Quantum Chemistry (QC) on Gpus March 2018 Overview of Life & Material Accelerated Apps

Total Page:16

File Type:pdf, Size:1020Kb

Quantum Chemistry (QC) on Gpus March 2018 Overview of Life & Material Accelerated Apps Quantum Chemistry (QC) on GPUs March 2018 Overview of Life & Material Accelerated Apps MD: All key codes are GPU-accelerated QC: All key codes are ported or optimizing Great multi-GPU performance Focus on using GPU-accelerated math libraries, OpenACC directives Focus on dense (up to 16) GPU nodes &/or large # of GPU nodes GPU-accelerated and available today: ACEMD*, AMBER (PMEMD)*, BAND, CHARMM, DESMOND, ESPResso, ABINIT, ACES III, ADF, BigDFT, CP2K, GAMESS, GAMESS- Folding@Home, GPUgrid.net, GROMACS, HALMD, HTMD, HOOMD- UK, GPAW, LATTE, LSDalton, LSMS, MOLCAS, MOPAC2012, Blue*, LAMMPS, Lattice Microbes*, mdcore, MELD, miniMD, NAMD, NWChem, OCTOPUS*, PEtot, QUICK, Q-Chem, QMCPack, OpenMM, PolyFTS, SOP-GPU* & more Quantum Espresso/PWscf, QUICK, TeraChem* Active GPU acceleration projects: CASTEP, GAMESS, Gaussian, ONETEP, Quantum Supercharger Library*, VASP & more green* = application where >90% of the workload is on GPU 2 MD vs. QC on GPUs “Classical” Molecular Dynamics Quantum Chemistry (MO, PW, DFT, Semi-Emp) Simulates positions of atoms over time; Calculates electronic properties; chemical-biological or ground state, excited states, spectral properties, chemical-material behaviors making/breaking bonds, physical properties Forces calculated from simple empirical formulas Forces derived from electron wave function (bond rearrangement generally forbidden) (bond rearrangement OK, e.g., bond energies) Up to millions of atoms Up to a few thousand atoms Solvent included without difficulty Generally in a vacuum but if needed, solvent treated classically (QM/MM) or using implicit methods Single precision dominated (FP32) Double precision is important (FP64) Uses cuFFT, CUDA Uses cuBLAS, cuFFT, Tensor/Eigen Solvers, OpenACC GeForce (Workstations), Tesla (Servers) Tesla recommended ECC off ECC on 3 Accelerating Discoveries Using a supercomputer powered by the Tesla Platform with over 3,000 Tesla accelerators, University of Illinois scientists performed the first all-atom simulation of the HIV virus and discovered the chemical structure of its capsid — “the perfect target for fighting the infection.” Without gpu, the supercomputer would need to be 5x larger for similar performance. 4 GPU-Accelerated Quantum Chemistry Apps Green Lettering Indicates Performance Slides Included Abinit GPAW Octopus Quantum ACES III SuperCharger FHI-AIMS ONETEP Library ADF LATTE Petot RMG BigDFT LSDalton Q-Chem TeraChem CP2K MOLCAS QMCPACK UNM DIRAC Mopac2012 Quantum VASP GAMESS-US Espresso NWChem WL-LSMS Gaussian GPU Perf compared against dual multi-core x86 CPU socket. 5 ABINIT ABINIT on GPUS Speed in the parallel version: For ground-state calculations, GPUs can be used. This is based on CUDA+MAGMA For ground-state calculations, the wavelet part of ABINIT (which is BigDFT) is also very well parallelized : MPI band parallelism, combined with GPUs BigDFT Courtesy of BigDFT team @ CEA Courtesy of BigDFT team @ CEA Courtesy of BigDFT team @ CEA Courtesy of BigDFT team @ CEA Courtesy of BigDFT team @ CEA Courtesy of BigDFT team @ CEA GAMESS February 2018 GAMESS valinomycin rimp2 energy on V100 vs P100 (PCIe 16GB) 0.0025 0.0021 0.0020 0.0019 10.5X 9.5X (Untuned on Volta) 0.0016 0.0015 Running GAMESS 0.0015 0.0014 8.0X 0.0013 7.5X The blue node contains Dual Intel 7.0X 6.5X Xeon E5-2690 [email protected] [3.5GHz Turbo] (Broadwell) CPUs 1/seconds 0.0010 The green nodes contain Dual Intel Xeon E5-2690 [email protected] [3.5GHz 0.0005 Turbo] (Broadwell) CPUs + Tesla P100 PCIe (16GB) or V100 PCIe 0.0002 (16GB) GPUs 0.0000 1 Broadwell 1 node + 1 node + 1 node + 1 node + 1 node + 1 node + node 1x P100 2x P100 4x P100 1x V100 2x V100 4x V100 PCIe per PCIe per PCIe per PCIe per PCIe per PCIe per node node node node node node 16 Gaussian 16 March 2018 Parallelization Strategy Within Gaussi an 16, GPUs are used for a sm all fraction of code that consumes a large fraction of the execution time. T e implementation of GPU parallelism conforms to Gaussi an’s general parallelization strategy. Its main tenets are to avoid changing the underlying source code and to avoid modif cations which negatively af ect CPU per formance. For these reasons, OpenACC was used for GPU parallelization. PGI Accelerator Compilers with OpenACC PGI compilers fully support the current OpenACC standard as wel l as important extensions to it. PGI is an important contributor to the ongoing development of OpenACC. OpenACC enables developer s to implement GPU parallelism by adding compiler directives to their source code, of en eliminating the need for rewriting or restructuring. For example, the following Fortran compiler directive identif es a loop which the compiler should parallelize: !$acc paral l el l oop Other directives allocate GPU memory, copy data to/from GPUs, specify data to remain on the GPU, combine or split loops and other code sections, and gener ally provide hints for optimal work T e Gaussian approach to parallelization relies on environment-speci f c parallelization distribution management, and more. frameworks and tools: OpenMP for shared-memory, Linda for cluster and net work parallelization across discret e nodes, and OpenACC for GPUs. T e OpenACC project is ver y active, and the speci f cations and tools are changing fairly rapidly. T is has been true throughout the T e process of implementing GPU support involved many dif er ent aspects: lifet ime of this project. Indeed, one of its major Identifying places wher e GPUs could be benef ci al. T ese are a subset of areas which challenges has been using OpenACC in the midst of its development. T e talented people at PGI are parallelized for other execution contexts because using GPUs requires f ne grained wer e instrumental in addressing issues that arose parallelism. in one of the ver y f rst uses of OpenACC for a Understanding and optimizing data movem ent/storage at a high level to maximize large commer cial sof ware package. GPU ef ciency. PGI’s sophisticated prof ling and per formance evaluation tools wer e vital to the success of the ef ort. Specifying GPUs to Gaussian 16 T e GPU implementation in Gaussi an 16 is sophisticated and complex but using it is simple and straightforward. GPUs are specif ed with 1 additional Link 0 command (or equivalent Def ault.Route f le entry/command line option). For example, the following commands tell Gaussi an to run the calculation using 24 compute cores plus 8 GPUs+8 controlling cores (32 cores total): %CPU= 0 - 3 1 Request 32 CPUs for the calculation: 24 cores for computation, and 8 cores to control GPUs (see below). %GPUCPU=0- 7=0- 7 Use GPUs 0-7 with CPUs 0-7 as thei r controller s. Det ailed information is available on our website. Project Contributors GAUSSIAN 16 Mike Frisch, Ph.D. President and CEO A Leading Computation Chemistry Code Gaussian, Inc. Roberto Gomperts Michael Frisch Brent Leback Giovanni Scalmani NVIDIA Gaussian NVIDIA/PGI Gaussian Gaussi an, Inc. Using OpenACC allowed us to continue 340 Quinnipiac St. Bldg. 40developmentGaussian is ofa reg iourster ed trfundamentalademark of Gaussian, Inc. All other trademarks and register ed trademarks are Wallingford, CT 06492 USA the proper ties of thei r respective holder s. Speci f cations subject to change without notice. custser v@gaussi an.com algorithmsCopyr ighandt © 2017, software Gaussian, Inc. Acapabilitiesll rights reser ved. simultaneously with the GPU-related Valinomycin work. In the end, we could use the Frequency. APFD 6-311+G(2d,p) same code base for SMP, cluster/ 7X speedup on 8X P100 GPUs network and GPU parallelism. PGI's Hardware: HPE Apollo 6500 server with dual Intel Xeon E5-2680 v4 CPUs (2.40GHz; 14 cores/chip, compilers were essential to the 28 cores total), 256GB memory and 8 Tesla P100 GPU boards (autoboost clocks). Gaussian source code compiled with PGI Accelerator Compilers (17.7) with OpenACC (2.5 standard). success of our efforts. 18 Speed-up over run without GPUs of usingEffects K80s 0.0x 0.3x 0.5x 0.8x 1.0x 1.3x 1.5x 1.8x 2.0x 2.3x 2.5x 7.4 hrs rg-a25 6.4 hrs 5.8 hrs 5.1 hrs 27.9 hrs rg-a25td 25.8 hrs Haswell E5 Haswell Effects of K80using boards Effects 22.6 hrs 20.1 hrs Number Number of K80boards - 2698 [email protected] 0 2.5 hrs 1 rg-on 2 2.1 hrs 4 1.7 hrs 1.5 hrs 55.4 hrs rg-ontd 43.6 hrs 33.7 hrs 26.8 hrs 229.0 hrs rg-val 168.4 hrs 141.7 hrs 19 101.5 hrs GAUSSIAN 16 P100 PERFORMANCE Dual-socket 28-core Broadwell vs 8x P100 GPUs 7.5x 7.0x 6.5x Number of GPUs 6.0x none 8x P100 5.5x 5.0x 4.5x 4.0x 3.5x 3.0x up up over run without GPUs - 2.5x 2.0x Speed 1.5x 1.0x hrs hrs hrs hrs hrs hrs hrs hrs hrs 0.5x hrs 6.9 26.6 2.2 53.6 213.9 2.9 8.5 0.7 12.4 30.5 0.0x rg-a25 rg-a25td rg-on rg-ontd rg-val 20 GPU-ACCELERATED GAUSSIAN 16 AVAILABLE 100% PGI OpenACC Port (no CUDA) • Gaussian is a Top Ten HPC (Quantum Chemistry) Application. • 80-85% of use cases are GPU-accelerated (Hartree-Fock and DFT: energies, 1st derivatives (gradients) and 2nd derivatives for ground & excited states). More functionality to come. • K40, K80, P100 support; B.01 release. • No pricing difference between Gaussian CPU and GPU versions. • Existing Gaussian 09 customers under maintenance contract get (free) upgrade. • Existing non-maintenance customers required to pay upgrade fee.
Recommended publications
  • GPAW, Gpus, and LUMI
    GPAW, GPUs, and LUMI Martti Louhivuori, CSC - IT Center for Science Jussi Enkovaara GPAW 2021: Users and Developers Meeting, 2021-06-01 Outline LUMI supercomputer Brief history of GPAW with GPUs GPUs and DFT Current status Roadmap LUMI - EuroHPC system of the North Pre-exascale system with AMD CPUs and GPUs ~ 550 Pflop/s performance Half of the resources dedicated to consortium members Programming for LUMI Finland, Belgium, Czechia, MPI between nodes / GPUs Denmark, Estonia, Iceland, HIP and OpenMP for GPUs Norway, Poland, Sweden, and how to use Python with AMD Switzerland GPUs? https://www.lumi-supercomputer.eu GPAW and GPUs: history (1/2) Early proof-of-concept implementation for NVIDIA GPUs in 2012 ground state DFT and real-time TD-DFT with finite-difference basis separate version for RPA with plane-waves Hakala et al. in "Electronic Structure Calculations on Graphics Processing Units", Wiley (2016), https://doi.org/10.1002/9781118670712 PyCUDA, cuBLAS, cuFFT, custom CUDA kernels Promising performance with factor of 4-8 speedup in best cases (CPU node vs. GPU node) GPAW and GPUs: history (2/2) Code base diverged from the main branch quite a bit proof-of-concept implementation had lots of quick and dirty hacks fixes and features were pulled from other branches and patches no proper unit tests for GPU functionality active development stopped soon after publications Before development re-started, code didn't even work anymore on modern GPUs without applying a few small patches Lesson learned: try to always get new functionality to the
    [Show full text]
  • Accessing the Accuracy of Density Functional Theory Through Structure
    This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. Letter Cite This: J. Phys. Chem. Lett. 2019, 10, 4914−4919 pubs.acs.org/JPCL Accessing the Accuracy of Density Functional Theory through Structure and Dynamics of the Water−Air Interface † # ‡ # § ‡ § ∥ Tatsuhiko Ohto, , Mayank Dodia, , Jianhang Xu, Sho Imoto, Fujie Tang, Frederik Zysk, ∥ ⊥ ∇ ‡ § ‡ Thomas D. Kühne, Yasuteru Shigeta, , Mischa Bonn, Xifan Wu, and Yuki Nagata*, † Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan ‡ Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany § Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States ∥ Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, University of Paderborn, Warburger Strasse 100, 33098 Paderborn, Germany ⊥ Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan ∇ Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan *S Supporting Information ABSTRACT: Density functional theory-based molecular dynamics simulations are increasingly being used for simulating aqueous interfaces. Nonetheless, the choice of the appropriate density functional, critically affecting the outcome of the simulation, has remained arbitrary. Here, we assess the performance of various exchange−correlation (XC) functionals, based on the metrics relevant to sum-frequency generation spectroscopy. The structure and dynamics of water at the water−air interface are governed by heterogeneous intermolecular interactions, thereby providing a critical benchmark for XC functionals.
    [Show full text]
  • Density Functional Theory
    Density Functional Approach Francesco Sottile Ecole Polytechnique, Palaiseau - France European Theoretical Spectroscopy Facility (ETSF) 22 October 2010 Density Functional Theory 1. Any observable of a quantum system can be obtained from the density of the system alone. < O >= O[n] Hohenberg, P. and W. Kohn, 1964, Phys. Rev. 136, B864 Density Functional Theory 1. Any observable of a quantum system can be obtained from the density of the system alone. < O >= O[n] 2. The density of an interacting-particles system can be calculated as the density of an auxiliary system of non-interacting particles. Hohenberg, P. and W. Kohn, 1964, Phys. Rev. 136, B864 Kohn, W. and L. Sham, 1965, Phys. Rev. 140, A1133 Density Functional ... Why ? Basic ideas of DFT Importance of the density Example: atom of Nitrogen (7 electron) 1. Any observable of a quantum Ψ(r1; ::; r7) 21 coordinates system can be obtained from 10 entries/coordinate ) 1021 entries the density of the system alone. 8 bytes/entry ) 8 · 1021 bytes 4:7 × 109 bytes/DVD ) 2 × 1012 DVDs 2. The density of an interacting-particles system can be calculated as the density of an auxiliary system of non-interacting particles. Density Functional ... Why ? Density Functional ... Why ? Density Functional ... Why ? Basic ideas of DFT Importance of the density Example: atom of Oxygen (8 electron) 1. Any (ground-state) observable Ψ(r1; ::; r8) 24 coordinates of a quantum system can be 24 obtained from the density of the 10 entries/coordinate ) 10 entries 8 bytes/entry ) 8 · 1024 bytes system alone. 5 · 109 bytes/DVD ) 1015 DVDs 2.
    [Show full text]
  • D6.1 Report on the Deployment of the Max Demonstrators and Feedback to WP1-5
    Ref. Ares(2020)2820381 - 31/05/2020 HORIZON2020 European Centre of Excellence ​ Deliverable D6.1 Report on the deployment of the MaX Demonstrators and feedback to WP1-5 D6.1 Report on the deployment of the MaX Demonstrators and feedback to WP1-5 Pablo Ordejón, Uliana Alekseeva, Stefano Baroni, Riccardo Bertossa, Miki Bonacci, Pietro Bonfà, Claudia Cardoso, Carlo Cavazzoni, Vladimir Dikan, Stefano de Gironcoli, Andrea Ferretti, Alberto García, Luigi Genovese, Federico Grasselli, Anton Kozhevnikov, Deborah Prezzi, Davide Sangalli, Joost VandeVondele, Daniele Varsano, Daniel Wortmann Due date of deliverable: 31/05/2020 Actual submission date: 31/05/2020 Final version: 31/05/2020 Lead beneficiary: ICN2 (participant number 3) Dissemination level: PU - Public www.max-centre.eu 1 HORIZON2020 European Centre of Excellence ​ Deliverable D6.1 Report on the deployment of the MaX Demonstrators and feedback to WP1-5 Document information Project acronym: MaX Project full title: Materials Design at the Exascale Research Action Project type: European Centre of Excellence in materials modelling, simulations and design EC Grant agreement no.: 824143 Project starting / end date: 01/12/2018 (month 1) / 30/11/2021 (month 36) Website: www.max-centre.eu Deliverable No.: D6.1 Authors: P. Ordejón, U. Alekseeva, S. Baroni, R. Bertossa, M. ​ Bonacci, P. Bonfà, C. Cardoso, C. Cavazzoni, V. Dikan, S. de Gironcoli, A. Ferretti, A. García, L. Genovese, F. Grasselli, A. Kozhevnikov, D. Prezzi, D. Sangalli, J. VandeVondele, D. Varsano, D. Wortmann To be cited as: Ordejón, et al., (2020): Report on the deployment of the MaX Demonstrators and feedback to WP1-5. Deliverable D6.1 of the H2020 project MaX (final version as of 31/05/2020).
    [Show full text]
  • Introducing ONETEP: Linear-Scaling Density Functional Simulations on Parallel Computers Chris-Kriton Skylaris,A) Peter D
    THE JOURNAL OF CHEMICAL PHYSICS 122, 084119 ͑2005͒ Introducing ONETEP: Linear-scaling density functional simulations on parallel computers Chris-Kriton Skylaris,a) Peter D. Haynes, Arash A. Mostofi, and Mike C. Payne Theory of Condensed Matter, Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE, United Kingdom ͑Received 29 September 2004; accepted 4 November 2004; published online 23 February 2005͒ We present ONETEP ͑order-N electronic total energy package͒, a density functional program for parallel computers whose computational cost scales linearly with the number of atoms and the number of processors. ONETEP is based on our reformulation of the plane wave pseudopotential method which exploits the electronic localization that is inherent in systems with a nonvanishing band gap. We summarize the theoretical developments that enable the direct optimization of strictly localized quantities expressed in terms of a delocalized plane wave basis. These same localized quantities lead us to a physical way of dividing the computational effort among many processors to allow calculations to be performed efficiently on parallel supercomputers. We show with examples that ONETEP achieves excellent speedups with increasing numbers of processors and confirm that the time taken by ONETEP as a function of increasing number of atoms for a given number of processors is indeed linear. What distinguishes our approach is that the localization is achieved in a controlled and mathematically consistent manner so that ONETEP obtains the same accuracy as conventional cubic-scaling plane wave approaches and offers fast and stable convergence. We expect that calculations with ONETEP have the potential to provide quantitative theoretical predictions for problems involving thousands of atoms such as those often encountered in nanoscience and biophysics.
    [Show full text]
  • Octopus: a First-Principles Tool for Excited Electron-Ion Dynamics
    octopus: a first-principles tool for excited electron-ion dynamics. ¡ Miguel A. L. Marques a, Alberto Castro b ¡ a c, George F. Bertsch c and Angel Rubio a aDepartamento de F´ısica de Materiales, Facultad de Qu´ımicas, Universidad del Pa´ıs Vasco, Centro Mixto CSIC-UPV/EHU and Donostia International Physics Center (DIPC), 20080 San Sebastian,´ Spain bDepartamento de F´ısica Teorica,´ Universidad de Valladolid, E-47011 Valladolid, Spain cPhysics Department and Institute for Nuclear Theory, University of Washington, Seattle WA 98195 USA Abstract We present a computer package aimed at the simulation of the electron-ion dynamics of finite systems, both in one and three dimensions, under the influence of time-dependent electromagnetic fields. The electronic degrees of freedom are treated quantum mechani- cally within the time-dependent Kohn-Sham formalism, while the ions are handled classi- cally. All quantities are expanded in a regular mesh in real space, and the simulations are performed in real time. Although not optimized for that purpose, the program is also able to obtain static properties like ground-state geometries, or static polarizabilities. The method employed proved quite reliable and general, and has been successfully used to calculate linear and non-linear absorption spectra, harmonic spectra, laser induced fragmentation, etc. of a variety of systems, from small clusters to medium sized quantum dots. Key words: Electronic structure, time-dependent, density-functional theory, non-linear optics, response functions PACS: 33.20.-t, 78.67.-n, 82.53.-k PROGRAM SUMMARY Title of program: octopus Catalogue identifier: Program obtainable from: CPC Program Library, Queen’s University of Belfast, N.
    [Show full text]
  • 5 Jul 2020 (finite Non-Periodic Vs
    ELSI | An Open Infrastructure for Electronic Structure Solvers Victor Wen-zhe Yua, Carmen Camposb, William Dawsonc, Alberto Garc´ıad, Ville Havue, Ben Hourahinef, William P. Huhna, Mathias Jacqueling, Weile Jiag,h, Murat Ke¸celii, Raul Laasnera, Yingzhou Lij, Lin Ling,h, Jianfeng Luj,k,l, Jonathan Moussam, Jose E. Romanb, Alvaro´ V´azquez-Mayagoitiai, Chao Yangg, Volker Bluma,l,∗ aDepartment of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA bDepartament de Sistemes Inform`aticsi Computaci´o,Universitat Polit`ecnica de Val`encia,Val`encia,Spain cRIKEN Center for Computational Science, Kobe 650-0047, Japan dInstitut de Ci`enciade Materials de Barcelona (ICMAB-CSIC), Bellaterra E-08193, Spain eDepartment of Applied Physics, Aalto University, Aalto FI-00076, Finland fSUPA, University of Strathclyde, Glasgow G4 0NG, UK gComputational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA hDepartment of Mathematics, University of California, Berkeley, CA 94720, USA iComputational Science Division, Argonne National Laboratory, Argonne, IL 60439, USA jDepartment of Mathematics, Duke University, Durham, NC 27708, USA kDepartment of Physics, Duke University, Durham, NC 27708, USA lDepartment of Chemistry, Duke University, Durham, NC 27708, USA mMolecular Sciences Software Institute, Blacksburg, VA 24060, USA Abstract Routine applications of electronic structure theory to molecules and peri- odic systems need to compute the electron density from given Hamiltonian and, in case of non-orthogonal basis sets, overlap matrices. System sizes can range from few to thousands or, in some examples, millions of atoms. Different discretization schemes (basis sets) and different system geometries arXiv:1912.13403v3 [physics.comp-ph] 5 Jul 2020 (finite non-periodic vs.
    [Show full text]
  • 1-DFT Introduction
    MBPT and TDDFT Theory and Tools for Electronic-Optical Properties Calculations in Material Science Dott.ssa Letizia Chiodo Nano-bio Spectroscopy Group & ETSF - European Theoretical Spectroscopy Facility, Dipartemento de Física de Materiales, Facultad de Químicas, Universidad del País Vasco UPV/EHU, San Sebastián-Donostia, Spain Outline of the Lectures • Many Body Problem • DFT elements; examples • DFT drawbacks • excited properties: electronic and optical spectroscopies. elements of theory • Many Body Perturbation Theory: GW • codes, examples of GW calculations • Many Body Perturbation Theory: BSE • codes, examples of BSE calculations • Time Dependent DFT • codes, examples of TDDFT calculations • state of the art, open problems Main References theory • P. Hohenberg & W. Kohn, Phys. Rev. 136 (1964) B864; W. Kohn & L. J. Sham, Phys. Rev. 140 , A1133 (1965); (Nobel Prize in Chemistry1998) • Richard M. Martin, Electronic Structure: Basic Theory and Practical Methods, Cambridge University Press, 2004 • M. C. Payne, Rev. Mod. Phys.64 , 1045 (1992) • E. Runge and E.K.U. Gross, Phys. Rev. Lett. 52 (1984) 997 • M. A. L.Marques, C. A. Ullrich, F. Nogueira, A. Rubio, K. Burke, E. K. U. Gross, Time-Dependent Density Functional Theory. (Springer-Verlag, 2006). • L. Hedin, Phys. Rev. 139 , A796 (1965) • R.W. Godby, M. Schluter, L. J. Sham. Phys. Rev. B 37 , 10159 (1988) • G. Onida, L. Reining, A. Rubio, Rev. Mod. Phys. 74 , 601 (2002) codes & tutorials • Q-Espresso, http://www.pwscf.org/ • Abinit, http://www.abinit.org/ • Yambo, http://www.yambo-code.org • Octopus, http://www.tddft.org/programs/octopus more info at http://www.etsf.eu, www.nanobio.ehu.es Outline of the Lectures • Many Body Problem • DFT elements; examples • DFT drawbacks • excited properties: electronic and optical spectroscopies.
    [Show full text]
  • Natural Bond Orbital Analysis in the ONETEP Code: Applications to Large Protein Systems Louis P
    WWW.C-CHEM.ORG FULL PAPER Natural Bond Orbital Analysis in the ONETEP Code: Applications to Large Protein Systems Louis P. Lee,*[a] Daniel J. Cole,[a] Mike C. Payne,[a] and Chris-Kriton Skylaris[b] First principles electronic structure calculations are typically Generalized Wannier Functions of ONETEP to natural atomic performed in terms of molecular orbitals (or bands), providing a orbitals, NBO analysis can be performed within a localized straightforward theoretical avenue for approximations of region in such a way that ensures the results are identical to an increasing sophistication, but do not usually provide any analysis on the full system. We demonstrate the capabilities of qualitative chemical information about the system. We can this approach by performing illustrative studies of large derive such information via post-processing using natural bond proteins—namely, investigating changes in charge transfer orbital (NBO) analysis, which produces a chemical picture of between the heme group of myoglobin and its ligands with bonding in terms of localized Lewis-type bond and lone pair increasing system size and between a protein and its explicit orbitals that we can use to understand molecular structure and solvent, estimating the contribution of electronic delocalization interactions. We present NBO analysis of large-scale calculations to the stabilization of hydrogen bonds in the binding pocket of with the ONETEP linear-scaling density functional theory package, a drug-receptor complex, and observing, in situ, the n ! p* which we have interfaced with the NBO 5 analysis program. In hyperconjugative interactions between carbonyl groups that ONETEP calculations involving thousands of atoms, one is typically stabilize protein backbones.
    [Show full text]
  • The CECAM Electronic Structure Library and the Modular Software Development Paradigm
    The CECAM electronic structure library and the modular software development paradigm Cite as: J. Chem. Phys. 153, 024117 (2020); https://doi.org/10.1063/5.0012901 Submitted: 06 May 2020 . Accepted: 08 June 2020 . Published Online: 13 July 2020 Micael J. T. Oliveira , Nick Papior , Yann Pouillon , Volker Blum , Emilio Artacho , Damien Caliste , Fabiano Corsetti , Stefano de Gironcoli , Alin M. Elena , Alberto García , Víctor M. García-Suárez , Luigi Genovese , William P. Huhn , Georg Huhs , Sebastian Kokott , Emine Küçükbenli , Ask H. Larsen , Alfio Lazzaro , Irina V. Lebedeva , Yingzhou Li , David López- Durán , Pablo López-Tarifa , Martin Lüders , Miguel A. L. Marques , Jan Minar , Stephan Mohr , Arash A. Mostofi , Alan O’Cais , Mike C. Payne, Thomas Ruh, Daniel G. A. Smith , José M. Soler , David A. Strubbe , Nicolas Tancogne-Dejean , Dominic Tildesley, Marc Torrent , and Victor Wen-zhe Yu COLLECTIONS Paper published as part of the special topic on Electronic Structure Software Note: This article is part of the JCP Special Topic on Electronic Structure Software. This paper was selected as Featured ARTICLES YOU MAY BE INTERESTED IN Recent developments in the PySCF program package The Journal of Chemical Physics 153, 024109 (2020); https://doi.org/10.1063/5.0006074 An open-source coding paradigm for electronic structure calculations Scilight 2020, 291101 (2020); https://doi.org/10.1063/10.0001593 Siesta: Recent developments and applications The Journal of Chemical Physics 152, 204108 (2020); https://doi.org/10.1063/5.0005077 J. Chem. Phys. 153, 024117 (2020); https://doi.org/10.1063/5.0012901 153, 024117 © 2020 Author(s). The Journal ARTICLE of Chemical Physics scitation.org/journal/jcp The CECAM electronic structure library and the modular software development paradigm Cite as: J.
    [Show full text]
  • Density Functional Theory (DFT)
    Herramientas mecano-cuánticas basadas en DFT para el estudio de moléculas y materiales en Materials Studio 7.0 Javier Ramos Biophysics of Macromolecular Systems group (BIOPHYM) Departamento de Física Macromolecular Instituto de Estructura de la Materia – CSIC [email protected] Webinar, 26 de Junio 2014 Anteriores webinars Como conseguir los videos y las presentaciones de anteriores webminars: Linkedin: Grupo de Química Computacional http://www.linkedin.com/groups/Química-computacional-7487634 Índice Density Functional Theory (DFT) The Jacob’s ladder DFT modules in Maretials Studio DMOL3, CASTEP and ONETEP XC functionals Basis functions Interfaces in Materials Studio Tasks Properties Example: n-butane conformations Density Functional Theory (DFT) DFT is built around the premise that the energy of an electronic system can be defined in terms of its electron probability density (ρ). (Hohenberg-Kohn Theorem) E 0 [ 0 ] Te [ 0 ] E ne [ 0 ] E ee [ 0 ] (easy) Kinetic Energy for ????? noninteracting (r )v (r ) dr electrons(easy) 1 E[]()()[]1 r r d r d r E e e2 1 2 1 2 X C r12 Classic Term(Coulomb) Non-classic Kohn-Sham orbitals Exchange & By minimizing the total energy functional applying the variational principle it is Correlation possible to get the SCF equations (Kohn-Sham) The Jacob’s Ladder Accurate form of XC potential Meta GGA Empirical (Fitting to Non-Empirical Generalized Gradient Approx. atomic properties) (physics rules) Local Density Approximation DFT modules in Materials Studio DMol3: Combine computational speed with the accuracy of quantum mechanical methods to predict materials properties reliably and quickly CASTEP: CASTEP offers simulation capabilities not found elsewhere, such as accurate prediction of phonon spectra, dielectric constants, and optical properties.
    [Show full text]
  • Compact Orbitals Enable Low-Cost Linear-Scaling Ab Initio Molecular Dynamics for Weakly-Interacting Systems Hayden Scheiber,1, A) Yifei Shi,1 and Rustam Z
    Compact orbitals enable low-cost linear-scaling ab initio molecular dynamics for weakly-interacting systems Hayden Scheiber,1, a) Yifei Shi,1 and Rustam Z. Khaliullin1, b) Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada Today, ab initio molecular dynamics (AIMD) relies on the locality of one-electron density matrices to achieve linear growth of computation time with systems size, crucial in large-scale simulations. While Kohn-Sham orbitals strictly localized within predefined radii can offer substantial computational advantages over density matrices, such compact orbitals are not used in AIMD because a compact representation of the electronic ground state is difficult to find. Here, a robust method for maintaining compact orbitals close to the ground state is coupled with a modified Langevin integrator to produce stable nuclear dynamics for molecular and ionic systems. This eliminates a density matrix optimization and enables first orbital-only linear-scaling AIMD. An application to liquid water demonstrates that low computational overhead of the new method makes it ideal for routine medium-scale simulations while its linear-scaling complexity allows to extend first- principle studies of molecular systems to completely new physical phenomena on previously inaccessible length scales. Since the unification of molecular dynamics and den- LS methods restrict their use in dynamical simulations sity functional theory (DFT)1, ab initio molecular dy- to very short time scales, systems of low dimensions, namics (AIMD) has become an important tool to study and low-quality minimal basis sets6,18–20. On typical processes in molecules and materials. Unfortunately, the length and time scales required in practical and accurate computational cost of the conventional Kohn-Sham (KS) AIMD simulations, LS DFT still cannot compete with DFT grows cubically with the number of atoms, which the straightforward low-cost cubically-scaling KS DFT.
    [Show full text]