted 24 September 2016 organic-walled phytoplankton and other palynomorphs are well-suited, but under-utilised, in research into Available online 30 September 2016 this event. Based on quantitative palynological analyses from a black shale-bearing succession at Réka Valley in the Mecsek Mountains of southwest Hungary, five sequential palynomorph assemblages are distinguished. Keywords: Dinoflagellate cysts These reveal major shifts in organic-walled phytoplankton communities, driven by palaeoenvironmental chang- Early Jurassic es. -
Biodiversity and the Reconstruction of Early Jurassic Flora from the Mecsek
Acta Palaeobotanica 51(2): 127–179, 2011 Biodiversity and the reconstruction of Early Jurassic fl ora from the Mecsek Mountains (southern Hungary) MARIA BARBACKA Hungarian Natural History Museum, Department of Botany, H-1476, P.O. Box 222, W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland; e-mail: [email protected] Received 15 June 2011; accepted for publication 27 October 2011 ABSTRACT. Rich material from Hungary’s Early Jurassic (the Mecsek Mts.) was investigated in a palaeoen- vironmental context. The locality (or, more precisely, area with a number of fossiliferous sites) is known as a delta plain, showing diverse facies, which suggest different landscapes with corresponding plant assemblages. Taphonomical observations proved that autochthonous and parautochthonous plant associations were present. The reconstruction of the biomes is based on the co-occurrence of taxa and their connection with the rock matrix and sites in the locality, as well as the environmental adaptation of the plants expressed in their morphology and cuticular structure. The climatic parameters were confi rmed as typical for the Early Jurassic by resolution of a palaeoatmospheric CO2 level based on the stomatal index of one of the common species, Ginkgoites mar- ginatus (Nathorst) Florin. Plant communities were differentiated with the help of Detrended Correspondence Analysis (DCA); the rela- tionship between taxa and sites and lithofacies and sites, were analysed by Ward’s minimal variance and cluste- red with the help -
The Thick- Ness
BLUMEA 38 (1993) 167-172 A taxonomic study of the genus Matonia(Matoniaceae) Masahiro Kato Botanical Gardens, Faculty of Science, University of Tokyo, 3-7-1 Hakusan, Tokyo 112, Japan Summary A morphological comparison shows that Matonia consists of two species, M. foxworthyi and M. pectinata, which are distinguished by a few characters including the number of pinnae and the presence/absence of hairs on the costae. Introduction Matoniais a small genus which together withPhanerosorus, with two species (Kato & Iwatsuki, 1985), constitutes the phylogenetically and systematically isolatedfamily Matoniaceae(Andrews & Boureau, 1970; Kramer, 1990). A few species have been describedunderMatonia.Matoniapectinata was first described from the Malay Pe- ninsula Brown who established the by R. (Wallich, 1829) genus Matonia.Matonia sarmentosa was a second species, described by Baker (1887) and later transferred to the genus Phanerosorus by Copeland (1908). Matoniafoxworthyi was described from Sarawak by Copeland (1908). Matoniadiffers distinctly fromPhanerosorus in its pedate leaves with a central pinna. The species taxonomy of Matonia is not settled. Christensen & Holttum (1934) and Kramer (1990) doubted distinctness of M. pectinata and M. foxworthyi, and Parris et al. (1992) combined the two species into M. pectinata. Copeland (1908), Holttum (1968) and Tan & Tolentino (1987) regarded them as independent species. The differencesin these treatments are due to different evaluationof whetherthe vari- ation of diagnostic characters is continuous or discontinuous between the species (Christensen & Holttum, 1934). The most disputed character is the shape of pinna- in segments: they are falcate M. pectinata and only weakly so in M. foxworthyi. In revise the of the author an attempt to taxonomy Matonia, tested in the present study whether the two species are morphologically separable or not. -
Dinosaur Ichnotaxa from the Lower Jurassic of Hungary
Geological Quarterly, Vol.40,No.l,1996,p.1l9- 128 Gerard GIERLrNSKI Dinosaur ichnotaxa from the Lower Jurassic of Hungary The Early Jurassic strata of the Mecsek Coal Fonnatioo of southern Hungary revealed new dinosaur tracks. Two ichnospecies of Gralla/or /uberosus (Hitchcock 1836) Weems 1992 and Kayen/aplIS soltykovensis (Gierliriski 1991) comb. nov. have been recognized. The iCMotaxonomy of Kayelilaplis is emended and supplemented by a ichnotaxon previously designated as "Gralla/or (Eubrontes) soltykovensis". INTRODUCTION Occurrence of dinosaur tracks in Hungary is restricted to the Early Liassic deposits of the Mecsek Coal Formation, in the Pecs area. The first discoveries were reported from the Vasas mine and Komlo CA. Tasnadi Kubacska, 1967, 1968. 1970; L. Kordos. 1983). Later. dinosaur tracks were also found in the Pecsbanya mine (K. Hips et aI., i989). New material described herein was collected in September, 1995. in the Vasas and Pecsbanya opencast coal mines. Contrary to L. Kordos (1983), the features of hitherto discovered ichnites from Hungary indicate their theropod affinity (not ornithischian, as L. Kordos postulated). The tracks resemble well known cosmopolitan theropod ichnotaxa of Grallator and Kayentapus. Abbreviation used in the text: te - third digit projection beyond the lateral toes; fl - pes length; fw - pes width; Muz. PIG - Geological Museum of the Polish Geological Institute, Warsaw. Poland; LO - Geological Institute of the Lund University, Lund. Sweden; UCMP - University of California Museum of Paleontology ,Berkeley. California, USA; MNA - Paleontological Locality Files of the Museum of Northern Arizona, Flagstaff. Arizona, USA. 120 Gerard Gidiitski SYSTEMATIC DESCRIPTIONS Suborder Theropoda Marsh 188 1 IchnofarniIy GraIlatoridae Lull 1904 Ichnogenus Graitator Hitchcock 1858 Grallator tuberoxus (Hitchcock 1835) Weems I992 (PI, I, Figs- 2,3) M a r e r i a 1 :Muz. -
Osmunda Pulchella Sp. Nov. from the Jurassic of Sweden
Bomfleur et al. BMC Evolutionary Biology (2015) 15:126 DOI 10.1186/s12862-015-0400-7 RESEARCH ARTICLE Open Access Osmunda pulchella sp. nov. from the Jurassic of Sweden—reconciling molecular and fossil evidence in the phylogeny of modern royal ferns (Osmundaceae) Benjamin Bomfleur1*, Guido W. Grimm1,2 and Stephen McLoughlin1 Abstract Background: The classification of royal ferns (Osmundaceae) has long remained controversial. Recent molecular phylogenies indicate that Osmunda is paraphyletic and needs to be separated into Osmundastrum and Osmunda s.str. Here, however, we describe an exquisitely preserved Jurassic Osmunda rhizome (O. pulchella sp. nov.) that combines diagnostic features of both Osmundastrum and Osmunda, calling molecular evidence for paraphyly into question. We assembled a new morphological matrix based on rhizome anatomy, and used network analyses to establish phylogenetic relationships between fossil and extant members of modern Osmundaceae. We re-analysed the original molecular data to evaluate root-placement support. Finally, we integrated morphological and molecular data-sets using the evolutionary placement algorithm. Results: Osmunda pulchella and five additional Jurassic rhizome species show anatomical character suites intermediate between Osmundastrum and Osmunda. Molecular evidence for paraphyly is ambiguous: a previously unrecognized signal from spacer sequences favours an alternative root placement that would resolve Osmunda s.l. as monophyletic. Our evolutionary placement analysis identifies fossil species as probable ancestral members of modern genera and subgenera, which accords with recent evidence from Bayesian dating. Conclusions: Osmunda pulchella is likely a precursor of the Osmundastrum lineage. The recently proposed root placement in Osmundaceae—based solely on molecular data—stems from possibly misinformative outgroup signals in rbcL and atpA genes. -
Systematics and Biogeography of the Clusioid Clade (Malpighiales) Brad R
Eastern Kentucky University Encompass Biological Sciences Faculty and Staff Research Biological Sciences January 2011 Systematics and Biogeography of the Clusioid Clade (Malpighiales) Brad R. Ruhfel Eastern Kentucky University, [email protected] Follow this and additional works at: http://encompass.eku.edu/bio_fsresearch Part of the Plant Biology Commons Recommended Citation Ruhfel, Brad R., "Systematics and Biogeography of the Clusioid Clade (Malpighiales)" (2011). Biological Sciences Faculty and Staff Research. Paper 3. http://encompass.eku.edu/bio_fsresearch/3 This is brought to you for free and open access by the Biological Sciences at Encompass. It has been accepted for inclusion in Biological Sciences Faculty and Staff Research by an authorized administrator of Encompass. For more information, please contact [email protected]. HARVARD UNIVERSITY Graduate School of Arts and Sciences DISSERTATION ACCEPTANCE CERTIFICATE The undersigned, appointed by the Department of Organismic and Evolutionary Biology have examined a dissertation entitled Systematics and biogeography of the clusioid clade (Malpighiales) presented by Brad R. Ruhfel candidate for the degree of Doctor of Philosophy and hereby certify that it is worthy of acceptance. Signature Typed name: Prof. Charles C. Davis Signature ( ^^^M^ *-^£<& Typed name: Profy^ndrew I^4*ooll Signature / / l^'^ i •*" Typed name: Signature Typed name Signature ^ft/V ^VC^L • Typed name: Prof. Peter Sfe^cnS* Date: 29 April 2011 Systematics and biogeography of the clusioid clade (Malpighiales) A dissertation presented by Brad R. Ruhfel to The Department of Organismic and Evolutionary Biology in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Biology Harvard University Cambridge, Massachusetts May 2011 UMI Number: 3462126 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. -
Matoniaceae (Pteridophyta) - a New Family Record for Thailand
THAI FOR. BULL. (BOT.) 31: 47– 52. 2003. Matoniaceae (Pteridophyta) - a new family record for Thailand STUART LINDSAY*, SOMRAN SUDDEE**, DAVID J. MIDDLETON* & RACHUN POOMA** ABSTRACT. The fern species Matonia pectinata R.Br. has recently been collected in two provinces in Peninsular Thailand (Trang and Yala). These collections represent the first records for this species, the genus Matonia and the family Matoniaceae in Thailand. Trang is also the new northern limit of the known distributional range of M. pectinata. During a plant collecting trip to the Khao Banthat Mountain Range in Trang province during 2003 a very unusual fern species, clearly absent from the pteridological literature for Thailand (see Tagawa & Iwatsuki, 1979, 1985, 1988, 1989; Boonkerd & Pollawatn, 2000), was found near the summit of Phu Pha Mek. Subsequent research revealed that this species was Matonia pectinata R.Br. and that another plant (specimen at BKF but its existence unpublished) had been collected in Yala province in February 2000. These two collections represent not only the first records for M. pectinata in Thailand but also the first records for the genus Matonia and the family Matoniaceae in Thailand. Matoniaceae is a small family of primitive leptosporangiate ferns. It has a widespread and diverse fossil record (interpreted as 11 or more genera; see Holttum, 1954, 1968, Kramer, 1990, Tryon & Lugardon, 1990, Nishida et al., 1998) but, today, the family is represented by only four species in two genera that are restricted to Southeast Asia. The two genera (which differ most noticeably in their ecological preferences and frond architecture) are Matonia and Phanerosorus. -
Quality of Selected Hungarian Coals
Prepared in cooperation with the Mineral Management Division, Hungarian Geological Survey and the United States–Hungarian Science and Technology Joint Fund Quality of Selected Hungarian Coals Scientific Investigations Report 2006–5289 U.S. Department of the Interior U.S. Geological Survey Quality of Selected Hungarian Coals By E.R. Landis, T.J. Rohrbacher, H.J. Gluskoter, Bela Fodor, and Gizella Gombar Prepared in cooperation with the Mineral Management Division, Hungarian Geological Survey, and the United States–Hungarian Science and Technology Joint Fund Scientific Investigations Report 2006–5289 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia: 2007 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS--the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Landis, E.R., Rohrbacher, T.J., Gluskoter, H.J., Fodor, B., and Gombar, G., 2007, Quality of selected -
Early Jurassic Dinosaur Footprints from the Mecsek Moutains, Southern
HETTANGIAN (EARLY JURASSIC) DINOSAUR TRACKSITES FROM THE MECSEK MOUNTAINS, HUNGARY Attila Ősi1, József Pálfy1, 2, László Makádi3, Zoltán Szentesi3, Péter Gulyás3, Márton Rabi3, Gábor Botfalvai3 and Kinga Hips4 1Hungarian Academy of Sciences–Hungarian Natural History Museum, Research Group for Paleontology, Budapest, Hungary 2Eötvös University, Department of Physical and Applied Geology, Budapest, Hungary 3Eötvös University, Department of Paleontology, Budapest, Hungary 4Geological, Geophysical and Space Science Research Group of the Hungarian Academy of Sciences, Eötvös University, Budapest, Hungary Keywords: Hettangian, trackways, Komlosaurus, morphological variability, Hungary RH: Hettangian dinosaur tracks from Hungary Address correspondence to Attila Ösi: Hungarian Academy of Sciences–Hungarian Natural History Museum, (Research Group for Palaeontology, Ludovika tér 2, 1083) Budapest, Hungary (e-mail: [email protected]; Tel: +36-1-2101075/2317, Fax: +36-1-3382728. 1 Abstract—Isolated theropod dinosaur tracks were first collected in Hungary from Hettangian (Lower Jurassic) beds of the Mecsek Coal Formation in 1966 and described as Komlosaurus carbonis Kordos, 1983. Our study is based on newly collected material from additional track-bearing beds. The description of the two largest preserved surfaces, containing a total of 102 tracks that can be referred to 21 trackways, is provided here. This represents the first attempt to measure, map and compare the tracks of these bipedal, functionally tridactyl dinosaurs in several associated trackways. Significant morphological variability can be observed (e.g. depth, presence or absence of a metatarsal impression, digit length, digit divarication angle) that is explained by differences in physical parameters of the substrate. The mean of pes length is 16.3 cm in tracksite PB1 and 19.9 cm in tracksite PB2. -
University of Michigan University Library
CONTRIBUTIONS FROM THE MUSEUM OF PALEONTOLOGY THE UNIVERSITY OF MICHIGAN VOL.XXI, NO.8, pp. 139-203 (4 pls., 9 figs.) JUNE 30,1967 EVOLUTION OF THE FERN GENUS OSMUNDA BY CHARLES N. MILLER, JR. MUSEUM OF PALEONTOLOGY THE UNIVERSITY OF MICHIGAN ANN ARBOR CONTRIBUTIONS FROM THE MUSEUM OF PALEONTOLOGY Director: LEWISB. KELLUM The series of contributions from the Museum of Paleontology is a medium for the publication of papers based chiefly upon the collection in the Museum. When the number of pages issued is sufficient to make a volume, a title page and a table of contents will be sent to libraries on the mailing list, and to individuals upon request. A list of the separate papers may also be obtained. Correspondence should be directed to the Museum of Paleontology, The University of Michigan, Ann Arbor, Michigan. VOLS.11-XX. Parts of volumes may be obtained if available. VOLUMEXXI 1. Fossils from the Seymour Formation of Knox and Baylor Counties, Texas, and their bearing on the Late Kansan Climate of that Region, by Claude W. Hibbard and Walter W. Dalquest, Pages 1-66, with 5 plates and 8 figures. 2. Planalveolitella, a new genus of Devonian Tabulate Corals, with a rede- scription of Planalveolites faughti (Edwards and Haime), by Erwin C. Stumm, Pages 67-72, with 1 plate. 3. Neopalaeaster enigmeticus, New Stadish from Upper Mississippian Paint Creek Formation in Illinois, by Robert V. Kesling, Pages 73-85, with plates and 3 figures. 4. Tabulate Corals of the Silica Shale (Middle Devonian) of Northwestern Ohio and Southeastern Michigan, by Erwin C.