Modeling Reward-Guided Decision-Making with a Biophysically Plausible Attractor Network and the Belief-Dependent Learning Rule

Total Page:16

File Type:pdf, Size:1020Kb

Modeling Reward-Guided Decision-Making with a Biophysically Plausible Attractor Network and the Belief-Dependent Learning Rule Modeling reward-guided decision-making with a biophysically plausible attractor network and the belief-dependent learning rule Rebecca Sier A master project executed at the Neural Information Processing Group of the Technische Universität Berlin as part of the final requirements for fulfillment of the Master of Science in Brain and Cognitive Sciences of the Universiteit van Amsterdam January – September 2014 Supervisor: Audrey Houillon, PhD UvA representative: Dr. Leendert van Maanen Co-assessor: Dr. Leendert van Maanen 41 ECTS Final date: September 24, 2014 Student ID: 5893011 Study track: Cognition TABLE OF CONTENTS Abstract 4 Acknowledgements 5 Introduction 6 Methods 9 Theory on models of reward-guided decision-making 9 Making decisions: an attractor model of perceptual decision-making 9 Learning from decisions: the belief-dependent learning rule 10 Approximations of the attractor model for reward-guided decision-making 13 Experimental methods 15 Participants 15 Testing paradigm 15 Behavioral and imaging data 17 Computational model simulations 17 The sigmoid probability function 17 The reduced attractor model for decision-making 18 Results 22 Training phase 22 Estimating the noise parameter 휎 22 Learning behavior: age-independent 23 Learning behavior: age-dependent 24 Performance phase 26 Fitting the noice parameter 휎 27 Age independent 27 Age dependent 29 Physiological results 31 Discussion 32 Model performance 32 2 Testing the model hypotheses by Frank et al. 33 References 35 Appendix 37 Part A: surface plots for fitting the sigmoid function to training phase behavior 37 Part B: learning curves and learning phase 39 Learning curves with noise parameter 휎 = 0.0970 39 Learning curves dependent on age, two values of sigma 39 Part C: age independent performance behavior with 흈 = ퟎ. ퟏퟓ 41 3 ABSTRACT Elderly people and patients suffering from Parkinson’s disease learn more from negative than from posi- tive decision outcomes as compared to healthy controls. Previous research hypothesized that this error- avoidant behavior is partly caused by reduced levels of dopamine, and a model of this effect in the basal ganglia was constructed. However, the model is subject to discussion and hard to verify on the level of the basal ganglia. This thesis hypothesizes that the attractor model for decision-making combined with the belief-dependent learning rule can verify the basal ganglia model. It is shown how this combined model includes features of the basal ganglia model and explains them with greater detail. Simulations of the combined model make both correct and incorrect predictions of reward-guided decision behavior and neurotransmitter values of subjects that perform a probabilistic selection task. However, the empirical da- ta is restricted and future research should be done to decide on the usefulness and the correct implemen- tation of the model. 4 ACKNOWLEDGEMENTS The research leading to this thesis was performed at the Neural Information Processing Group at the Technische Universität Berlin, during the Spring and Summer of 2014. The project was partly funded by Erasmus+ and the Spinozafonds of the Amsterdams Universiteitsfonds. I would like to thank the colleagues I had at the research group, who gave me a warm welcome to the TU Berlin and to their great city. Special thanks to Audrey Houillon, PhD, who supervised me greatly throughout the project, providing comments and asking me the right questions even during an Asian holiday. Thank you Prof. Dr. Klaus Obermayer for giving me the opportunity to work in your research group. And finally I thank co-supervisor Dr. Leendert van Maanen and the people from the University of Amsterdam’s research master Brain & Cognitive Sciences, who gave me the freedom to create my own, more computationally oriented program within the master. 5 INTRODUCTION The ability to learn from the punishment or reward that follows a decision is an essential function of cognition. Consequently, reinforcement learning or the ability to incorporate feedback to improve future actions, is a much researched topic in psychology and neuroscience. A correct understanding of how reward-guided decision-making works in the brain is very useful, opening doors to better care for people with learning and decision-making disabilities and an increased fundamental knowledge on an essential part of human functioning. Deviations from normal reward-guided decision-making behavior provide first insights into its functioning. Compared to healthy controls, patients suffering from Parkinson’s disease (PD) off dopamine (DA) medication learn more from negative decision outcomes (Frank, Seeberger, & O’Reilly, 2004), while these patients learn less from positive decision outcomes. Similar results are found in older seniors, which have shown to be more error-avoidant than younger seniors (Frank & Kong, 2008). Shared by both PD patients and elderly people is a depleted tonic DA level. When making up for this deficit with DA medication the learning bias towards negative outcomes is reversed: PD patients on DA medication learn more from correct than from incorrect decisions (Frank et al., 2004). Similarly, the DA hypothesis of cognitive aging states that cognitive changes or impairments related to aging are at least partly caused by a decline in DA level (Frank & Kong, 2008). Younger adults on drugs that reduce DA levels showed to have the same error avoidance bias as elderly people, while drugs that increase DA levels remove the negative bias (Frank & Kong, 2008). In line with the mentioned correlations between DA level and reward-guided decision-making, Frank at al. (Frank & Kong, 2008; Frank et al., 2004) hypothesized that DA plays a crucial role in reward- guided decision-making. Moreover, error-avoidant behavior is supposed to be partly caused by reduced levels of DA. Exactly how DA level can have this effect is described in a biologically based network model. In the model for reward-guided decision-making by Frank et al. (Frank & Kong, 2008; Frank et al., 2004; Frank, 2005) DA is supposed to play a modulatory role, influencing pathways through nuclei of the basal ganglia (BG) that are related to decision-making. According to the model, the “Go” and “NoGo” (or “direct” and “indirect”) pathways together act as a gate, respectively facilitating and suppressing the different competing response options (Mink, 2003; Nambu, Tokuno, & Takada, 2002; Nambu, 2004). Activity of a choice alternative’s “Go” pathway in the BG is in favor of its probability to be chosen, while the corresponding “NoGo” pathway subtracts from this probability. With learning, DA modulates the pathways in order to change these probabilities differentially over the available stimulus-response options. 6 The BG model by Frank et al. correctly predicts how a lower amount of tonic DA level disrupts reinforcement learning (Frank et al., 2004): small negative phasic DA changes suffice to reach a lower threshold for achieving synaptic plasticity, while the positive threshold is only reached in the case of large positive DA changes. This explains why PD patients, elderly people and healthy subjects on DA-reducing drugs learn more easily from negative than from positive reinforcement. The opposite is true for elevated amounts of tonic DA, which results in reward-seeking instead of error-avoidant decision-making. Despite of the correct predictions the model by Frank et al. makes, it is hard to verify. The exact function of the BG is still investigated, and shown to be less clear than assumed in Frank et al.’s model (Utter & Basso, 2008). The two segregated pathways are shown to be an oversimplification of the actual circuitry of the BG, also when including a third “hyperdirect” pathway (Parent & Hazrati, 1995). A closer look at the anatomy of the BG shows how nuclei in the Go pathway are not strictly segregated from the NoGo pathway and vice versa. DA receptors D1 and D2 – which are supposed to be segregated per pathway according to the Frank et al. model – are shown to be located at the inputs of both pathways. Due to its simplifications, the model by Frank et al. is yet unable to give an analytical account of reward-guided decision-making. Model predictions of subjects’ learning and decision behavior are restricted to be only qualitative (Frank et al., 2004). In order to test the model predictions made by Frank et al., this thesis aims to construct and test an analytical model of reward-guided decision-making. The model requires detailed knowledge of the neural system, specifically where it comes to individual neurons’ electrochemical dynamics and interconnectivity. A biophysically plausible attractor model for perceptual decision-making created by Wang (2002) will be used, including parameters for individual neuron, neurotransmitter and synaptic gating dynamics. The model is shown to successfully predict behavioral and electrophysiological decision-making data. A learning rule at the same, detailed level of analysis is created by Soltani, Lee and Wang (2006). In this paper it is hypothesized that a combination of the attractor model for decision-making and the learning rule can analytically predict reward-guided decision-making at the neural network level, capturing the effects of age and dopamine on learning behavior. This paper will be structured as follows. The methods section first introduces the theory behind the attractor model for decision-making (Wang, 2002), the addition of a learning rule (Soltani et al., 2006) and model approximations that are used in the current experiment. Secondly, the experimental paradigm that was used to empirically test the reward-guided decision-making behavior of human subjects is explained in detail. Empirical data consists of age-dependent reward-guided learning behavior and neurochemical activity assessed with magnetic resonance spectroscopy (MRS) and positron emission tomography (PET). The third part of the methods section provides the details of the computational model that was used to simulate the tested subjects’ behavior. Moreover, this section shows how the belief- dependent learning rule can be used in combination with a mean-field reduction of the attractor model for 7 decision-making, which has not been done before.
Recommended publications
  • Behavioral Plasticity Through the Modulation of Switch Neurons
    Behavioral Plasticity Through the Modulation of Switch Neurons Vassilis Vassiliades, Chris Christodoulou Department of Computer Science, University of Cyprus, 1678 Nicosia, Cyprus Abstract A central question in artificial intelligence is how to design agents ca- pable of switching between different behaviors in response to environmental changes. Taking inspiration from neuroscience, we address this problem by utilizing artificial neural networks (NNs) as agent controllers, and mecha- nisms such as neuromodulation and synaptic gating. The novel aspect of this work is the introduction of a type of artificial neuron we call \switch neuron". A switch neuron regulates the flow of information in NNs by se- lectively gating all but one of its incoming synaptic connections, effectively allowing only one signal to propagate forward. The allowed connection is determined by the switch neuron's level of modulatory activation which is affected by modulatory signals, such as signals that encode some informa- tion about the reward received by the agent. An important aspect of the switch neuron is that it can be used in appropriate \switch modules" in or- der to modulate other switch neurons. As we show, the introduction of the switch modules enables the creation of sequences of gating events. This is achieved through the design of a modulatory pathway capable of exploring in a principled manner all permutations of the connections arriving on the switch neurons. We test the model by presenting appropriate architectures in nonstationary binary association problems and T-maze tasks. The results show that for all tasks, the switch neuron architectures generate optimal adaptive behaviors, providing evidence that the switch neuron model could be a valuable tool in simulations where behavioral plasticity is required.
    [Show full text]
  • How Local Excitation-Inhibition Ratio Impacts the Whole Brain Dynamics Gustavo Deco Universitat Pompeu Fabra
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2014 How local excitation-inhibition ratio impacts the whole brain dynamics Gustavo Deco Universitat Pompeu Fabra Adrian Ponce-Alvarez Universitat Pompeu Fabra Patric Hagmann University of Lausanne Gian Luca Romani G. d'Annunzio University Dante Mantini University of Oxford See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Deco, Gustavo; Ponce-Alvarez, Adrian; Hagmann, Patric; Romani, Gian Luca; Mantini, Dante; and Corbetta, Maurizio, ,"How local excitation-inhibition ratio impacts the whole brain dynamics." The ourJ nal of Neuroscience.34,23. 7886-7898. (2014). https://digitalcommons.wustl.edu/open_access_pubs/2973 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Authors Gustavo Deco, Adrian Ponce-Alvarez, Patric Hagmann, Gian Luca Romani, Dante Mantini, and Maurizio Corbetta This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/open_access_pubs/2973 7886 • The Journal of Neuroscience, June 4, 2014 • 34(23):7886–7898 Systems/Circuits How Local Excitation–Inhibition Ratio Impacts the Whole Brain Dynamics Gustavo Deco,1,2* Adria´n Ponce-Alvarez,1* Patric Hagmann,3,4 Gian Luca Romani,5
    [Show full text]
  • Context-Modular Memory Networks Support High-Capacity, Flexible, And
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.08.898528; this version posted January 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Context-modular memory networks support high-capacity, flexible, and robust associative memories William F. Podlaski,∗ Everton J. Agnes,y and Tim P. Vogelsy Centre for Neural Circuits and Behaviour, University of Oxford, OX1 3SR Oxford, United Kingdom Context, such as behavioral state, is known to modulate memory formation and retrieval, but is usually ignored in associative memory models. Here, we propose several types of contextual modulation for associative memory networks that greatly increase their performance. In these networks, context inactivates specific neurons and connections, which modulates the effective connectivity of the network. Memories are stored only by the active components, thereby reducing interference from memories acquired in other contexts. Such networks exhibit several beneficial characteristics, including enhanced memory capacity, high robustness to noise, increased robustness to memory overloading, and better memory retention during continual learning. Furthermore, memories can be biased to have different relative strengths, or even gated on or off, according to contextual cues, providing a candidate model for cognitive control of memory and efficient memory search. An external context-encoding network can dynamically switch the memory network to a desired state, which we liken to experimentally observed contextual signals in prefrontal cortex and hippocampus. Overall, our work illustrates the benefits of organizing memory around context, and provides an important link between behavioral studies of memory and mechanistic details of neural circuits.
    [Show full text]
  • Memory Trace Replay: the Shaping of Memory Consolidation by Neuromodulation
    Atherton, L. A., Duprett, D., & Mellor, J. R. (2015). Memory trace replay: The shaping of memory consolidation by neuromodulation. Trends in Neurosciences, 38(9), 560-570. https://doi.org/10.1016/j.tins.2015.07.004 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1016/j.tins.2015.07.004 Link to publication record in Explore Bristol Research PDF-document University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Review Memory trace replay: the shaping of memory consolidation by neuromodulation 1 2 1 Laura A. Atherton , David Dupret , and Jack R. Mellor 1 School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK 2 Medical Research Council Brain Network Dynamics Unit at the University of Oxford, Department of Pharmacology, Oxford, OX1 3TH, UK The consolidation of memories for places and events is (sSWRs), long periods of awake immobility (iSWRs), or thought to rely, at the network level, on the replay of brief pauses in exploration (eSWRs) (reviewed in [9,10]). spatially tuned neuronal firing patterns representing Sequential replay can occur in both a forward [11–15] discrete places and spatial trajectories. This occurs in and backward [11,13–16] direction, with the directional the hippocampal-entorhinal circuit during sharp wave balance proposed to be dependent on the ongoing behav- ripple events (SWRs) that occur during sleep or rest.
    [Show full text]
  • Context-Modular Memory Networks Support High-Capacity, Flexible, And
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.08.898528; this version posted January 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Context-modular memory networks support high-capacity, flexible, and robust associative memories William F. Podlaski,∗ Everton J. Agnes,y and Tim P. Vogelsy Centre for Neural Circuits and Behaviour, University of Oxford, OX1 3SR Oxford, United Kingdom Context, such as behavioral state, is known to modulate memory formation and retrieval, but is usually ignored in associative memory models. Here, we propose several types of contextual modulation for associative memory networks that greatly increase their performance. In these networks, context inactivates specific neurons and connections, which modulates the effective connectivity of the network. Memories are stored only by the active components, thereby reducing interference from memories acquired in other contexts. Such networks exhibit several beneficial characteristics, including enhanced memory capacity, high robustness to noise, increased robustness to memory overloading, and better memory retention during continual learning. Furthermore, memories can be biased to have different relative strengths, or even gated on or off, according to contextual cues, providing a candidate model for cognitive control of memory and efficient memory search. An external context-encoding network can dynamically switch the memory network to a desired state, which we liken to experimentally observed contextual signals in prefrontal cortex and hippocampus. Overall, our work illustrates the benefits of organizing memory around context, and provides an important link between behavioral studies of memory and mechanistic details of neural circuits.
    [Show full text]
  • Potentiating M1 and Mglu1 Receptors to Modulate Prefrontal Cortical Dysfunction in Psychiatric Diseases
    Potentiating M1 and mGlu1 receptors to modulate prefrontal cortical dysfunction in psychiatric diseases By James Thomas Michael Maksymetz Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Pharmacology March 31st, 2020 Nashville, Tennessee Approved: P. Jeffrey Conn, Ph.D. Craig W. Lindsley, Ph.D. Brad A. Grueter, Ph.D. Roger J. Colbran, Ph.D. Sachin Patel, M.D., Ph.D. Copyright © 2020 by James Thomas Michael Maksymetz All Rights Reserved ii ACKNOWLEDGEMENTS There are countless people that have contributed scientifically and intellectually to the work described in this dissertation. First and foremost, I would like to sincerely thank my graduate mentor Dr. P Jeffrey Conn for all of his support and guidance. I am eternally grateful for the scientific, career, and life advice that Jeff has provided throughout my graduate career. I would also like to thank the members of my dissertation committee for their helpful feedback, for putting up with my ever-changing research directions, and for continuously supporting my scientific and career development. Thank you to all of the members of the Conn lab, past and present, who have made the last few years a blast, through the good and the bad. In particular, I would like to thank the other half of “Shames”, Sean Moran, for his friendship and for being a great sounding board for ideas, problems, and terrible jokes. I will forever believe that our endless, pedantic arguments were essential for getting through graduate school. I would also like to thank Max Joffe for being a great friend and an amazing mentor in the lab.
    [Show full text]
  • The Effect of Cortical and Pallidal Inputs on Striatal Microcircuit Activity and Behavioral Output
    The Effect of Cortical and Pallidal Inputs on Striatal Microcircuit Activity and Behavioral Output by Victoria Louise Corbit Bachelor's of Science, Lafayette College, 2013 Submitted to the Graduate Faculty of School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2019 Commi tte e Membership Page UNIVERSITY OF PITTSBURGH SCHOOL OF MEDICINE This dissertation was presented by Victoria Louise Corbit It was defended on June 17, 2019 and approved by Robert S. Turner, Ph.D, Professor, Department of Neurobiology Susan R. Sesack, Ph.D, Professor, Department of Neuroscience Peter L. Strick, Ph.D, Distinguished Professor and Chair, Department of Neurobiology Patrick Rothwell, Ph.D, Assistant Professor, Department of Neuroscience, University of Minnesota Dissertation Director: Susanne E. Ahmari, M.D., Ph.D, Assistant Professor, Department of Psychiatry Dissertation Director: Aryn H. Gittis, Ph.D, Associate Professor, Department of Biological Sciences, Carnegie Mellon University ii Copyright © by Victoria Louise Corbit 2019 iii Abstract The Effect of Cortical and Pallidal Inputs on Striatal Microcircuit Activity and Behavioral Output Victoria Louise Corbit, PhD University of Pittsburgh, 2019 This dissertation focuses on the role of striatal microcircuits and how afferents from cortex and globus pallidus externa (GPe) play a role in striatal activity and behavioral output. In the first chapter I summarize the role of striatal subregions in behavioral selection and initiation and elaborate on how striatal activity in output neurons (SPNs) and fast-spiking interneurons (FSIs) has been associated with behavioral initiations. Chapter 2 highlights the capacity of an FSI-specific pallidostriatal projection for controlling the activity of SPNs, particularly under dopamine depletion conditions.
    [Show full text]
  • Glutamate Receptor Subtypes Mediating Synaptic Activation of Prefrontal Cortex Neurons: Relevance for Schizophrenia
    142 • The Journal of Neuroscience, January 5, 2011 • 31(1):142–156 Neurobiology of Disease Glutamate Receptor Subtypes Mediating Synaptic Activation of Prefrontal Cortex Neurons: Relevance for Schizophrenia Diana C. Rotaru,1 Hiroki Yoshino,1 David A. Lewis,1,2 G. Bard Ermentrout,3 and Guillermo Gonzalez-Burgos1 1Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, and Departments of 2Neuroscience and 3Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 Schizophrenia may involve hypofunction of NMDA receptor (NMDAR)-mediated signaling, and alterations in parvalbumin-positive fast-spiking (FS) GABA neurons that may cause abnormal gamma oscillations. It was recently hypothesized that prefrontal cortex (PFC) FS neuron activity is highly dependent on NMDAR activation and that, consequently, FS neuron dysfunction in schizophrenia is second- ary to NMDAR hypofunction. However, NMDARs are abundant in synapses onto PFC pyramidal neurons; thus, a key question is whether FS neuron or pyramidal cell activation is more dependent on NMDARs. We examined the AMPAR and NMDAR contribution to synaptic activation of FS neurons and pyramidal cells in the PFC of adult mice. In FS neurons, EPSCs had fast decay and weak NMDAR contribu- tion, whereas in pyramidal cells, EPSCs were significantly prolonged by NMDAR-mediated currents. Moreover, the AMPAR/NMDAR EPSC ratio was higher in FS cells. NMDAR antagonists decreased EPSPs and EPSP–spike coupling more strongly in pyramidal cells than in FS neurons, showing that FS neuron activation is less NMDAR dependent than pyramidal cell excitation. The precise EPSP–spike coupling produced by fast-decaying EPSCs in FS cells may be important for network mechanisms of gamma oscillations based on feedback inhibition.
    [Show full text]
  • Calcium-Activated Nonspecific Cation Current and Synaptic Depression Promote Network-Dependent Burst Oscillations
    Calcium-activated nonspecific cation current and synaptic depression promote network-dependent burst oscillations Jonathan E. Rubina,1, John A. Hayesb,c,1, Jeffrey L. Mendenhallb, and Christopher A. Del Negrob,2 aDepartment of Mathematics, 301 Thackeray Hall, University of Pittsburgh, Pittsburgh, PA 15260; bDepartment of Applied Science, 318 McGlothlin-Street Hall, The College of William and Mary, Williamsburg, VA 23187-8795; and cDepartment of Biology, Integrated Science Center 1, The College of William and Mary, Williamsburg, VA 23187-8795 Edited by Nancy J. Kopell, Boston University, Boston, MA, and approved December 24, 2008 (received for review September 6, 2008) Central pattern generators (CPGs) produce neural-motor rhythms that AMPA receptors that, together, increase intracellular Ca2ϩ (11). 2ϩ often depend on specialized cellular or synaptic properties such as ICAN is normally latent, but this synaptically triggered Ca flux pacemaker neurons or alternating phases of synaptic inhibition. evokes ICAN, which underlies the burst phase of network activity Motivated by experimental evidence suggesting that activity in the (12, 13). ICAN may be well suited to play a central role in a group mammalian respiratory CPG, the preBo¨tzinger complex, does not pacemaker because it contributes to plateau depolarizations in require either of these components, we present and analyze a diverse contexts such as spinal locomotor networks (14), autonomic mathematical model demonstrating an unconventional mechanism motor systems (15), subthalamic neurons (16), and the entorhinal of rhythm generation in which glutamatergic synapses and the cortex (17), among others. short-term depression of excitatory transmission play key rhythmo- Our model shows how recurrent excitation and ICAN generate a -genic roles.
    [Show full text]
  • Supplemental Material
    Supplementary Information A. Decision-making network of spiking neurons The network architecture The network model in Wang (2002) (see also (Brunel and Wang 2001)) consisted of three populations of pyramidal neurons (combined total NE = 1600) and one population of interneurons (NI = 400). Two of the excitatory populations (each with fNE cells, f =0.15) were each sensitive to a leftward or rightward motion of the stimulus. The interneurons and the remaining (1 − 2f)NE pyramidal cells were non-selective to any of the motion stimuli. The inhibitory population acted not only to globally inhibit the excitatory cells, but also to inhibit itself. In addition to receiving inputs from all other cells (fully-connected net- work), each neuron also received Poisson distributed noisy excitatory inputs from neurons outside the local cortical module. Besides mimicking in vivo conditions, the external input provided a main source of noise to the lo- cal network. Moreover, the overall excitatory external input, together with feedback inhibition that dominates the recurrent circuit, results in a low spontaneous firing rate for the pyramidal cells (Amit and Brunel 1997). Neurons Single cells were represented by a leaky integrate-and-fire (LIF) model. For each unit, the resting potential VL, firing threshold Vth,andresetpoten- tial Vreset were set respectively to −70mV, −50mV and −55mV. The mem- brane leak conductance and membrane time constant for pyramidal cells were gL = 25nS and τm = 20ms, and 20nS and 10ms for interneurons. Below Vth, the membrane potential of the cell V (t) was governed by dV (t) Cm = −gL(V (t) − VL) − Isyn(t) .
    [Show full text]
  • Multiscale Dynamic Mean Field Model to Relate Resting-State Brain Dynamics with Local
    bioRxiv preprint doi: https://doi.org/10.1101/390716; this version posted February 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title: Multiscale dynamic mean field model to relate resting-state brain dynamics with local cortical excitatory−inhibitory neurotransmitter homeostasis in health and disease Amit Naskar*1, Anirudh Vattikonda*1, Gustavo Deco2, Dipanjan Roy#1, Arpan Banerjee#1 1. Cognitive Brain Dynamics Lab, National Brain Research Centre, NH 8, Manesar, Gurgaon 122052, India 2. Computational Neuroscience Research Group, Universitat Pompeu Fabra, Barcelona, Spain #Email: [email protected]; [email protected] (*Authors have equal contributions) 1 bioRxiv preprint doi: https://doi.org/10.1101/390716; this version posted February 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Previous neuro-computational studies have established the connection of spontaneous resting-state brain activity with “large-scale” neuronal ensembles using dynamic mean field approach and showed the impact of local excitatory−inhibitory (E−I) balance in sculpting dynamical patterns. Here, we argue that whole brain models that link multiple scales of physiological organization namely brain metabolism that governs synaptic concentrations of gamma-aminobutyric acid (GABA) and glutamate on one hand and neural field dynamics that operate on the macroscopic scale. The multiscale dynamic mean field (MDMF) model captures the synaptic gating dynamics over a cortical macrocolumn as a function of neurotransmitter kinetics. Multiple MDMF units were placed in brain locations guided by an anatomical parcellation and connected by tractography data from diffusion tensor imaging.
    [Show full text]
  • Co-Existent Activity Patterns in Inhibitory Neuronal Networks with Short-Term Synaptic Depression
    Journal of Theoretical Biology 272 (2011) 42–54 Contents lists available at ScienceDirect Journal of Theoretical Biology journal homepage: www.elsevier.com/locate/yjtbi Co-existent activity patterns in inhibitory neuronal networks with short-term synaptic depression Amitabha Bose a,c,Ã, Victoria Booth b a Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA b Departments of Mathematics and Anesthesiology, University of Michigan, Ann Arbor, MI 48109, USA c School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India article info abstract Article history: A network of two neurons mutually coupled through inhibitory synapses that display short-term synaptic Received 19 May 2010 depression is considered. We show that synaptic depression expands the number of possible activity Received in revised form patterns that the network can display and allows for co-existence of different patterns. Specifically, the 18 October 2010 network supports different types of n–m anti-phase firing patterns, where one neuron fires n spikes Accepted 1 December 2010 followed by the other neuron firing m spikes. When maximal synaptic conductances are identical, n–n Available online 9 December 2010 anti-phase firing patterns are obtained and there are conductance intervals over which different pairs of Keywords: these solutions co-exist. The multitude of n–m anti-phase patterns and their co-existence are not found Dynamical systems when the synapses are non-depressing. Geometric singular perturbation methods for dynamical systems Periodic orbit are applied to the original eight-dimensional model system to derive a set of one-dimensional conditions Synaptic depression for the existence and co-existence of different anti-phase solutions.
    [Show full text]