Blastocystis Hominis

Total Page:16

File Type:pdf, Size:1020Kb

Blastocystis Hominis Blastocystis hominis (a) • Not in same phylum than Ameoba any longer • Phylum : Heterokontophyta • RNA sequencing makes it closer to some diatoms or brown algae but still controversial • Widespread distribution. High rates in people working with animals and in developing countries • Various sub-types with various pathogenicity though this is still under discussion 1 Blastocystis hominis (b) • Some reports of symptoms (diarrhea, nausea, abdominal cramps, excessive gaz, anal itching) but usually asymptomatic • Faeco-oral transmission via cysts • Transmission from animal to man may be possible • Various morphological forms: »Vacuolar »Granular »Amoeboid »cyst 2 Blastocystis hominis • Above vacuolar form. Below a granular form 3 Cycle of Blastocystis hominis 4 B.hominis Cycle 5 Cycle • The classic form found in human stools is the cyst, which varies tremendously in size from 6 to 40 μm • The cysts infect epithelial cells of the digestive tract and multiply asexually • Vacuolar forms of the parasite give origin to multi vacuolar and ameboid forms • The multi-vacuolar develops into a pre-cyst that gives origin to a thin-walled cyst thought to be responsible for autoinfection • The ameboid form gives origin to a pre-cyst which develops into thick-walled cyst by schizogony • The thick-walled cyst is excreted in faeces 6 Pathology • Not sure if Blastocystis hominis can cause symptomatic infection in humans • Both asymptomatic and symptomatic persons • Watery diarrhea, abdominal pain, peri -anal pruritus and excessive flatulence have been described 7 Diagnosis • Finding the cyst-like stage in faeces • Permanently stained smears (trichrome stained smears) are preferred over wet mount preparations because fecal debris may be mistaken for the organisms in the latter A. Multiple stool samples (at least 3) should be tested before a negative result is reported B. To maximize recovery of cyst-like forms, stool samples in formalin, or other fixatives, should be concentrated prior to microscopic examination C. Choice of diagnostic techniques depends on available equipment and reagents, experience, and considerations of time and cost 8 Management • Metronidazole or iodoquinol have been reported to be effective but still under investigation • Trimethoprim/sulfamethoxazole also reported effective • Nitazoxanide has been effective in clearing organism and improving symptoms 9.
Recommended publications
  • Are Blastocystis Species Clinically Relevant to Humans?
    Are Blastocystis species clinically relevant to humans? Robyn Anne Nagel MB, BS, FRACP A thesis submitted for the degree of Doctor of Philosophy at the University of Queensland in 2015 School of Veterinary Science Title page Culture of human faecal specimen Blastocystis organisms, vacuolated and granular forms, Photographed RAN: x40 magnification, polarised light ii Abstract Blastocystis spp. are the most common enteric parasites found in human stool and yet, the life cycle of the organism is unknown and the clinical relevance uncertain. Robust cysts transmit infection, and many animals carry the parasite. Infection in humans has been linked to Irritable bowel syndrome (IBS). Although Blastocystis carriage is much higher in IBS patients, studies have not been able to confirm Blastocystis spp. are the direct cause of symptoms. Moreover, eradication is often unsuccessful. A number of approaches were utilised in order to investigate the clinical relevance of Blastocystis spp. in human IBS patients. Deconvolutional microscopy with time-lapse imaging and fluorescent spectroscopy of xenic cultures of Blastocystis spp. from IBS patients and healthy individuals was performed. Green autofluorescence (GAF), most prominently in the 557/576 emission spectra, was observed in the vacuolated, granular, amoebic and cystic Blastocystis forms. This first report of GAF in Blastocystis showed that a Blastocystis-specific fluorescein-conjugated antibody could be partially distinguished from GAF. Surface pores of 1m in diameter were observed cyclically opening and closing over 24 hours and may have nutritional or motility functions. Vacuolated forms, extruded a viscous material slowly over 12 hours, a process likely involving osmoregulation. Tear- shaped granules were observed exiting from the surface of an amoebic form but their identity and function could not be elucidated.
    [Show full text]
  • Eukaryotes Blastocystis Species and Other Microbial Cluster Assembly
    Evolution of the Cytosolic Iron-Sulfur Cluster Assembly Machinery in Blastocystis Species and Other Microbial Eukaryotes Anastasios D. Tsaousis, Eleni Gentekaki, Laura Eme, Daniel Gaston and Andrew J. Roger Eukaryotic Cell 2014, 13(1):143. DOI: 10.1128/EC.00158-13. Published Ahead of Print 15 November 2013. Downloaded from Updated information and services can be found at: http://ec.asm.org/content/13/1/143 http://ec.asm.org/ These include: SUPPLEMENTAL MATERIAL Supplemental material REFERENCES This article cites 50 articles, 28 of which can be accessed free at: http://ec.asm.org/content/13/1/143#ref-list-1 on February 24, 2014 by Dalhousie University CONTENT ALERTS Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more» Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml To subscribe to to another ASM Journal go to: http://journals.asm.org/site/subscriptions/ Evolution of the Cytosolic Iron-Sulfur Cluster Assembly Machinery in Blastocystis Species and Other Microbial Eukaryotes Anastasios D. Tsaousis,a,b Eleni Gentekaki,a Laura Eme,a Daniel Gaston,a Andrew J. Rogera ‹Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Department of Biochemistry and Molecular Biology, Halifax, Nova Scotia, Canadaa; Laboratory of Molecular and Evolutionary Parasitology, School of Biosciences, University of Kent, Canterbury, United Kingdomb The cytosolic iron/sulfur cluster assembly (CIA) machinery is responsible for the assembly of cytosolic and nuclear iron/sulfur clusters, cofactors that are vital for all living cells. This machinery is uniquely found in eukaryotes and consists of at least eight Downloaded from proteins in opisthokont lineages, such as animals and fungi.
    [Show full text]
  • Ectocarpus: an Evo‑Devo Model for the Brown Algae Susana M
    Coelho et al. EvoDevo (2020) 11:19 https://doi.org/10.1186/s13227-020-00164-9 EvoDevo REVIEW Open Access Ectocarpus: an evo-devo model for the brown algae Susana M. Coelho1* , Akira F. Peters2, Dieter Müller3 and J. Mark Cock1 Abstract Ectocarpus is a genus of flamentous, marine brown algae. Brown algae belong to the stramenopiles, a large super- group of organisms that are only distantly related to animals, land plants and fungi. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity. For many years, little information was available concerning the molecular mechanisms underlying multicellular development in the brown algae, but this situation has changed with the emergence of Ectocarpus as a model brown alga. Here we summarise some of the main questions that are being addressed and areas of study using Ectocarpus as a model organism and discuss how the genomic information, genetic tools and molecular approaches available for this organism are being employed to explore developmental questions in an evolutionary context. Keywords: Ectocarpus, Life-cycle, Sex determination, Gametophyte, Sporophyte, Brown algae, Marine, Complex multicellularity, Phaeoviruses Natural habitat and life cycle Ectocarpus is a cosmopolitan genus, occurring world- Ectocarpus is a genus of small, flamentous, multicellu- wide in temperate and subtropical regions, and has been lar, marine brown algae within the order Ectocarpales. collected on all continents except Antarctica [1]. It is pre- Brown algae belong to the stramenopiles (or Heter- sent mainly on rocky shores where it grows on abiotic okonta) (Fig. 1a), a large eukaryotic supergroup that (rocks, pebbles, dead shells) and biotic (other algae, sea- is only distantly related to animals, plants and fungi.
    [Show full text]
  • A Distinct Lineage of Giant Viruses Brings a Rhodopsin Photosystem to Unicellular Marine Predators
    A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators David M. Needhama,1, Susumu Yoshizawab,1, Toshiaki Hosakac,1, Camille Poiriera,d, Chang Jae Choia,d, Elisabeth Hehenbergera,d, Nicholas A. T. Irwine, Susanne Wilkena,2, Cheuk-Man Yunga,d, Charles Bachya,3, Rika Kuriharaf, Yu Nakajimab, Keiichi Kojimaf, Tomomi Kimura-Someyac, Guy Leonardg, Rex R. Malmstromh, Daniel R. Mendei, Daniel K. Olsoni, Yuki Sudof, Sebastian Sudeka, Thomas A. Richardsg, Edward F. DeLongi, Patrick J. Keelinge, Alyson E. Santoroj, Mikako Shirouzuc, Wataru Iwasakib,k,4, and Alexandra Z. Wordena,d,4 aMonterey Bay Aquarium Research Institute, Moss Landing, CA 95039; bAtmosphere & Ocean Research Institute, University of Tokyo, Chiba 277-8564, Japan; cLaboratory for Protein Functional & Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan; dOcean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research, 24105 Kiel, Germany; eDepartment of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; fGraduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan; gLiving Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4SB, United Kingdom; hDepartment of Energy Joint Genome Institute, Walnut Creek, CA 94598; iDaniel K. Inouye Center for Microbial Oceanography, University of Hawaii, Manoa, Honolulu, HI 96822; jDepartment of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106; and kDepartment of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0032, Japan Edited by W. Ford Doolittle, Dalhousie University, Halifax, Canada, and approved August 8, 2019 (received for review May 27, 2019) Giant viruses are remarkable for their large genomes, often rivaling genomes that range up to 2.4 Mb (Fig.
    [Show full text]
  • Controlled Sampling of Ribosomally Active Protistan Diversity in Sediment-Surface Layers Identifies Putative Players in the Marine Carbon Sink
    The ISME Journal (2020) 14:984–998 https://doi.org/10.1038/s41396-019-0581-y ARTICLE Controlled sampling of ribosomally active protistan diversity in sediment-surface layers identifies putative players in the marine carbon sink 1,2 1 1 3 3 Raquel Rodríguez-Martínez ● Guy Leonard ● David S. Milner ● Sebastian Sudek ● Mike Conway ● 1 1 4,5 6 7 Karen Moore ● Theresa Hudson ● Frédéric Mahé ● Patrick J. Keeling ● Alyson E. Santoro ● 3,8 1,9 Alexandra Z. Worden ● Thomas A. Richards Received: 6 October 2019 / Revised: 4 December 2019 / Accepted: 17 December 2019 / Published online: 9 January 2020 © The Author(s) 2020. This article is published with open access Abstract Marine sediments are one of the largest carbon reservoir on Earth, yet the microbial communities, especially the eukaryotes, that drive these ecosystems are poorly characterised. Here, we report implementation of a sampling system that enables injection of reagents into sediments at depth, allowing for preservation of RNA in situ. Using the RNA templates recovered, we investigate the ‘ribosomally active’ eukaryotic diversity present in sediments close to the water/sediment interface. We 1234567890();,: 1234567890();,: demonstrate that in situ preservation leads to recovery of a significantly altered community profile. Using SSU rRNA amplicon sequencing, we investigated the community structure in these environments, demonstrating a wide diversity and high relative abundance of stramenopiles and alveolates, specifically: Bacillariophyta (diatoms), labyrinthulomycetes and ciliates. The identification of abundant diatom rRNA molecules is consistent with microscopy-based studies, but demonstrates that these algae can also be exported to the sediment as active cells as opposed to dead forms.
    [Show full text]
  • Horizontal Gene Transfer Facilitated the Evolution of Plant Parasitic Mechanisms in the Oomycetes
    Horizontal gene transfer facilitated the evolution of plant parasitic mechanisms in the oomycetes Thomas A. Richardsa,b,1, Darren M. Soanesa, Meredith D. M. Jonesa,b, Olga Vasievac, Guy Leonarda,b, Konrad Paszkiewicza, Peter G. Fosterb, Neil Hallc, and Nicholas J. Talbota aBiosciences, University of Exeter, Exeter EX4 4QD, United Kingdom; bDepartment of Zoology, Natural History Museum, London SW7 5BD, United Kingdom; and cSchool of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom Edited by W. Ford Doolittle, Dalhousie University, Halifax, Canada, and approved July 27, 2011 (received for review March 31, 2011) Horizontal gene transfer (HGT) can radically alter the genomes of ramorum, for example, whereas the Irish potato famine of the microorganisms, providing the capacity to adapt to new lifestyles, 19th century was caused by the late blight parasite Phytophthora environments, and hosts. However, the extent of HGT between infestans. Important crop diseases caused by fungi include the eukaryotes is unclear. Using whole-genome, gene-by-gene phylo- devastating rice blast disease caused by M. oryzae and the rusts, genetic analysis we demonstrate an extensive pattern of cross- smuts, and mildews that affect wheat, barley, and maize. In this kingdom HGT between fungi and oomycetes. Comparative study we report that HGT between fungi and oomycetes has genomics, including the de novo genome sequence of Hyphochy- occurred to a far greater degree than hitherto recognized (19). trium catenoides, a free-living sister of the oomycetes, shows that Our previous analysis suggested four strongly supported cases of these transfers largely converge within the radiation of oomycetes HGT, but by using a whole-genome, gene-by-gene phylogenetic that colonize plant tissues.
    [Show full text]
  • Seven Gene Phylogeny of Heterokonts
    ARTICLE IN PRESS Protist, Vol. 160, 191—204, May 2009 http://www.elsevier.de/protis Published online date 9 February 2009 ORIGINAL PAPER Seven Gene Phylogeny of Heterokonts Ingvild Riisberga,d,1, Russell J.S. Orrb,d,1, Ragnhild Klugeb,c,2, Kamran Shalchian-Tabrizid, Holly A. Bowerse, Vishwanath Patilb,c, Bente Edvardsena,d, and Kjetill S. Jakobsenb,d,3 aMarine Biology, Department of Biology, University of Oslo, P.O. Box 1066, Blindern, NO-0316 Oslo, Norway bCentre for Ecological and Evolutionary Synthesis (CEES),Department of Biology, University of Oslo, P.O. Box 1066, Blindern, NO-0316 Oslo, Norway cDepartment of Plant and Environmental Sciences, P.O. Box 5003, The Norwegian University of Life Sciences, N-1432, A˚ s, Norway dMicrobial Evolution Research Group (MERG), Department of Biology, University of Oslo, P.O. Box 1066, Blindern, NO-0316, Oslo, Norway eCenter of Marine Biotechnology, 701 East Pratt Street, Baltimore, MD 21202, USA Submitted May 23, 2008; Accepted November 15, 2008 Monitoring Editor: Mitchell L. Sogin Nucleotide ssu and lsu rDNA sequences of all major lineages of autotrophic (Ochrophyta) and heterotrophic (Bigyra and Pseudofungi) heterokonts were combined with amino acid sequences from four protein-coding genes (actin, b-tubulin, cox1 and hsp90) in a multigene approach for resolving the relationship between heterokont lineages. Applying these multigene data in Bayesian and maximum likelihood analyses improved the heterokont tree compared to previous rDNA analyses by placing all plastid-lacking heterotrophic heterokonts sister to Ochrophyta with robust support, and divided the heterotrophic heterokonts into the previously recognized phyla, Bigyra and Pseudofungi. Our trees identified the heterotrophic heterokonts Bicosoecida, Blastocystis and Labyrinthulida (Bigyra) as the earliest diverging lineages.
    [Show full text]
  • Symbiomonas Scintillans Gen. Et Sp. Nov. and Picophagus Flagellatus Gen
    Protist, Vol. 150, 383–398, December 1999 © Urban & Fischer Verlag http://www.urbanfischer.de/journals/protist Protist ORIGINAL PAPER Symbiomonas scintillans gen. et sp. nov. and Picophagus flagellatus gen. et sp. nov. (Heterokonta): Two New Heterotrophic Flagellates of Picoplanktonic Size Laure Guilloua, 1, 2, Marie-Josèphe Chrétiennot-Dinetb, Sandrine Boulbena, Seung Yeo Moon-van der Staaya, 3, and Daniel Vaulota a Station Biologique, CNRS, INSU et Université Pierre et Marie Curie, BP 74, F-29682 Roscoff Cx, France b Laboratoire d’Océanographie biologique, UMR 7621 CNRS/INSU/UPMC, Laboratoire Arago, O.O.B., B.P. 44, F-66651 Banyuls sur mer Cx, France Submitted July 27, 1999; Accepted November 10, 1999 Monitoring Editor: Michael Melkonian Two new oceanic free-living heterotrophic Heterokonta species with picoplanktonic size (< 2 µm) are described. Symbiomonas scintillans Guillou et Chrétiennot-Dinet gen. et sp. nov. was isolated from samples collected both in the equatorial Pacific Ocean and the Mediterranean Sea. This new species possesses ultrastructural features of the bicosoecids, such as the absence of a helix in the flagellar transitional region (found in Cafeteria roenbergensis and in a few bicosoecids), and a flagellar root system very similar to that of C. roenbergensis, Acronema sippewissettensis, and Bicosoeca maris. This new species is characterized by a single flagellum with mastigonemes, the presence of en- dosymbiotic bacteria located close to the nucleus, the absence of a lorica and a R3 root composed of a 6+3+x microtubular structure. Phylogenetical analyses of nuclear-encoded SSU rDNA gene se- quences indicate that this species is close to the bicosoecids C.
    [Show full text]
  • Red Algal Parasites: Models for a Life History Evolution That Leaves Photosynthesis Behind Again and Again
    Prospects & Overviews Review essays Red algal parasites: Models for a life history evolution that leaves photosynthesis behind again and again Nicolas A. Blouinà and Christopher E. Lane Many of the most virulent and problematic eukaryotic Introduction pathogens have evolved from photosynthetic ancestors, such as apicomplexans, which are responsible for a Parasitology is one of the oldest fields of medical research and continues to be an essential area of study on organisms wide range of diseases including malaria and toxoplas- that kill millions annually, either directly or through mosis. The primary barrier to understanding the early agricultural loss. In the early genomics era, parasites were stages of evolution of these parasites has been the diffi- some of the initial eukaryotes to have their genomes culty in finding parasites with closely related free-living sequenced. The combination of medical interest and small lineages with which to make comparisons. Parasites genome size (due to genome compaction [1]) has resulted found throughout the florideophyte red algal lineage, in a relatively large number of sequenced genomes from these taxa. The range of relationships that exist between however, provide a unique and powerful model to inves- parasites and comparative free-living taxa, however, compli- tigate the genetic origins of a parasitic lifestyle. This is cates understanding the evolution of eukaryotic parasitism. because they share a recent common ancestor with an In some cases (such as apicomplexans, which cause extant free-living red algal species and parasitism has malaria, cryptosporidiosis and toxoplasmosis, among other independently arisen over 100 times within this group. diseases) entire lineages appear to have a common parasitic ancestor [2].
    [Show full text]
  • Marine Biological Laboratory) Data Are All from EST Analyses
    TABLE S1. Data characterized for this study. rDNA 3 - - Culture 3 - etK sp70cyt rc5 f1a f2 ps22a ps23a Lineage Taxon accession # Lab sec61 SSU 14 40S Actin Atub Btub E E G H Hsp90 M R R T SUM Cercomonadida Heteromita globosa 50780 Katz 1 1 Cercomonadida Bodomorpha minima 50339 Katz 1 1 Euglyphida Capsellina sp. 50039 Katz 1 1 1 1 4 Gymnophrea Gymnophrys sp. 50923 Katz 1 1 2 Cercomonadida Massisteria marina 50266 Katz 1 1 1 1 4 Foraminifera Ammonia sp. T7 Katz 1 1 2 Foraminifera Ovammina opaca Katz 1 1 1 1 4 Gromia Gromia sp. Antarctica Katz 1 1 Proleptomonas Proleptomonas faecicola 50735 Katz 1 1 1 1 4 Theratromyxa Theratromyxa weberi 50200 Katz 1 1 Ministeria Ministeria vibrans 50519 Katz 1 1 Fornicata Trepomonas agilis 50286 Katz 1 1 Soginia “Soginia anisocystis” 50646 Katz 1 1 1 1 1 5 Stephanopogon Stephanopogon apogon 50096 Katz 1 1 Carolina Tubulinea Arcella hemisphaerica 13-1310 Katz 1 1 2 Cercomonadida Heteromita sp. PRA-74 MBL 1 1 1 1 1 1 1 7 Rhizaria Corallomyxa tenera 50975 MBL 1 1 1 3 Euglenozoa Diplonema papillatum 50162 MBL 1 1 1 1 1 1 1 1 8 Euglenozoa Bodo saltans CCAP1907 MBL 1 1 1 1 1 5 Alveolates Chilodonella uncinata 50194 MBL 1 1 1 1 4 Amoebozoa Arachnula sp. 50593 MBL 1 1 2 Katz lab work based on genomic PCRs and MBL (Marine Biological Laboratory) data are all from EST analyses. Culture accession number is ATTC unless noted. GenBank accession numbers for new sequences (including paralogs) are GQ377645-GQ377715 and HM244866-HM244878.
    [Show full text]
  • Urban Versus Rural Prevalence of Intestinal Parasites Using Multi-Parallel Qpcr in Colombia Patricia E
    medRxiv preprint doi: https://doi.org/10.1101/2020.09.20.20197616; this version posted September 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Urban versus rural prevalence of intestinal parasites using multi-parallel qPCR in Colombia Patricia E. Bryan1, Marcela Romero2, Miryan Sánchez2, Giovanny Torres2, Wilber Gómez2, Marcos Restrepo2, Alejandro Restrepo1,2*, Rojelio Mejia1* 1. Laboratory of Human Parasitology, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas. 2. Instituto Colombiano de Medicina Tropical, Universidad CES, Medellín, Colombia *Contibuted equally Corresponding author: Rojelio Mejia, [email protected] Abstract Stool samples from 122 children from urban slum (n = 72) and rural (n = 50) areas were analyzed using multi-parallel real-time qPCR to determine the prevalence of intestinal parasites from two communities in Colombia. Findings indicated a prevalence of 86.1% Blastocystis spp., 62.5% Giardia intestinalis, 19.4% Cryptosporidium spp., 19.4% Ascaris lumbricoides, and 5.6% Trichuris trichiura in an urban slum; and 76% Blastocystis spp., 68% Giardia intestinalis, 20% Entamoeba histolytica, 50% Ascaris lumbricoides, 46% Trichuris trichiura and 2% Strongyloides stercoralis in rural areas. Polyparasitism was higher in rural (58%) compared to urban (25%) areas (p = 0.001). Trichuris trichiura burden was higher in the rural area (p = 0.002). Over 40% of helminth infections in rural areas had a heavy parasite burden by WHO classification. Over half of urban and rural children were infected with Giardia intestinalis and Blastocystis spp.
    [Show full text]
  • Kingdom Chromista)
    J Mol Evol (2006) 62:388–420 DOI: 10.1007/s00239-004-0353-8 Phylogeny and Megasystematics of Phagotrophic Heterokonts (Kingdom Chromista) Thomas Cavalier-Smith, Ema E-Y. Chao Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK Received: 11 December 2004 / Accepted: 21 September 2005 [Reviewing Editor: Patrick J. Keeling] Abstract. Heterokonts are evolutionarily important gyristea cl. nov. of Ochrophyta as once thought. The as the most nutritionally diverse eukaryote supergroup zooflagellate class Bicoecea (perhaps the ancestral and the most species-rich branch of the eukaryotic phenotype of Bigyra) is unexpectedly diverse and a kingdom Chromista. Ancestrally photosynthetic/ major focus of our study. We describe four new bicil- phagotrophic algae (mixotrophs), they include several iate bicoecean genera and five new species: Nerada ecologically important purely heterotrophic lineages, mexicana, Labromonas fenchelii (=Pseudobodo all grossly understudied phylogenetically and of tremulans sensu Fenchel), Boroka karpovii (=P. uncertain relationships. We sequenced 18S rRNA tremulans sensu Karpov), Anoeca atlantica and Cafe- genes from 14 phagotrophic non-photosynthetic het- teria mylnikovii; several cultures were previously mis- erokonts and a probable Ochromonas, performed ph- identified as Pseudobodo tremulans. Nerada and the ylogenetic analysis of 210–430 Heterokonta, and uniciliate Paramonas are related to Siluania and revised higher classification of Heterokonta and its Adriamonas; this clade (Pseudodendromonadales three phyla: the predominantly photosynthetic Och- emend.) is probably sister to Bicosoeca. Genetically rophyta; the non-photosynthetic Pseudofungi; and diverse Caecitellus is probably related to Anoeca, Bigyra (now comprising subphyla Opalozoa, Bicoecia, Symbiomonas and Cafeteria (collectively Anoecales Sagenista). The deepest heterokont divergence is emend.). Boroka is sister to Pseudodendromonadales/ apparently between Bigyra, as revised here, and Och- Bicoecales/Anoecales.
    [Show full text]