NOAO Annual Report for FY06

Total Page:16

File Type:pdf, Size:1020Kb

NOAO Annual Report for FY06 Appendix A NOAO SCIENTIFIC STAFF: FY06 ACCOMPLISHMENTS AND FY07 PLANS ¬New appointment in FY06 S Non-NSF (external) funding ±Term ended in FY06 HELMUT A. ABT, Emeritus Astronomer Research Interests Formation and evolution of double stars; publication statistics FY06 Accomplishments: Abt considered the eccentricities of 553 spectroscopic and 616 visual binaries with known orbital elements and dwarf primaries. These show that for long periods (P>275 yrs), all eccentricities are equally probable, indicating that when wide binaries are formed, no single eccentricity is preferred. For shorter periods due to tidal interactions, the highest eccentricities disappear first until, for the shortest periods, only the zeros remain. Abt also considered the papers published in the major journals in five sciences (physics, astronomy, geophysics, mathematics, and chemistry). The numbers of papers published annually since 1970 divided by the numbers of members of the appropriate scientific society (e.g. American Physical Society) are constants, indicating that the numbers of scientific papers depend only on the numbers of research scientists and not upon the quality, sensitivity, or quantity of the instruments and computers that they used. Abt presented talks in China on “Early Chinese Inventions” and “National Astronomical Productivities” at Nanjing University and the Purple Mountain Observatory in Nanjing; “Stellar Disks and the Interstellar Medium” at National Astronomical Observatory, Beijing; “Early Chinese Inventions” at Beijing Normal Univ. Beijing. Abt attended the Seventh Pacific Rim Conference on Stellar Astrophysics in Seoul, South Korea, in November 2005, and gave talks on “The First Six Pacific Rim Conferences” and “Tidal Effects in Binaries.” He attended the Centennial Celebration for Dorrit Hoffleit at Yale Univ. in April 2006, and gave a talk on “Spectral Classification Surveys.” Abt attended the IAU General Assembly in Prague, Czech Republic, and IAU Symposium No. 240 on “Binary Stars as Critical Tools and Tests in Contemporary Astrophysics,” and gave a talk on “Observed Orbital Eccentricities.” Abt wrote eight papers. FY07 Plans Abt will attend, by invitation, a conference on “Astronomical Communication” in Brussels, Belgium, June 10-13, 2007, and give a paper. He has a tentative invitation to give several talks in China. Abt will do research on binaries among high-velocity stars, on metallic-line (Am) Stars, and on publication statistics. TAFT E. ARMANDROFF, Astronomer (Director, NOAO Gemini Science Center)± JASON P. AUFDENBERG, Research AssociateS± Research Interests Stellar atmospheres; stellar winds; fundamental properties of stars; interferometry; spectroscopy; radiative transfer; modeling FY06 Accomplishments Aufdenberg and colleagues (including S. Ridgway) published their interferometric observations and modeling of the important photometric standard Vega. This work supports the model of Vega as a pole- on rapid rotator. In addition, Aufdenberg was a co-author on three published interferometric studies based on data from the CHARA Array on Mount Wilson: the detection of Vega’s debris disk in the K- band, measurements of M-dwarf angular diameters, and the detection of circumstellar material surrounding delta Cephei and Polaris. Aufdenberg was also a co-author of a study on the limb darkening A-1 NOAO ANNUAL REPORT FY 2006 of the star SV Cam based on a comparison of model atmospheres to precise multi-band photometry from the Hubble Space Telescope. Aufdenberg also contributed models for a published multi-wavelength study of the prototypical symbiotic star Z And. This work puts forth a new, two-stage model for the symbiotic outburst. Aufdenberg collected additional interferometric data on hot stars Rigel and Spica and presented the first results on Spica as an invited talk in a symposium at the International Astronomical Union General Assembly in Prague. Aufdenberg left the NOAO staff in early August 2006. He is now an assistant professor in the Physical Sciences Department at Embry-Riddle Aeronautical University in Daytona Beach, FL. DMITRY BIZYAEV, Research AssociateS Research Interests High-resolution stellar spectroscopy; stellar radial velocities and chemical abundance; star formation in collisional ring galaxies; structure of spiral galaxies; dark halos FY06 Accomplishments Bizyaev and V.V. Smith continued selection of radial velocity stable red giants for the SIM Planet Quest mission (under NASA grant through JPL). During 121 nights (96 observing ones) at the 82–inch telescope (McDonald Observatory, Texas), 2490 spectra were obtained and all spectra were reduced. Parameters and history of star formation in collisional ring galaxy Arp 10 were studied via the modeling of emission and absorption spectral features (in collaboration with the UWO, Canada; SAO RAS, Russia). Development of the bending instability in galactic disks was studied (in collaboration with Volgograd Univ., Russia). Structural parameters of 140 edge-on galaxies, including extinction-free disk thickness, were estimated from 2MASS NIR images. FY07 Plans Bizyaev will continue the observations of SIM reference stars. He and V.V. Smith expect to estimate radial velocity variation and abundances [Fe/H] for most objects from their sample (about 1400 stars). Studies of propagating star formation in collisional ring galaxies will be continued. Connection between dark halos and stellar disks properties will be studied with the help of edge-on spiral galaxies. ROBERT BLUM, Associate Astronomer, NOAO/NGSC Research Interests The Galactic Center; massive star formation; resolved stellar populations FY06 Accomplishments Blum, in collaboration with PI Meixner (STScI) and colleagues, continued as lead of the evolved stars group (one of three science groups) on the Spitzer Space Telescope SAGE survey. This second generation Legacy program surveyed the LMC in all IRAC and MIPS bands. Two papers were accepted in refereed journals of which Blum was lead author on one. Blum is funding postdoc. Sean Points at CTIO through a sizable Spitzer grant related to the SAGE project (with Co-I Olsen of CTIO). Blum continued his collaboration with Conti (JILA) and Damineli (U. Sao Paulo) to investigate Galactic Giant HII regions with a five-night run on the CTIO 4-m. Blum participated in first science use of the new integral field spectrometer, NIFS, at Gemini North as a member of PI McGregor’s (ANU) NIFS science team. FY07 Plans Blum will continue exploiting the SAGE data set. His evolved star group should produce several more papers this year including a first author for postdoc. Points on the properties of LMC clusters as seen A-2 NOAO SCIENTIFIC STAFF: FY06 ACCOMPLISHMENTS AND FY07 PLANS through SAGE. Blum will continue the program to investigate Galactic Giant HII region stellar content. His group’s ninth paper in this effort is nearly ready to be submitted (lead author Lys Figueredo, a former student of Damineli and now at Open University in the UK). This program seeks to understand massive star formation and Galactic structure and uses the NOAO 4-meters and both Gemini 8-meter telescopes. Blum is reducing a NIFS data set on two Galactic Giant HII regions taken during the 2006 PI time of McGregor at Gemini North. This data set will result in a first author paper for Blum this year. TODD BOROSON Astronomer (Deputy Director, NOAO) Research Interests Structural and physical properties of active galactic nuclei; stellar populations and their evolution; O/IR instrumentation; analysis and mining of large astronomical data sets FY06 Accomplishments Boroson continued to work on reduction of the Gemini IR spectra of QSOs obtained in the previous year. For the automatic measurement of QSO spectral properties, he has developed tools that utilize K-L transforms to produce relatively noise-free versions of the many thousands of SDSS QSO spectra. A number of new correlations among spectral properties are seen in the resulting database. In addition, in collaboration with D. Schneider and M. Eracleous (Penn State U.), he has begun a study of possible binary black hole AGN, in which the H-beta line peak is offset from the systemic velocity by thousands of km/s. FY07 Plans Boroson plans a 6-month sabbatical in FY07, during which he will use the automatic tools developed in the past year to complete the analysis of the low-redshift SDSS QSO spectra and interpret the observed characteristics in terms of physical parameters. Spectra of the sample of possible binary black hole AGN will be analyzed in search of evidence that the offset H-beta peaks are shifting. KATHERINE J. BRAND, Research Associate± SEAN D. BRITTAIN, Research Associate (Michelson Fellow, NASA)± CHRISTINE CHEN, Research Associate (Spitzer Fellow, NASA)S Research Interests Star and planet formation FY06 Accomplishments Chen, in collaboration with the IRS Disks team (led by D. Watson, University of Rochester), modeled Spitzer IRS 5–35-micron spectra of ~60 nearby IRAS-discovered debris disks. She assumed that circumstellar dust was either located in (1) a ring around the star, or (2) a continuous disk that is produced as particles spiral into the central star under the Poynting-Robertson effect. Chen found that the spectra are better fit by a single temperature black body, suggesting that the inner regions of the disks have been cleared and that the disks are collisionally dominated. In collaboration with A. Li and the Fab4 team (led by K. Stapelfeldt, JPL), Chen modeled the Spitzer IRS 5–35-micron spectrum of beta Pictoris. She reported: (1) the first detection of weak crystalline silicate emission features at wavelengths lambda > 20 microns, (2) upper limits on the atomic and molecular gas masses, and (3) that photon-stimulated desorption may produce the observed atomic Na I gas seen in Keplerian rotation. A-3 NOAO ANNUAL REPORT FY 2006 FY07 Plans Chen hopes to continue to study the dust and gas around young stars in Sco-Cen. In collaboration with M. Jura (UCLA), she hopes to complete a Spitzer MIPS search for 24- and 70-micron excesses around 100 solar-like stars in ScoCen, and, in collaboration with the IRS Disks team, to use Spitzer IRS and MIPS SED mode observations to follow up discoveries of debris disks.
Recommended publications
  • Sky Notes - April 2012
    North Devon Astronomical Society www.northdevonastronomy.co.uk Sky Notes - April 2012 THE MOON New Moon 21s t April First Quarter 29th April Full Moon 6th April Last Quarter 13th April THE PLANETS Mercury A morning object, Mercury is visible before sunrise by the middle of the month. The planet will reach greatest western elongation on the 18th, when it will be around 27 degrees from the Sun. Venus Now moving closer to the Sun once again following greatest elongation last month, but blazing away at magnitude -4.4, Venus still dominates the western evening sky. In the eyepiece, the planet presents a 25 arcsecond disc which is just under half illuminated. Mars Following last month’s opposition, The Red Planet remains fairly close to the bright star Regulus, in the constellation Leo. Though the apparent diameter of the planet will shrink slightly throughout the month, Mars remains worthy of observation and is visible for most of the night. Jupiter Though still visible low in the west after sunset, Jupiter will soon become lost in the evening twilight. Saturn R eaching opposition on the 15th, Saturn is observable all night in the constellation Virgo, close to the first magnitude star Spica, (Alpha Virginis). A magnificent object, Saturn’s rings and it’s largest satellite Titan are readily apparent in small telescopes, while larger instruments will show atmospheric bands and some of the smaller moons. Uranus Ur anus is too close to the Sun to be observable this month. Neptune A morning object, Neptune can be found among the stars of the constellation Aquarius.
    [Show full text]
  • Catalog of Nearby Exoplanets
    Catalog of Nearby Exoplanets1 R. P. Butler2, J. T. Wright3, G. W. Marcy3,4, D. A Fischer3,4, S. S. Vogt5, C. G. Tinney6, H. R. A. Jones7, B. D. Carter8, J. A. Johnson3, C. McCarthy2,4, A. J. Penny9,10 ABSTRACT We present a catalog of nearby exoplanets. It contains the 172 known low- mass companions with orbits established through radial velocity and transit mea- surements around stars within 200 pc. We include 5 previously unpublished exo- planets orbiting the stars HD 11964, HD 66428, HD 99109, HD 107148, and HD 164922. We update orbits for 90 additional exoplanets including many whose orbits have not been revised since their announcement, and include radial ve- locity time series from the Lick, Keck, and Anglo-Australian Observatory planet searches. Both these new and previously published velocities are more precise here due to improvements in our data reduction pipeline, which we applied to archival spectra. We present a brief summary of the global properties of the known exoplanets, including their distributions of orbital semimajor axis, mini- mum mass, and orbital eccentricity. Subject headings: catalogs — stars: exoplanets — techniques: radial velocities 1Based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the Uni- versity of California and the California Institute of Technology. The Keck Observatory was made possible by the generous financial support of the W. M. Keck Foundation. arXiv:astro-ph/0607493v1 21 Jul 2006 2Department of Terrestrial Magnetism, Carnegie Institute of Washington, 5241 Broad Branch Road NW, Washington, DC 20015-1305 3Department of Astronomy, 601 Campbell Hall, University of California, Berkeley, CA 94720-3411 4Department of Physics and Astronomy, San Francisco State University, San Francisco, CA 94132 5UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 6Anglo-Australian Observatory, PO Box 296, Epping.
    [Show full text]
  • Plotting Variable Stars on the H-R Diagram Activity
    Pulsating Variable Stars and the Hertzsprung-Russell Diagram The Hertzsprung-Russell (H-R) Diagram: The H-R diagram is an important astronomical tool for understanding how stars evolve over time. Stellar evolution can not be studied by observing individual stars as most changes occur over millions and billions of years. Astrophysicists observe numerous stars at various stages in their evolutionary history to determine their changing properties and probable evolutionary tracks across the H-R diagram. The H-R diagram is a scatter graph of stars. When the absolute magnitude (MV) – intrinsic brightness – of stars is plotted against their surface temperature (stellar classification) the stars are not randomly distributed on the graph but are mostly restricted to a few well-defined regions. The stars within the same regions share a common set of characteristics. As the physical characteristics of a star change over its evolutionary history, its position on the H-R diagram The H-R Diagram changes also – so the H-R diagram can also be thought of as a graphical plot of stellar evolution. From the location of a star on the diagram, its luminosity, spectral type, color, temperature, mass, age, chemical composition and evolutionary history are known. Most stars are classified by surface temperature (spectral type) from hottest to coolest as follows: O B A F G K M. These categories are further subdivided into subclasses from hottest (0) to coolest (9). The hottest B stars are B0 and the coolest are B9, followed by spectral type A0. Each major spectral classification is characterized by its own unique spectra.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • The NTT Provides the Deepest Look Into Space 6
    The NTT Provides the Deepest Look Into Space 6. A. PETERSON, Mount Stromlo Observatory,Australian National University, Canberra S. D'ODORICO, M. TARENGHI and E. J. WAMPLER, ESO The ESO New Technology Telescope r on La Silla has again proven its extraor- - dinary abilities. It has now produced the "deepest" view into the distant regions of the Universe ever obtained with ground- or space-based telescopes. Figure 1 : This picture is a reproduction of a I.1 x 1.1 arcmin portion of a composite im- age of forty-one 10-minute exposures in the V band of a field at high galactic latitude in the constellation of Sextans (R.A. loh 45'7 Decl. -0' 143. The individual images were obtained with the EMMI imager/spectrograph at the Nas- myth focus of the ESO 3.5-m New Technolo- gy Telescope using a 1000 x 1000 pixel Thomson CCD. This combination gave a full field of 7.6 x 7.6 arcmin and a pixel size of 0.44 arcsec. The average seeing during these exposures was 1.0 arcsec. The telescope was offset between the indi- vidual exposures so that the sky background could be used to flat-field the frame. This procedure also removed the effects of cos- mic rays and blemishes in the CCD. More than 97% of the objects seen in this sub- field are galaxies. For the brighter galax- ies, there is good agreement between the galaxy counts of Tyson (1988, Astron. J., 96, 1) and the NTT counts for the brighter galax- ies.
    [Show full text]
  • CH Cygni II: Optical Flickering from an Unstable Disk
    To appear in the Astrophysical Journal A Preprint typeset using L TEX style emulateapj v. 14/09/00 CH CYGNI II: OPTICAL FLICKERING FROM AN UNSTABLE DISK J. L. Sokoloski and S. J. Kenyon Smithsonian Astrophysical Observatory, 60 Garden St., Cambridge, MA 02138 [email protected] To appear in the Astrophysical Journal ABSTRACT CH Cygni began producing rapid, stochastic optical variations with the onset of symbiotic activity in 1963. We use changes in this flickering between 1997 and 2000 to diagnose the state of the accretion disk during this time. In the 1998 high state, the luminosity of the B-band flickering component was typically more than 20 times higher than in the 1997 and 2000 low states. Therefore, the physical process or region that produces the flickering was also primarily responsible for the large optical flux increase in the 1998 high state. Assuming that the rapid, stochastic optical variations in CH Cygni come from the accretion disk, as in cataclysmic variable stars, a change in the accretion rate through the disk led to the 1998 bright state. All flickering disappeared in 1999, when the accreting WD was eclipsed by the red giant orbiting with a period of approximately 14 yr, according to the ephemeris of Hinkle et al. and the interpretation of Eyres et al. We did not find any evidence for periodic or quasi-periodic oscillations in the optical emission from CH Cygni in either the high or low state, and we discuss the implications for magnetic propeller models of this system. As one alternative to propeller models, we propose that the activity in CH Cygni is driven by accretion through a disk with a thermal-viscous instability, similar to the instabilities believed to exist in dwarf novae and suggested for FU Ori pre-main-sequence stars and soft X-ray transients.
    [Show full text]
  • Constraining Gas Motions in the Intra-Cluster Medium
    Noname manuscript No. (will be inserted by the editor) Constraining Gas Motions in the Intra-Cluster Medium Aurora Simionescu · John ZuHone · Irina Zhuravleva · Eugene Churazov · Massimo Gaspari · Daisuke Nagai · Norbert Werner · Elke Roediger · Rebecca Canning · Dominique Eckert · Liyi Gu · Frits Paerels Received: date / Accepted: date Aurora Simionescu SRON, Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands; E-mail: [email protected] Institute of Space and Astronautical Science (ISAS), JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa, 252-5210, Japan John ZuHone Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA Irina Zhuravleva Department of Astronomy & Astrophysics, University of Chicago, 5640 S Ellis Ave, Chicago, IL 60637, USA Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94305-4085, USA Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305-4085, USA Eugene Churazov Max Planck Institute for Astrophysics, Karl-Schwarzschild-Strasse 1, D-85741 Garching, Germany Space Research Institute (IKI), Profsoyuznaya 84/32, Moscow 117997, Russia Massimo Gaspari Einstein and Spitzer Fellow, Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544-1001, USA Daisuke Nagai Department of Physics, Yale University, PO Box 208101, New Haven, CT, USA Yale Center for Astronomy and Astrophysics, PO Box 208101, New Haven, CT, USA Norbert Werner MTA-E¨otv¨osLor´andUniversity Lend¨uletHot Universe Research Group, H-1117 P´azm´any P´eters´eta´ny1/A, Budapest, Hungary Department of Theoretical Physics and Astrophysics, Faculty of Science, Masaryk Univer- sity, Kotl´arsk´a2, Brno, 61137, Czech Republic School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, arXiv:1902.00024v1 [astro-ph.CO] 31 Jan 2019 Japan 2 Aurora Simionescu et al.
    [Show full text]
  • E R U P T I V E S T a R S S P E C T R O S C O
    Erupti ve stars spectroscopy Catacl ys mics, Sy mbi otics, Novae, Supernovae ARAS Eruptive Stars Information letter n° 12 31‐12‐2014 Observations of December 2014 Contents NEWS Novae Symbiotic star Hen 2‐468 Nova Cyg 2014 nebular phase (= V2428 Cyg) Nova Cen 2013 reappears in the morning light detected in ouburst at mag 13 Nova Del 2013 nebular phase, slowly declining by U. Munari & al. (Atel # 6841) 5 novae in 2014 Symbiotics Observations of CH Cygni AX Per returns to quiescent state Survey of V694 Mon, currently in stable state Notes from Steve Shore Balmer line formation and variations and a comment on abundance determinations The hydrogen lines in symbiotic spectra A start on abundance determinations Recent publications about eruptive stars Observing ARAS Spectroscopy Long term survey of CH Cygni ( Dr A. Skopal ) ARAS Web page http://www.astrosurf.com/aras/ ARAS Forum http://www.spectro‐aras.com/forum/ ARAS list https://groups.yahoo.com/neo/groups/sp Acknowledgements : ectro‐l/info V band light curves from AAVSO photometric data base ARAS preliminary data base http://www.astrosurf.com/aras/Aras_Data Authors : Base/DataBase.htm F. Teyssier, P. Somogyi, P. Berardi, D. Boyd, J. Edlin, ARAS BeAM J. Guarro, T. Lester, J. Montier http://arasbeam.free.fr/?lang=en ARAS Eruptive Stars Information Letter #12 | 2014‐12‐31 | 1 / 28 N O Status of current novae V A Nova Del 2013 V339 Del Maximum 14-08-2013 E Days after maximum 504 Current mag V 12.9 Delta mag V 8.5 Nova Cyg 2014 V2659 Del Maximum 09-04-2014 Days after maximum 266 Current mag V
    [Show full text]
  • A Review on Substellar Objects Below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs Or What?
    geosciences Review A Review on Substellar Objects below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs or What? José A. Caballero Centro de Astrobiología (CSIC-INTA), ESAC, Camino Bajo del Castillo s/n, E-28692 Villanueva de la Cañada, Madrid, Spain; [email protected] Received: 23 August 2018; Accepted: 10 September 2018; Published: 28 September 2018 Abstract: “Free-floating, non-deuterium-burning, substellar objects” are isolated bodies of a few Jupiter masses found in very young open clusters and associations, nearby young moving groups, and in the immediate vicinity of the Sun. They are neither brown dwarfs nor planets. In this paper, their nomenclature, history of discovery, sites of detection, formation mechanisms, and future directions of research are reviewed. Most free-floating, non-deuterium-burning, substellar objects share the same formation mechanism as low-mass stars and brown dwarfs, but there are still a few caveats, such as the value of the opacity mass limit, the minimum mass at which an isolated body can form via turbulent fragmentation from a cloud. The least massive free-floating substellar objects found to date have masses of about 0.004 Msol, but current and future surveys should aim at breaking this record. For that, we may need LSST, Euclid and WFIRST. Keywords: planetary systems; stars: brown dwarfs; stars: low mass; galaxy: solar neighborhood; galaxy: open clusters and associations 1. Introduction I can’t answer why (I’m not a gangstar) But I can tell you how (I’m not a flam star) We were born upside-down (I’m a star’s star) Born the wrong way ’round (I’m not a white star) I’m a blackstar, I’m not a gangstar I’m a blackstar, I’m a blackstar I’m not a pornstar, I’m not a wandering star I’m a blackstar, I’m a blackstar Blackstar, F (2016), David Bowie The tenth star of George van Biesbroeck’s catalogue of high, common, proper motion companions, vB 10, was from the end of the Second World War to the early 1980s, and had an entry on the least massive star known [1–3].
    [Show full text]
  • And Ecclesiastical Cosmology
    GSJ: VOLUME 6, ISSUE 3, MARCH 2018 101 GSJ: Volume 6, Issue 3, March 2018, Online: ISSN 2320-9186 www.globalscientificjournal.com DEMOLITION HUBBLE'S LAW, BIG BANG THE BASIS OF "MODERN" AND ECCLESIASTICAL COSMOLOGY Author: Weitter Duckss (Slavko Sedic) Zadar Croatia Pусскй Croatian „If two objects are represented by ball bearings and space-time by the stretching of a rubber sheet, the Doppler effect is caused by the rolling of ball bearings over the rubber sheet in order to achieve a particular motion. A cosmological red shift occurs when ball bearings get stuck on the sheet, which is stretched.“ Wikipedia OK, let's check that on our local group of galaxies (the table from my article „Where did the blue spectral shift inside the universe come from?“) galaxies, local groups Redshift km/s Blueshift km/s Sextans B (4.44 ± 0.23 Mly) 300 ± 0 Sextans A 324 ± 2 NGC 3109 403 ± 1 Tucana Dwarf 130 ± ? Leo I 285 ± 2 NGC 6822 -57 ± 2 Andromeda Galaxy -301 ± 1 Leo II (about 690,000 ly) 79 ± 1 Phoenix Dwarf 60 ± 30 SagDIG -79 ± 1 Aquarius Dwarf -141 ± 2 Wolf–Lundmark–Melotte -122 ± 2 Pisces Dwarf -287 ± 0 Antlia Dwarf 362 ± 0 Leo A 0.000067 (z) Pegasus Dwarf Spheroidal -354 ± 3 IC 10 -348 ± 1 NGC 185 -202 ± 3 Canes Venatici I ~ 31 GSJ© 2018 www.globalscientificjournal.com GSJ: VOLUME 6, ISSUE 3, MARCH 2018 102 Andromeda III -351 ± 9 Andromeda II -188 ± 3 Triangulum Galaxy -179 ± 3 Messier 110 -241 ± 3 NGC 147 (2.53 ± 0.11 Mly) -193 ± 3 Small Magellanic Cloud 0.000527 Large Magellanic Cloud - - M32 -200 ± 6 NGC 205 -241 ± 3 IC 1613 -234 ± 1 Carina Dwarf 230 ± 60 Sextans Dwarf 224 ± 2 Ursa Minor Dwarf (200 ± 30 kly) -247 ± 1 Draco Dwarf -292 ± 21 Cassiopeia Dwarf -307 ± 2 Ursa Major II Dwarf - 116 Leo IV 130 Leo V ( 585 kly) 173 Leo T -60 Bootes II -120 Pegasus Dwarf -183 ± 0 Sculptor Dwarf 110 ± 1 Etc.
    [Show full text]
  • Open Batalha-Dissertation.Pdf
    The Pennsylvania State University The Graduate School Eberly College of Science A SYNERGISTIC APPROACH TO INTERPRETING PLANETARY ATMOSPHERES A Dissertation in Astronomy and Astrophysics by Natasha E. Batalha © 2017 Natasha E. Batalha Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2017 The dissertation of Natasha E. Batalha was reviewed and approved∗ by the following: Steinn Sigurdsson Professor of Astronomy and Astrophysics Dissertation Co-Advisor, Co-Chair of Committee James Kasting Professor of Geosciences Dissertation Co-Advisor, Co-Chair of Committee Jason Wright Professor of Astronomy and Astrophysics Eric Ford Professor of Astronomy and Astrophysics Chris Forest Professor of Meteorology Avi Mandell NASA Goddard Space Flight Center, Research Scientist Special Signatory Michael Eracleous Professor of Astronomy and Astrophysics Graduate Program Chair ∗Signatures are on file in the Graduate School. ii Abstract We will soon have the technological capability to measure the atmospheric compo- sition of temperate Earth-sized planets orbiting nearby stars. Interpreting these atmospheric signals poses a new challenge to planetary science. In contrast to jovian-like atmospheres, whose bulk compositions consist of hydrogen and helium, terrestrial planet atmospheres are likely comprised of high mean molecular weight secondary atmospheres, which have gone through a high degree of evolution. For example, present-day Mars has a frozen surface with a thin tenuous atmosphere, but 4 billion years ago it may have been warmed by a thick greenhouse atmosphere. Several processes contribute to a planet’s atmospheric evolution: stellar evolution, geological processes, atmospheric escape, biology, etc. Each of these individual processes affects the planetary system as a whole and therefore they all must be considered in the modeling of terrestrial planets.
    [Show full text]
  • Jason A. Dittmann 51 Pegasi B Postdoctoral Fellow
    Jason A. Dittmann 51 Pegasi b Postdoctoral Fellow Contact Massachusetts Institute of Technology MIT Kavli Institute: 37-438f 617-258-5928 (office) 70 Vassar St. 520-820-0928 (cell) Cambridge, MA 02139 [email protected] Education Harvard University, Cambridge, MA PhD, Astronomy and Astrophysics, May 2016 Advisor: David Charbonneau, PhD • University of Arizona, Tucson, AZ BS, Astronomy, Physics, May 2010 Advisor: Laird Close, PhD • Recent 51 Pegasi b Postdoctoral Fellow July 2017 – Present Research Earth and Planetary Science Department, MIT Positions Faculty Contact: Sara Seager Postdoctoral Researcher Feb 2017 – June 2017 Kavli Institute, MIT Supervisor: Sarah Ballard Postdoctoral Researcher July 2016 – Jan 2017 Center for Astrophysics, Harvard University Supervisor: David Charbonneau Research Assistant Sep 2010 – May 2016 Center for Astrophysics, Harvard University Advisors: David Charbonneau Publication 16 first and second authored publications Summary 22 additional co-authored publications 1 first-authored publication in Nature 1 co-authored publication in Nature Selected 51 Pegasi b Postdoctoral Fellowship 2017 – Present Awards and Pierce Fellowship 2010 – 2013 Honors Certificate of Distinction in Teaching 2012 Best Project Award, Physics Ugrd. Research Symp. 2009 Best Undergraduate Research (Steward Observatory) 2009 – 2010 Grants Principal Investigator, Hubble Space Telescope 2017, 10 orbits Awarded “Initial Reconaissance of a Transiting Rocky (maximum award) Planet in a Nearby M-Dwarf’s Habitable Zone” Principal Investigator,
    [Show full text]