Tree Species Diversity and Population Structure Across Major Forest Formations and Disturbance Categories in Little Andaman Island, India

Total Page:16

File Type:pdf, Size:1020Kb

Tree Species Diversity and Population Structure Across Major Forest Formations and Disturbance Categories in Little Andaman Island, India RASINGAM & PARATHASARATHY 89 Tropical Ecology 50 (1): 89-102, 2009 ISSN 0564-3295 © International Society for Tropical Ecology www.tropecol.com Tree species diversity and population structure across major forest formations and disturbance categories in Little Andaman Island, India L. RASINGAM & N. PARATHASARATHY* Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry 605 014, India Abstract: The Andaman and Nicobar islands, located in the Indian ocean, are among the biodiversity rich localities in India. Several islands in the southern part were severely affected by a recent cyclone ‘ tsunami ’. We compared patterns of tree species diversity and extent of damage by tsunami at eight sites in Little Andaman island within eight one ha plots. The study sites were located at relatively undisturbed and disturbed Evergreen (UE, DE), Semi- evergreen (US, DS), Deciduous (UD, DD) and Littoral (UL, DL) forests. A total of 4252 trees ≥30 cm girth at breast height, covering 186 species in 125 genera and 56 families were recorded within these sites. Of these, 23 species (12.4%) were endemic to these islands. Tree species richness was lowest (18 species ha -1) in the tsunami affected littoral forest and highest (84 species ha -1) in the UE. Tree density (79 to 935 trees ha -1) and basal area (41 to 59.10 m 2 ha -1) were greater in all the undisturbed forests as compared to disturbed forests. In all the eight sites, tree species richness and density decreased with increasing girth class and the stand structure of the forests displayed a reverse J-shaped curve, with the exception of the DL. Importance Value Index of three endemic species viz. , Manilkara littoralis, Canarium euphyllum and Terminalia bialata has been compared across the forest types and tsunami hit areas. Management implications are discussed. Resumen: Las islas Andamán y Nicobar, localizadas en el Océano Índico, figuran entre las localidades ricas en biodiversidad de la India. Varias islas de su parte sur fueron afectadas severamente por un reciente tsunami. Comparamos patrones de diversidad de especies arbóreas y la magnitud del tsunami en ocho sitios en la isla Pequeña Andamán, en ocho parcelas de 1 ha. Los sitios de estudio se localizaron en bosques perennifolios (UE, DE), subperennifolios (US, DS), caducifolios (UD, DD) y de litoral, tanto relativamente no perturbados como perturbados. En estos sitios se registró un total de 4252 árboles ≥ 30 cm de perímetro a la altura del pecho, los cuales incluyeron 186 especies distribuidas en 125 géneros y 56 familias. De éstas, 23 especies (12.4%) resultaron ser endémicas de las isla. La riqueza de especies arbóreas tuvo su mínimo (18 especies ha -1) en el bosque de litoral afectado por el tsunami y su máximo (84 especies ha -1) en el UE. La densidad arbórea (79 a 935 árboles ha -1) y el área basal (41 a 59.10 m 2 ha -1) tuvieron valores mayores en los sitios no perturbados que en los bosques perturbados. En los ocho sitios, la riqueza y la densidad de especies arbóreas y su densidad decrecieron hacia las clases perimétricas mayores, y las estructuras de rodal de los bosques mostraron una curva en forma de J invertida, con excepción del de DL. Los Índices de Valor de Importancia de tres especies endémicas, Manilkara littoralis, Canarium euphyllum y Terminalia bialata , fueron comparados entre tipos de bosque y áreas afectadas por el tsunami. Se discuten las implicaciones para el maneJo. Resumo : As ilhas de Andaman e Nicobar, localizadas no oceano Índico, estão entre as * Corresponding Author ; e-mail: [email protected] 90 TREE DIVERSITY IN LITTLE ANDAMAN ISLAND localidades com maior riqueza em biodiversidade na Índia. Várias ilhas na parte sul foram severamente afectadas por um ciclone “ tsunami ” recente. Comparam-se os padrões de diversidade arbórea e a extensão dos estragos pelo tsunami em oito parcelas de um hectare localizadas na pequena ilha de Andaman. As estações de estudo foram localizadas em locais perturbados e não perturbados na floresta sempreverde (EU e DE), na floresta semi- sempreverde (US e DS), na floresta decídua (UD, DD) e Litoral (UL, DL). Um total de 4252 árvores com perímetro à altura do peito ≥ 30 cm, cobrindo 186 espécies em 125 géneros e 56 famílias foram registadas nestas estações. Destas, 23 espécies (12,4%) eram endémicas nestas ilhas. A riqueza nas espécies arbóreas era mais baixa (18 espécies ha -1) nas florestas litorâneas afectada pelo tsunami e mais alta (84 espécies ha -1) na EU. A densidade arbórea (79 a 935 arvores ha -1) e uma área basal (41 a 59,10 m 2 ha -1) foi maior em todas as florestas não disturbadas quando em comparação com as disturbadas. Em todas a oito estações, a riqueza arbórea e a densidade decresceu com o aumento da classe de perímetro e a estrutura da parcela das florestas apresentavam uma curva do tipo J invertido, com excepção da DL. O índice do Valor de Importância de três espécies endémicas viz. Manilkara littoralis , Canarium euphyllum e Terminalia bialata foi comparado ao longo dos tipos florestais e nas áreas atingidas pelo tsunami. As implicações para a gestão são discutidas. Key words: Conservation, human disturbance, Little Andaman, stand structure, selective logging, tree diversity. Introduction insular flora is, therefore, very vital to understand the patterns of speciation, extent of plant diversity Insular biology has always drawn the across the small islands and to draw long term attention of a number of ecologists (e.g., plans for their conservation and management. Balakrishnan & Rao 1983; Renvoize 1979). It has The flora of A&N islands is insufficiently contributed much to our knowledge of speciation, known as compared to other parts of India and adaptability, invasion, colonization and evolution. nearly 20% of the area remains unexplored. Islands tend to have higher percentage of Earlier studies have mainly focused on the endangered species than other areas due to small qualitative assessment of the forest wealth and geographical area available for each species. only few efforts have been made to quantify the Presently, a vast maJority of the island biota are vegetation structure and composition (Padalia et severely threatened due to incessant al. 2004; Tripathi et al . 2004). This study was anthropogenic pressures (Bramwell 1979). Rapid undertaken, to determine tree species diversity loss of tropical forests is recognized as one of the and stand structure in relatively undisturbed and serious environmental and economic problems all disturbed evergreen, semi-evergreen, deciduous over the world (Hare et al . 1997). A number of and littoral forests in Little Andaman. MaJor conservation biologists have raised concern over findings of the study with reference to floristic loss of biodiversity in tropical forests owing to the composition, species diversity and population deforestation and imprudent infra-structure structure of tree layer across disturbed and development in the name of modernization. It is undisturbed categories of these forests are doubtful whether modern man will arrive even at discussed. the stage of alpha taxonomy of some of the insular floras before they vanish in catastrophic events. Material and methods This situation may hold true for islands such as Andaman and Nicobar (A&N), where nearly 17% Study area of the plants are endemic (Reddy et al. 2004). The study was carried out in Little Andaman, Information on the distribution and abundance of which forms a part of A&N group of islands, India RASINGAM & PARATHASARATHY 91 Fig. 1. Map showing the location of Little Andaman Island, east of Indian mainland and eight study sites in the island. The complete names of study sites are mentioned in the text. (10° 30’ - 10° 54' N latitudes and 92° 20’ - 92° 35' E and are mostly dominated by endemic tree longitudes; Fig. 1). It is the third largest island in Manilkara littoralis , in association with A&N and covers an area of 733 km 2. The terrain is Terminalia catappa, Gyrocarpus americanus, more or less flat with undulations in the northern Guettarda speciosa and Pongamia pinnata. The parts. The central and western portions are hilly deciduous forests are located beyond littoral and the highest elevation is about 210 m asl. forests and extend up to 400-600 m inland, Perennial streams are numerous which run both characterized by Terminalia bialata, T. procera, T. in the east-west and west-east directions. citrina, Tetrameles nudiflora and Pterocymbium Geologically, the island comprises thick tinctorium . The semi-evergreen forests, distributed sedimentary deposits of Eocene period deposited in the south-eastern part of the island harbour on pre-Tertiary fine grey sandstone, shales and silt dominant trees such as Oroxylum indicum, stones. Coral reef formations are found in the Canarium euphyllum, Neonauclea gageana and south-western portion. The soils are loose in Tetrameles nudiflora . The evergreen forests are texture and low in water holding capacity. The distributed from shore up to 210 m in the interior climate is warm and the temperature ranges from side of the island and are mostly dominated by 22° - 32°C. The island receives rains from southwest Pometia pinnata, Dipterocarpus spp. and Euodia and northeast monsoon (April-December). The glabra . All forest types were subJected to some mean annual rainfall ranges from 3000-3500 mm level of selective felling from 1983-2001. Timber and humidity is 85-90% throughout the year. extraction was banned by the order of Supreme The maJor vegetation types in the island are Court of India in 2002. Andaman Tropical Evergreen, Andaman Semi- evergreen, Andaman Moist Deciduous and Littoral Field methods forests (Champion & Seth 1968). The littoral Eight 1 ha plots were established, one each in forests extend up to 150-200 m from the seashore undisturbed (site code prefixed with ‘U’) and 92 TREE DIVERSITY IN LITTLE ANDAMAN ISLAND disturbed (site code prefixed with ‘D’) evergreen disturbance was ranked as none (0), very low (1), (UE, DE), semi-evergreen (US, DS), deciduous low (2), medium (3) and high (4) (Table 1).
Recommended publications
  • Nazrin Full Phd Thesis (150246576
    Maintenance and conservation of Dipterocarp diversity in tropical forests _______________________________________________ Mohammad Nazrin B Abdul Malik A thesis submitted in partial fulfilment of the degree of Doctor of Philosophy Faculty of Science Department of Animal and Plant Sciences November 2019 1 i Thesis abstract Many theories and hypotheses have been developed to explain the maintenance of diversity in plant communities, particularly in hyperdiverse tropical forests. Maintenance of the composition and diversity of tropical forests is vital, especially species of high commercial value. I focus on the high value dipterocarp timber species of Malaysia and Borneo as these have been extensive logged owing to increased demands from global timber trade. In this thesis, I explore the drivers of diversity of this group, as well as the determinants of global abundance, conservation and timber value. The most widely supported hypothesis for explaining tropical diversity is the Janzen Connell hypothesis. I experimentally tested the key elements of this, namely density and distance dependence, in two dipterocarp species. The results showed that different species exhibited different density and distance dependence effects. To further test the strength of this hypothesis, I conducted a meta-analysis combining multiple studies across tropical and temperate study sites, and with many species tested. It revealed significant support for the Janzen- Connell predictions in terms of distance and density dependence. Using a phylogenetic comparative approach, I highlight how environmental adaptation affects dipterocarp distribution, and the relationships of plant traits with ecological factors and conservation status. This analysis showed that environmental and ecological factors are related to plant traits and highlights the need for dipterocarp conservation priorities.
    [Show full text]
  • 11Th Flora Malesina Symposium, Brunei Darussalm, 30 June 5 July 2019 1
    11TH FLORA MALESINA SYMPOSIUM, BRUNEI DARUSSALM, 30 JUNE 5 JULY 2019 1 Welcome message The Universiti Brunei Darussalam is honoured to host the 11th International Flora Malesiana Symposium. On behalf of the organizing committee it is my pleasure to welcome you to Brunei Darussalam. The Flora Malesiana Symposium is a fantastic opportunity to engage in discussion and sharing information and experience in the field of taxonomy, ecology and conservation. This is the first time that a Flora Malesiana Symposium is organized in Brunei Darissalam and in the entire island of Borneo. At the center of the Malesian archipelago the island of Borneo magnifies the megadiversity of this region with its richness in plant and animal species. Moreover, the symposium will be an opportunity to inspire and engage the young generation of taxonomists, ecologists and conservationists who are attending it. They will be able to interact with senior researchers and get inspired with new ideas and develop further collaboration. In a phase of Biodiversity crisis, it is pivotal the understanding of plant diversity their ecology in order to have a tangible and successful result in the conservation action. I would like to thank the Vice Chancellor of UBD for supporting the symposium. In the last 6 months the organizing committee has worked very hard for making the symposium possible, to them goes my special thanks. I would like to extend my thanks to all the delegates and the keynote speakers who will make this event a memorable symposium. Dr Daniele Cicuzza Chairperson of the 11th International Flora Malesiana Symposium UBD, Brunei Darussalam 11TH FLORA MALESINA SYMPOSIUM, BRUNEI DARUSSALM, 30 JUNE 5 JULY 2019 2 Organizing Committee Adviser Media and publicity Dr.
    [Show full text]
  • For Peer Review Only 15 16 17 18 19 20 21 22 23 24 25 Colin R
    BIOTROPICA AFor Conservation Peer Assessment Review of Dipterocarps Only in Sabah: Comparison of Methods and Future Prospects Journal: Biotropica Manuscript ID: Draft Manuscript Type: Paper Dipterocarpaceae, ecological niche modelling, IUCN Red List, Keywords: regional Red List, threatened tropical tree species Association for Tropical Biology and Conservation Page 1 of 39 BIOTROPICA 1 2 3 A Conservation Assessment of Dipterocarps in Sabah: Comparison of Methods and Future 4 5 6 Prospects 7 8 9 LRH: Maycock et al. 10 11 12 RRH: Conservation Assessment of Dipterocarps 13 14 For Peer Review Only 15 16 17 18 19 20 21 22 23 24 25 Colin R. Maycock 1,3,5 , Eyen Khoo 1, Chris J. Kettle 2, Joan T. Pereira 1, John B. Sugau 1, Reuben 26 27 1 1 3 4 3 28 Nilus , Robert C. Ong , Nazahatul Anis Amaludin , Mark F. Newman & David F.R.P. Burslem 29 30 31 32 33 1 34 Forest Research Centre, Sabah Forest Department, Sandakan 90715, Sabah, Malaysia 35 36 37 2 Institute of Terrestrial Ecosystems, ETH Zürich, CHN G 73.1, Universitätstrasse 16, Zürich 38 39 40 8092, Switzerland 41 42 3 43 Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank 44 45 Building, St Machar Drive, Aberdeen, AB24 3UU, UK 46 47 48 4 Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK 49 50 5 51 Corresponding author; e-mail: [email protected] 52 53 54 Received________; revision accepted______. 55 56 57 58 1 59 60 Association for Tropical Biology and Conservation BIOTROPICA Page 2 of 39 1 2 3 ABSTRACT 4 5 6 7 Sabah has experienced a rapid decline in the extent of its natural forests.
    [Show full text]
  • Plant Species Vulnerability to Climate Change in Peninsular Thailand
    Utah State University DigitalCommons@USU CWEL Publications 2011 Plant Species vulnerability to climate change in peninsular Thailand. Y. Trisuart S. Fajendra Roger K. Kjelgren Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/cwel_pubs Recommended Citation Trisuart, Y.; Fajendra, S.; and Kjelgren, Roger K., "Plant Species vulnerability to climate change in peninsular Thailand." (2011). CWEL Publications. Paper 83. https://digitalcommons.usu.edu/cwel_pubs/83 This Article is brought to you for free and open access by DigitalCommons@USU. It has been accepted for inclusion in CWEL Publications by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Applied Geography 31 (2011) 1106e1114 Contents lists available at ScienceDirect Applied Geography journal homepage: www.elsevier.com/locate/apgeog Plant species vulnerability to climate change in Peninsular Thailand Yongyut Trisurat a,*, Rajendra P. Shrestha b, Roger Kjelgren c a Kasetsart University, Faculty of Forestry, 50 Ngamwongwan Road, Bangkok 10900, Thailand b School of Environment, Resources and Development, Asian Institute of Technology, Pathumthani 12120, Thailand c Department of Plants, Soils, and Climate, Utah State University, UT 84322, USA abstract Keywords: The objective of this research study was to evaluate the consequences of climate change on shifts in Climate change distributions of plant species and the vulnerability of the species in Peninsular Thailand. A sub-scene of Maxent the predicted climate in the year 2100, under the B2a scenario of the Hadley Centre Coupled Model, Peninsular Thailand version 3 (HadCM3), was extracted and calibrated with topographic variables. A machine learning Plant species Species distribution algorithm based on the maximum entropy theory (Maxent) was employed to generate ecological niche Species vulnerability models of 66 forest plant species from 22 families.
    [Show full text]
  • Habitat Distribution of Dipterocarp Species in the Leyte Cordillera: an Indicator for Species - Site Suitability in Local Reforestation Programs Gerhard Langenberger
    Habitat distribution of dipterocarp species in the Leyte Cordillera: an indicator for species - site suitability in local reforestation programs Gerhard Langenberger To cite this version: Gerhard Langenberger. Habitat distribution of dipterocarp species in the Leyte Cordillera: an indi- cator for species - site suitability in local reforestation programs. Annals of Forest Science, Springer Nature (since 2011)/EDP Science (until 2010), 2006, 63 (2), pp.149-156. hal-00883966 HAL Id: hal-00883966 https://hal.archives-ouvertes.fr/hal-00883966 Submitted on 1 Jan 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ann. For. Sci. 63 (2006) 149–156 149 © INRA, EDP Sciences, 2006 DOI: 10.1051/forest:2005107 Original article Habitat distribution of dipterocarp species in the Leyte Cordillera: an indicator for species – site suitability in local reforestation programs Gerhard LANGENBERGER* Institute of Plant Production and Agroecology in the Tropics and Subtropics (380b), University of Hohenheim, 70593 Stuttgart, Germany (Received 17 January 2005; accepted 6 July 2005) Abstract – Dipterocarpaceae is the most important family of economic trees in southeast Asia. In the Philippines, most dipterocarp forests have vanished due to logging, shifting cultivation and transformation into settlements or agricultural fields.
    [Show full text]
  • PHENOLOGY, CLIMATE, and ADAPTATION: HOW DOES DIPTEROCARPS RESPOND to CLIMATE? Nurul L
    Indonesian Journal of Forestry Research Vol. 3, No. 2, October 2016, 129-141 ISSN: 2355-7079 / E-ISSN: 2406-8195 PHENOLOGY, CLIMATE, AND ADAPTATION: HOW DOES DIPTEROCARPS RESPOND TO CLIMATE? Nurul L. Winarni*1, Dewi R. Kurniasari.2, Diny Hartiningtias1,3, Meyner Nusalawo4, and Niken Sakuntaladewi2 1Research Center for Climate Change, University of Indonesia. Depok, Indonesia 2Research and Development Center for Socio Economic Policy and Climate Change, Bogor, Indonesia 3Department of Biology, Faculty of Mathematics and Natural Science. Depok, Indonesia 4Wildlife Conservation Society – Indonesia Program. Bogor, Indonesia Received: 23 October 2013, Revised: 04 October 2016, Accepted: 17 October 2016 PHENOLOGY, CLIMATE AND ADAPTATION: HOW DOES DIPTEROCARPS RESPOND TO CLIMATE?. Temperature, rainfall and extreme weather have been indicated to affect the phenological patterns and forest productivity by shifting flowering and fruiting seasons and patterns, as well as crop production. Dipterocarpaceae are high value trees for both timber and non-timber forest products. This study aims to determine the response of phenological patterns of flowering and fruiting of Dipterocarps to climate variables. The study was conducted at Way Canguk Research Station of the Bukit Barisan Selatan National Park (BBSNP), Lampung during May-November 2012 by analyzing 14 years (1998-2012) of phenological data of Dipterocarps. The phenology surveys were carried out on monthly basis by estimating the percentage of flowering, fruiting (divided into 0-4 scoring) and the crop production. The results indicated that the phenological patterns of Dipterocarps in the area depicted major and minor patterns without mass- flowering time, different from what have been reported for Kalimantan or North Sumatra.
    [Show full text]
  • Seasonally Dry Tropical Forests in Continental Southeast Asia Structure, Composition, and Dynamics
    1 Seasonally Dry Tropical Forests in Continental Southeast Asia Structure, Composition, and Dynamics Sarayudh Bunyavejchewin, Patrick J. Baker, and Stuart J. Davies he forests of continental Southeast Asia make up a significant portion of the Indo-Burma biodiversity hotspot (see McShea and Davies, this volume). These Tdiverse forests are under severe threat from both land use and climate change, and urgently need to be more sustainably managed. This management of seasonally dry forests in Southeast Asia needs to be based on a sound understanding of the ecol- ogy of natural forests, the habitat requirements of their constituent species, and the response of these systems to natural disturbance dynamics. Natural forest management strategies will help protect habitat for wildlife, will limit the impact of nonnatural dis- turbances, and will lead to opportunities for restoring degraded lands to functional for- ests. An important first step in this process is to develop a much more refined descrip- tion of the forests with a clear understanding of what controls their spatial variation in structure and composition across the region. The vegetation types and ecoregions described in recent mapping and conservation assessments in continental Southeast Asia—for example, Blasco et al. (1996) and Wikramanayake et al. (2002)—are useful for broad-scale threat assessment and priority setting; however, for the active forest management that is required in much of the region now, we need detailed understand- ing of the ecology and dynamics of specific forest types. Our research aims to understand the controls on spatial distributions and temporal dynamics of seasonally dry tropical forest (SDTF) formations across the region.
    [Show full text]
  • Ecological Analysis of Dipterocarpaceae of North Andaman Forest, India
    PRASAD P. RAMA CHANDRA J. Plant Develop. 18(2011): 135-149 ECOLOGICAL ANALYSIS OF DIPTEROCARPACEAE OF NORTH ANDAMAN FOREST, INDIA 1 PRASAD P. RAMA CHANDRA Abstract: Dipterocarpaceae is one of the important timber families of Andaman Islands whose members were largely exploited for their timber in the past. The current study discusses in detail about the family Dipterocarpaceae of North Andaman forest with reference to its species composition, population structure and other ecological entities. Data was analyzed using various ecological and statistical methods. Dipterocarps were encountered in 97 plots, occupying 80% of the sampled area with 68 stems ha-1 and basal area of 8.2 m2 ha-1. Dipterocarpaceae ranked 3rd with reference to stem density (11%) and 1st with respect to basal area (18%). The family showed five species viz., Dipterocarpus alatus, D. costatus, D. gracilis, D. grandiflorus and Hopea odorata compounded from two genera – Dipterocarpus and Hopea. Keeping in view of the species demographic structure as well as regeneration status, conservative measures are suggested along with certain research questions which need immediate attention in the fragile insular ecosystems of Andaman Islands. Key words: Andaman, dipterocarps, dispersion, endemic, regeneration, South East Asia Introduction Dipterocarpaceae is one of the main timber families in the forests of Southeast Asia that forms a high proportion of the emergent and main canopy strata of the forest [MANOKARAN, 1996]. The members of this family, besides playing a vital role as potential timber species that form an important means of economy in the timber market [APPANAH, 1998; POORE, 1989] also act as source of other non-timber products for the livelihood of the forest dwellers [PANAYOTOU & ASHTON, 1992].
    [Show full text]
  • A PHYTOCHEMICAL, ETHNOMEDICINAL and PHARMACOLOGICAL REVIEW of GENUS DIPTEROCARPUS Innovare Academic Sciences
    Innovare International Journal of Pharmacy and Pharmaceutical Sciences Academic Sciences ISSN- 0975-1491 Vol 7, Issue 4, 2015 Review Article A PHYTOCHEMICAL, ETHNOMEDICINAL AND PHARMACOLOGICAL REVIEW OF GENUS DIPTEROCARPUS MUHAMMAD SHAHZAD ASLAM*, MUHAMMAD SYARHABIL AHMAD, AWANG SOH MAMAT School of Bioprocess Engineering, University Malaysia Perlis, Kompleks Pusat Pengajian, Jejawi 3, 02600 Arau, Perlis, Malaysia. Email: [email protected] Received: 03 Jan 2015 Revised and Accepted: 29 Jan 2015 ABSTRACT Dipterocarpus are the third largest and most diverse genus among Dipterocarpaceae. They are well-known for timber, but less acknowledged for its medicinal importance. Phytochemically genus Dipterocarpus has reported to contain resin, coumarin and dammar. The Resveratrol class of compounds is one of the major chemical constituent in this genus. Generally, the bark of Dipterocarpus is presumed to be the most active. Dipterocarpus species showed Anti-AIDS, cytotoxic, anti-inflammatory, anti-bacterial, anti-fungal and anti-oxidant activities. Therapeutically important species in this genus are Dipterocarpus obtusifolius Teijsm ex Miq because it may have cured against AIDS. We document number of species in this genus, their synonyms, distribution around the World, traditional names, ethnomedicinal uses, isolated compounds, chemical structure, chemical nature of isolated compounds, pharmacological reports and explain the relationship between isolated compounds from this genus and their therapeutic use. Keywords: Dipterocarpus, Cytotoxicity, Anticancer, Anti-AIDS, Resveratrol. INTRODUCTION Meghalaya, Nagaland, Tripura, West Bengal); Indonesia (Jawa, Lesser Sunda Is., Sumatera); Malaysia (Peninsular Malaysia); Natural products, including plants, animal and microorganism have Myanmar; Thailand; Vietnam [11, 12]. List of Species with been the basis of treatment of human diseases. Indigenous people distribution of plant and their synonyms are mentioned in table 2.
    [Show full text]
  • Andaman & Nicobar Islands, India
    RESEARCH Vol. 21, Issue 68, 2020 RESEARCH ARTICLE ISSN 2319–5746 EISSN 2319–5754 Species Floristic Diversity and Analysis of South Andaman Islands (South Andaman District), Andaman & Nicobar Islands, India Mudavath Chennakesavulu Naik1, Lal Ji Singh1, Ganeshaiah KN2 1Botanical Survey of India, Andaman & Nicobar Regional Centre, Port Blair-744102, Andaman & Nicobar Islands, India 2Dept of Forestry and Environmental Sciences, School of Ecology and Conservation, G.K.V.K, UASB, Bangalore-560065, India Corresponding author: Botanical Survey of India, Andaman & Nicobar Regional Centre, Port Blair-744102, Andaman & Nicobar Islands, India Email: [email protected] Article History Received: 01 October 2020 Accepted: 17 November 2020 Published: November 2020 Citation Mudavath Chennakesavulu Naik, Lal Ji Singh, Ganeshaiah KN. Floristic Diversity and Analysis of South Andaman Islands (South Andaman District), Andaman & Nicobar Islands, India. Species, 2020, 21(68), 343-409 Publication License This work is licensed under a Creative Commons Attribution 4.0 International License. General Note Article is recommended to print as color digital version in recycled paper. ABSTRACT After 7 years of intensive explorations during 2013-2020 in South Andaman Islands, we recorded a total of 1376 wild and naturalized vascular plant taxa representing 1364 species belonging to 701 genera and 153 families, of which 95% of the taxa are based on primary collections. Of the 319 endemic species of Andaman and Nicobar Islands, 111 species are located in South Andaman Islands and 35 of them strict endemics to this region. 343 Page Key words: Vascular Plant Diversity, Floristic Analysis, Endemcity. © 2020 Discovery Publication. All Rights Reserved. www.discoveryjournals.org OPEN ACCESS RESEARCH ARTICLE 1.
    [Show full text]
  • 1. DIPTEROCARPUS C. F. Gaertner, Suppl. Carp. 50. 1805
    Flora of China 13: 48. 2007. 1. DIPTEROCARPUS C. F. Gaertner, Suppl. Carp. 50. 1805. 龙脑香属 long nao xiang shu Trees, lofty, emergent, with grayish brown to orange flaky, prominently lenticellate bark and aromatic oily white resin, with stout buttresses. Stipules large, enclosing terminal bud, finally caducous and leaving an annular scar; leaf blade leathery, plicate in bud and ± corrugate when opened; lateral veins pinnate, straight; tertiary veins subscalariform, conspicuous, margin entire or sinuate- crenate. Raceme 3–9-flowered, hardly branched. Flowers large, sweetly scented. Calyx with urceolate or cup-shaped free basal tube; sepals valvate, unequal. Petals white or with a reddish median stripe, pubescent or stellate pubescent especially on parts exposed in bud. Anthers yellow, linear, equivalved; connective appendages aristate or filiform. Ovary narrowly ovoid, pubescent; style filiform; stigma slightly dilated. Fruit nutlike, enclosed in accrescent calyx tube; winglike calyx lobes 2, erect. Seed adnate to base of pericarp; cotyledons large, thick, unequal; radicle inconspicuous. About 70 species: Cambodia, China, India, W Indonesia, Laos, Malaysia, Myanmar, Philippines, Sri Lanka, Thailand, Vietnam; two species (one introduced) in China. Dipterocarpus gracilis Blume, which was reported in FRPS (50(2): 114. 1990), is not found in China. It differs in the smaller size of all parts and rufous scabrous tomentum. Its nearest localities are in N Thailand, India (Andaman Islands), and SE Bangladesh. 1a. Fruit wings conspicuously 3–5-veined,
    [Show full text]
  • Development of Specific Conservation Measures and Monitoring Procedures to Maintain and Enhance the Conservation Attribute in Jerangau HCVF, Terengganu, Malaysia”
    Final report of “Development of specific conservation measures and monitoring procedures to maintain and enhance the conservation attribute in Jerangau HCVF, Terengganu, Malaysia” Project funded by Programme for the Endorsement of Forest Certification (PEFC) Prepared by Wendy Yong Sze Yee Forest Institute of Malaysia January 2017 Contents 1.0 Introduction 3 1.1 Forest Management 3 1.2 Identification and management of HCVF in Peninsular Malaysia 3 2.0 Objective 3 3.0 Methodology and site description 4 3.1 Site description 4 3.2 Plot setting 5 3.3 Plant inventory 5 3.3.1 Trees 4 3.3.2 Non-trees 6 3.3.3 Canopy closure 6 3.3.4 Analysis 7 4.0 Result and discussion 7 4.1 Tree diversity 7 4.2 Stand structure/Basal area 9 4.3 Non-tree diversity 11 5.0 Endemic and Threatened species 12 6.0 Specific management prescriptions for Dipterocarpus sarawakensis and other 14 rare and Threatened species 6.1 Dipterocarpus sarawakensis 14 6.2 Dipterocarpus eurynchus 17 6.3 Hopea mengerawan 18 6.4 Hopea nutans 19 6.5 Hopea sulcata 21 6.6 Shorea exelliptica 22 6.7 Vatica havilandii 23 6.8 Vatica mangachapoi 25 6.9 Vatica mizaniana 26 6.2.10 Vatica odorata 27 6.2.11 Vatica stapfiana 29 6.2.12 Vatica venulosa 30 6.2.13 Aquilaria hirta 31 6.2.14 Licuala bayana 33 6.2.15 Johannesteijsmannia altifrons 34 7.0 Reference 39 Appendix 1: Spatial Distribution of Dipterocarps species 40 Appendix 2: Photos of species 49 Appendix 3: Checklist of species recorded from three 1-ha transects 56 2 1.0 Introduction 1.1 Forest Management The management objective of the natural forests and its resources in Malaysia takes the two-pronged approach of conservation and production.
    [Show full text]