Atropine and Atropine-Like Substances Usable in Warfare

Total Page:16

File Type:pdf, Size:1020Kb

Atropine and Atropine-Like Substances Usable in Warfare Mil. Med. Sci. Lett. (Voj. Zdrav. Listy) 2017, vol. 86(2), p. 58-69 ISSN 0372-7025 DOI: 10.31482/mmsl.2017.010 REVIEW ARTICLE ATROPINE AND ATROPINE-LIKE SUBSTANCES USABLE IN WARFARE Jiri Patocka 1,2 , Romana Jelinkova 3 1 Institute of Radiology, Toxicology and Civil Protection, Faculty of Health and Social Studies, University of South Bohemia České Budějovice, České Budějovice, Czech Republic 2 Biomedical Research Centre, University Hospital, Hradec Kralove, Czech Republic 3 NBC Defence Institute, University of Defence, Vyškov, Czech Republic Received 29 th March 2017. Revised 2 nd May 2017. Published 9 th June 2017. Summary Plant tropane alkaloids atropine and scopolamine are very strong anticholinergic drugs used in medicine and also found their place in military medicine, in particular atropine as an antidote in case of poisonings by nerve gases. Atropine and scopolamine both easily penetrate the blood-brain barrier and may cause central nervous system toxicity. Its symptoms are delirium, restlessness, confusion, and impairment of mental capacities. Scopolamine is much more likely to produce sedation and amnesia than atropine. Synthetic atropine-like compounds are also strong anticholinergics, and found use as a modern type of chemical weapons that incapacitate enemy for some time, but do not kill him. They are so-called non-lethal weapons, which are able to temporarily disable personnel from combat action and to protect the environment without limiting desired negative consequences to the enemy's national economy. Such non-lethal weapons is Agent BZ. Key words: Tropane alkaloids; atropine; scopolamine; Agent BZ; non-lethal weapons INTRODUCTION Atropine (hyoscyamine) is plant alkaloide and together with scopolamine they are the predominant anticholinergic tropane alkaloids in the Datura genus, occurring in all plant organs. Atropine and related tropane alkaloids are wide - spread in the plant kingdom and their medicinal and recreational properties have been well known to many cultures for many centuries (Brighetti, 1966). Plants in the genus Datura (family Solanaceae ), which produce the tropane al - kaloids, have well deserved sinister reputations for being poisonous (Le Strange, 1977). Among the most important plants which produce tropane alkaloids, these are especially Atropa belladonna (Deadly nightshade), Datura stramo - nium (Jimson weed or thom apple), Hyoscyamus niger (henbane), and Mandragora officinarum (common mandrake). BOTANICS AND ETHNOBOTANCS OF THE TROPANE ALKALOIDS PRODUCING PLANTS OF THE FAMILY SOLANACEAE Plants which produce tropane alkaloids are native to Europe, North Africa, and Western Asia. Its distribution extends from Great Britain in the west to western Ukraine and Iran in the east. It is also naturalised and/or University of South Bohemia České Budějovice, Faculty of Health and Social Studies, Institute of Radiology, Toxicology and Civil Protection, Jírovcova 24/1347, 370 04 České Budějovice, Czech Republic [email protected] Patocka et al.: Atropine and Atropine-like Substances Usable in Warfare introduced in some parts of Canada and the United States. These have a long history of use as medicine, cosmetic, and poison (Buess, 1952). All grow like weeds in nature and are easily accessible. Atropa belladonna (Deadly Nightshade) Atropa belladonna , commonly known as deadly nightshade, is a perennial plant in the Solanaceae family whose leaves and berries are extremely toxic. The name Atropa comes from one of the three Fates of Greek mytho- logy: Lachesis measured the thread of destiny at birth, Clotho spun it, controlling destiny and Atropos cut the thread of life, bringing death. This plant containing toxic tropane alkaloids such as atropine and scopolamine. These toxins cause hallucinations and delerium, which is why it has long been used as poison, however belladonna has been used medicinally since ancient times as a muscle relaxant and is also used to regulate the heart and pain (Ramoutsaki et al., 2002). Deadly nightshade is an herbaceous perennial. It grows to a height of 1.5 m and has branched stem with oval shaped, pointed leaves on alternate sides. In the early summer it produces brownish, tubular flowers, which, over ensuing months, turn into hard green fruit that then ripes to dark purple and shiny black (Fig. 1). All parts of the plant are poisonous and are a potent source of atropine (Ylinen et al., 1986). Figure 1. Flowering shrub of deadly nightshade ( Atropa belladonna ). Photo © Romana Jelinkova. The plant was well known to the Ancient Greeks and it is a strong candidate for the potion that the sorceress Circe administered to the sailors on Odysseus’ ship. This subsequently drove them mad and ‘turned them into swine’. Odysseus resisted the poison by taking the antidote ‘moli’ which was probably either the snowdrop (Galanthus nivalis ) or the snowflake ( Leucojum vernum ) (Lee, 1999). The deadly nightshade was also an important plant in the witches’ pharmacopoeia and it was regarded as one of the Devil’s favourite plants. Nightshade was a constituent of their flying ointments (sorcerors pomade). This was rubbed into the skin and genitals and the witch 59 Patocka et al.: Atropine and Atropine-like Substances Usable in Warfare would then experience delusions, hallucinations and sometimes sensations of levitation or flying. Sexual arousal could also ensue together with orgasm (Lee, 2007). Datura stramonium (Jimson Weed, Devil’s snare, Thorn Apple) Datura stramonium is an extremely poisonous plant of the nightshade family (Urich et al., 1982). Currently growing everywhere from the tropics to the temperate zone. This plant is native to Central America but is found as a naturalised weed in entire Europe. In the Czech Republic it grows scattered from the lowlands to the foothills. It is a foul-smelling, erect, freely branching herb that forms a bush up to 60 to 150 cm tall.The leaves are pointed at the edges and yellowish at the base. The flowers are white trumpets, 10-cm long, and the fruits are green, spiny ovals, hence the name ‘thorn apple’. These split to reveal numerous black seeds. Tropane alkaloids are concentrated in the seeds although all parts of the plant are poisonous (Friedman and Levin, 1989; Gaie et al., 2013). The name Jimson weed commemorates the event when settlers arrived to Jamestown Island, Virginia in 1607 and found the island overrun by this weed. Many of them ate the plant and died after experiencing delusions, convulsions and respiratory silure (Fowler, 2015). Datura stramonium is attributed with both poisonous and medicinal values. It contains varieties of toxic tropane alkaloids such as atropine, hyoscamine, and scopolamine (Abdelouahab et al., 2011). In Ayurveda, it has been used for curing various ailments including wounds, inflammation, rheumatism, sciatica, swellings, fever, and asthma. A wide range of medicinal values has been attributed to this plant. Different studies reported safety and toxicity aspects while other studies reported analgesic, anti-inflammatory, anti-viral, anti-diarrheal, etc. activities of different extracts of the plant (Parveen et al., 2016). Hyoscyamus Niger (Henbane) Hyoscyamus niger is an annual or biennial that grows to 75 cm and has a thick stem and toothed leaves. The plant is hairy and sticky and has an unpleasant smell. It produces flowers near the top of stems that are yellow with purple veins. The fruit hardens into spines and remains on the plant throughout winter. The whole plant is highly poisonous, containing a mixture of tropane alkaloids (Aparna et al., 2015). Hyoscyamus niger is one of the drugs of Ayurvedic materia medica known as Parasika Yavani, which is mainly used for respiratory disorders. It is used in Ayurvedic system of medicine for treating insomnia, psychiatric disorders, epilepsy, swelling, pain, and breathlessness. Some of the chief constituents found in the drug are hyoscyamine, apoatropine, hyoscine, skimmianine, scopolamine, and belladonines. Various experiments proved antihistaminic, antipyretic, antimicrobial, antispasmodic, analgesic, antiinflammatory, antiallergic and sedative property of the drug (Begum et al., 2010; Aparna et al., 2015). Mandragora officinarum (Mandrake, Common Mandrake, Devil's Apples, Love Apple) Mandragora officinarum is indigenous to Northern Italy, Western Balkans, Greece and Western Turkey, but can be cultivated in sheltered conditions in the United Kingdom. It is a perennial that produces a rosette of dark green leaves emerging from ground in spring, which are initially upright and then lie flat. It produces tubular bell shaped flowers in spring that are followed by spherical yellow fruit (Hawkes, 1972). Mandrake has a long history of medicinal use, although superstition has played a large part in the uses to which it has been applied. The root is hallucinogenic and narcotic. In sufficient quantities, it induces a state of unconscious- ness and was used as an anaesthetic for surgery in ancient times (Berry and Jackson, 1976). The special chemical properties of its root may have enhanced its reputation as highly desirable for its magical powers. The roots we so desirable that the rumours were spread abroad saying that when the root was pulled from the ground, a scream would be emitted that would kill any human who heard it. Thus it was that ingenious schemes were designed for a dog to be tied to the root and when called from a safe distance, pulled it up for its owner (Conway, 2016). 60 Patocka et al.: Atropine and Atropine-like Substances Usable in Warfare
Recommended publications
  • Mapping the Dissociated Body
    Lesley University DigitalCommons@Lesley Graduate School of Arts and Social Sciences Expressive Therapies Capstone Theses (GSASS) Spring 5-16-2020 Mapping the Dissociated Body Elizabeth Hough [email protected] Follow this and additional works at: https://digitalcommons.lesley.edu/expressive_theses Part of the Social and Behavioral Sciences Commons Recommended Citation Hough, Elizabeth, "Mapping the Dissociated Body" (2020). Expressive Therapies Capstone Theses. 239. https://digitalcommons.lesley.edu/expressive_theses/239 This Thesis is brought to you for free and open access by the Graduate School of Arts and Social Sciences (GSASS) at DigitalCommons@Lesley. It has been accepted for inclusion in Expressive Therapies Capstone Theses by an authorized administrator of DigitalCommons@Lesley. For more information, please contact [email protected], [email protected]. Running Head: MAPPING THE DISSOCIATED BODY 1 Mapping the Dissociated Body Elizabeth Hough Lesley University Running Head: MAPPING THE DISSOCIATED BODY 2 Abstract This capstone thesis explored the use of body mapping and body scans as a tool for assessing and tracking somatic dissociation and embodiment. The researcher utilized a client- centered approach and mindfulness-based interventions and theory to ground the work with the clients. While there were a variety of questionnaire-based tools for assessing dissociation with clients, many of them were lacking in the somatic component of dissociation. The available assessments were also exclusively self-reported and written or verbal, which had the potential to result in biased reporting. Clients may have also struggled to identify their level of somatic dissociation due to an inherent disconnection or dismissal of their somatic experience. This research described two case studies in which body scans and body mapping were utilized as a method to assess and track the client’s level of body dissociation and embodiment.
    [Show full text]
  • Table 2. 2012 AGS Beers Criteria for Potentially
    Table 2. 2012 AGS Beers Criteria for Potentially Inappropriate Medication Use in Older Adults Strength of Organ System/ Recommendat Quality of Recomm Therapeutic Category/Drug(s) Rationale ion Evidence endation References Anticholinergics (excludes TCAs) First-generation antihistamines Highly anticholinergic; Avoid Hydroxyzin Strong Agostini 2001 (as single agent or as part of clearance reduced with e and Boustani 2007 combination products) advanced age, and promethazi Guaiana 2010 Brompheniramine tolerance develops ne: high; Han 2001 Carbinoxamine when used as hypnotic; All others: Rudolph 2008 Chlorpheniramine increased risk of moderate Clemastine confusion, dry mouth, Cyproheptadine constipation, and other Dexbrompheniramine anticholinergic Dexchlorpheniramine effects/toxicity. Diphenhydramine (oral) Doxylamine Use of diphenhydramine in Hydroxyzine special situations such Promethazine as acute treatment of Triprolidine severe allergic reaction may be appropriate. Antiparkinson agents Not recommended for Avoid Moderate Strong Rudolph 2008 Benztropine (oral) prevention of Trihexyphenidyl extrapyramidal symptoms with antipsychotics; more effective agents available for treatment of Parkinson disease. Antispasmodics Highly anticholinergic, Avoid Moderate Strong Lechevallier- Belladonna alkaloids uncertain except in Michel 2005 Clidinium-chlordiazepoxide effectiveness. short-term Rudolph 2008 Dicyclomine palliative Hyoscyamine care to Propantheline decrease Scopolamine oral secretions. Antithrombotics Dipyridamole, oral short-acting* May
    [Show full text]
  • Module Two the Clinical Neurotoxicology of Chemical Terrorism
    Chemical Agents of Opportunity for Terrorism: TICs & TIMs! Module Two The Clinical Neurotoxicology of Chemical Terrorism Training Support Package 1 Chemical Agents of Opportunity for Terrorism: TICs & TIMs Goals and Objectives • Recognize toxic syndromes that effect the nervous system – Sedation – Convulsions – Hallucinations • Know unique clinical effects of toxins that cause sedation syndromes • List examples of agents of opportunity for each syndrome • Know initial treatment strategy Module Two - The Clinical Neurotoxicology of Chemical Terrorism 2 Chemical Agents of Opportunity for Terrorism: TICs & TIMs Central Nervous System • The CNS is immensely complex – Great target for terrorism • The CNS is central to both our function and our thinking Module Two - The Clinical Neurotoxicology of Chemical Terrorism 3 Chemical Agents of Opportunity for Terrorism: TICs & TIMs The Balance of the Brain • The brain is a fine balance of excitatory and inhibitory influences – Slight alterations in either direction are significant Excitation Inhibition Glutamate Gamma-aminobutyric acid Catecholamines (GABA) Module Two - The Clinical Neurotoxicology of Chemical Terrorism 4 Chemical Agents of Opportunity for Terrorism: TICs & TIMs The Balance of the Brain • In addition, other neurotransmitters influence our mood, our ability to think, remember, etc. Excitation Inhibition Modulators of Thought Processes Serotonin Acetylcholine Module Two - The Clinical Neurotoxicology of Chemical Terrorism 5 Chemical Agents of Opportunity for Terrorism: TICs & TIMs Clinical
    [Show full text]
  • 4/23/2015 1 •Psychedelics Or Hallucinogens
    4/23/2015 Hallucinogens •Psychedelics or This “classic” hallucinogen column The 2 groups below are quite different produce similar effects From the classic hallucinogens Hallucinogens Drugs Stimulating 5HT Receptors Drugs BLOCKING ACH Receptors • aka “psychotomimetics” LSD Nightshade(Datura) Psilocybin Mushrooms Jimsonweed Morning Glory Seeds Atropine Dimethyltryptamine Scopolamine What do the very mixed group of hallucinogens found around the world share in common? •Drugs Resembling NE Drugs BLOCKING Glutamate Receptors •Peyote cactus Phencyclidine (PCP) •Mescaline Ketamine All contain something that resembles a •Methylated amphetamines like MDMA High dose dextromethorphan •Nutmeg neurotransmitter •New synthetic variations (“bath salts”) •5HT-Like Hallucinogens •LSD History • Serotonin • created by Albert Hofmann for Sandoz Pharmaceuticals LSD • was studying vasoconstriction produced by ergot alkaloids LSD • initial exposure was accidental absorption thru skin • so potent ED is in millionths of a gram (25-250 micrograms) & must be delivered on something else (sugar cube, gelatin square, paper) Psilocybin Activate 5HT2 receptors , especially in prefrontal cortex and limbic areas, but is not readily metabolized •Characteristics of LSD & Other “Typical” •Common Effects Hallucinogens • Sensory distortions (color, size, shape, movement), • Autonomic (mostly sympathetic) changes occur first constantly changing (relatively mild) • Vivid closed eye imagery • Sensory/perceptual changes follow • Synesthesia (crossing of senses – e.g. hearing music
    [Show full text]
  • Protabase Record Display Datura Stramonium L
    Protabase Record display www.prota.org Datura stramonium L. Protologue Sp. pl. 1: 179 (1753). Family Solanaceae Chromosome number 2n = 24 Vernacular names Thorn apple, green thorn apple, Jimson weed, Jamestown weed, devil’s apple, devil’s trumpet, stramonium (En). Pomme épineuse, stramoine, datura, feuille du diable, herbe du diable (Fr). Figueira do inferno, pomo espinhoso, erva dos bruxos, palha verde, estramonio (Po). Muranha (Sw). Origin and geographic distribution Datura stramonium is native to the Americas and has been introduced in many tropical, subtropical and even temperate regions. It is a naturalized weed in many African countries, but is probably seriously under-reported. Uses Datura stramonium and Datura metel L. have largely similar medicinal uses throughout the world. The most widely known use of Datura stramonium and of other Datura species is for relieving asthma, cough, tuberculosis and bronchitis by smoking the dried leaves, roots or flowers. ‘Asthma cigarettes’ have been shown to be very effective in some cases, but in other cases they had little or no effect. Cigarettes made with the leaves are also used to treat Parkinson’s disease. A decoction or infusion of leaves is given as a sedative to mental and schizophrenic patients. The leaves are applied as a dressing to cure rheumatic pain, swellings, wounds, gout, burns, ingrown toe-nails, fungal infections, tumours and ulcers. Dried pulverized leaves are dusted on wounds or applied after mixing the powder with fat or Vaseline. In DR Congo pounded fresh root and fresh leaves are soaked in water and the liquid is given in enema as an abortifacient.
    [Show full text]
  • Consumer Medicine Information
    New Zealand Datasheet Name of Medicine DOZILE Doxylamine Succinate 25 mg Capsules Presentation Liquid filled soft gel capsules, purple, containing 25 mg doxylamine succinate. Uses Actions Doxylamine succinate is a white or creamy white powder with a characteristic odour and has solubilities of approximately 1 g/mL in water and 500 mg/mL in alcohol at 25°C. It has a pKa of 5.8 and 9.3. A 1% aqueous solution has a pH of 4.8 - 5.2. Doxylamine succinate is an ethanolamine derivative antihistamine. Because of its sedative effect, it is used for the temporary relief of sleeplessness. The drug is also used in combination with antitussives and decongestants for the temporary relief of cold and cough symptoms. It is not structurally related to the cyclic antidepressants. It is an antihistamine with hypnotic, anticholinergic, antimuscarinic and local anaesthetic effects. Duration of action is 6-8 hours. Pharmacokinetics Following oral administration of a single 25 mg dose of doxylamine succinate in healthy adults, mean peak plasma concentrations of about 100 ng/mL occur within 2- 3 hours after administration. The drug has an elimination half-life of about 10 hours in healthy adults. Absorption It is easily absorbed from the gastrointestinal tract. Following an oral dose of 25 mg the mean peak plasma level is 99 ng/mL 2.4 hours after ingestion. This level declines to 28 ng/mL at 24 hours and 10 ng/mL at 36 hours. Distribution The apparent volume of distribution is 2.5 L/kg. Metabolism The major metabolic pathways are N-demethylation, N-oxidation, hydroxylation, N- acetylation, N-desalkylation and ether cleavage.
    [Show full text]
  • Index Vol. 12-15
    353 INDEX VOL. 12-15 Die Stichworte des Sachregisters sind in der jeweiligen Sprache der einzelnen Beitrage aufgefiihrt. Les termes repris dans la Table des matieres sont donnes selon la langue dans laquelle l'ouvrage est ecrit. The references of the Subject Index are given in the language of the respective contribution. 14 AAG (Alpha-acid glycoprotein) 120 14 Adenosine 108 12 Abortion 151 12 Adenosine-phosphate 311 13 Abscisin 12, 46, 66 13 Adenosine-5'-phosphosulfate 148 14 Absorbierbarkeit 317 13 Adenosine triphosphate 358 14 Absorption 309, 350 15 S-Adenosylmethionine 261 13 Absorption of drugs 139 13 Adipaenin (Spasmolytin) 318 14 - 15 12 Adrenal atrophy 96 14 Absorptionsgeschwindigkeit 300, 306 14 - 163, 164 14 Absorptionsquote 324 13 Adrenal gland 362 14 ACAI (Anticorticocatabolic activity in­ 12 Adrenalin(e) 319 dex) 145 14 - 209, 210 12 Acalo 197 15 - 161 13 Aceclidine (3-Acetoxyquinuclidine) 307, 13 {i-Adrenergic blockers 119 308, 310, 311, 330, 332 13 Adrenergic-blocking activity 56 13 Acedapsone 193,195,197 14 O(-Adrenergic blocking drugs 36, 37, 43 13 Aceperone (Acetabutone) 121 14 {i-Adrenergic blocking drugs 38 12 Acepromazin (Plegizil) 200 14 Adrenergic drugs 90 15 Acetanilid 156 12 Adrenocorticosteroids 14, 30 15 Acetazolamide 219 12 Adrenocorticotropic hormone (ACTH) 13 Acetoacetyl-coenzyme A 258 16,30,155 12 Acetohexamide 16 14 - 149,153,163,165,167,171 15 1-Acetoxy-8-aminooctahydroindolizin 15 Adrenocorticotropin (ACTH) 216 (Slaframin) 168 14 Adrenosterone 153 13 4-Acetoxy-1-azabicyclo(3, 2, 2)-nonane 12 Adreson 252
    [Show full text]
  • Nightshade”—A Hierarchical Classification Approach to T Identification of Hallucinogenic Solanaceae Spp
    Talanta 204 (2019) 739–746 Contents lists available at ScienceDirect Talanta journal homepage: www.elsevier.com/locate/talanta Call it a “nightshade”—A hierarchical classification approach to T identification of hallucinogenic Solanaceae spp. using DART-HRMS-derived chemical signatures ∗ Samira Beyramysoltan, Nana-Hawwa Abdul-Rahman, Rabi A. Musah Department of Chemistry, State University of New York at Albany, 1400 Washington Ave, Albany, NY, 12222, USA ARTICLE INFO ABSTRACT Keywords: Plants that produce atropine and scopolamine fall under several genera within the nightshade family. Both Hierarchical classification atropine and scopolamine are used clinically, but they are also important in a forensics context because they are Psychoactive plants abused recreationally for their psychoactive properties. The accurate species attribution of these plants, which Seed species identifiction are related taxonomically, and which all contain the same characteristic biomarkers, is a challenging problem in Metabolome profiling both forensics and horticulture, as the plants are not only mind-altering, but are also important in landscaping as Direct analysis in real time-mass spectrometry ornamentals. Ambient ionization mass spectrometry in combination with a hierarchical classification workflow Chemometrics is shown to enable species identification of these plants. The hierarchical classification simplifies the classifi- cation problem to primarily consider the subset of models that account for the hierarchy taxonomy, instead of having it be based on discrimination between species using a single flat classification model. Accordingly, the seeds of 24 nightshade plant species spanning 5 genera (i.e. Atropa, Brugmansia, Datura, Hyocyamus and Mandragora), were analyzed by direct analysis in real time-high resolution mass spectrometry (DART-HRMS) with minimal sample preparation required.
    [Show full text]
  • The Mandrake and the Ancient World,” the Evangelical Quarterly 28.2 (1956): 87-92
    R.K. Harrison, “The Mandrake And The Ancient World,” The Evangelical Quarterly 28.2 (1956): 87-92. The Mandrake and the Ancient World R.K. Harrison [p.87] Professor Harrison, of the Department of Old Testament in Huron College, University of Western Ontario, has already shown by articles in THE EVANGELICAL QUARTERLY his interest and competence in the natural history of the Bible. Here he examines one of the more curious Biblical plants. The mandrake is one of the plants which still grows widely in the Middle East, and which has claimed magical associations from a very remote period. It is generally assigned the botanical name of Mandragora officinarum L..1 and is a perennial of the order Solanaceae. It claims affinity with the potato and eggplant, and is closely allied to the Atropa belladonna L.,2 with which it is not infrequently confused by some writers. The modern Arab knows it by a number of names, including Tuffah£ el Majanin (‘Madmen’s Apple) and Beid el Jinn (Eggs of the Jinn), apparently a reference to the ability of the plant to invigorate and stimulate the senses even to the point of mental imbalance. The former name may perhaps be a survival of the belief found in Oriental folk-lore regarding the magical herb Baaras, with which the mandrake is identified by some authorities.3 According to the legends associated with this plant, it was highly esteemed amongst the ancients on account of its pronounced magical properties. But because of the potency of these attributes it was an extremely hazardous undertaking for anyone to gather the plant, and many who attempted it were supposed to have paid for their daring with [p.88] sickness and death.4 Once the herb had been gathered, however, it availed for a number of diseases, and in antiquity it was most reputed for its ability to cure depression and general disorders of the mind.
    [Show full text]
  • Muscarinic Acetylcholine Receptor
    mAChR Muscarinic acetylcholine receptor mAChRs (muscarinic acetylcholine receptors) are acetylcholine receptors that form G protein-receptor complexes in the cell membranes of certainneurons and other cells. They play several roles, including acting as the main end-receptor stimulated by acetylcholine released from postganglionic fibersin the parasympathetic nervous system. mAChRs are named as such because they are more sensitive to muscarine than to nicotine. Their counterparts are nicotinic acetylcholine receptors (nAChRs), receptor ion channels that are also important in the autonomic nervous system. Many drugs and other substances (for example pilocarpineand scopolamine) manipulate these two distinct receptors by acting as selective agonists or antagonists. Acetylcholine (ACh) is a neurotransmitter found extensively in the brain and the autonomic ganglia. www.MedChemExpress.com 1 mAChR Inhibitors & Modulators (+)-Cevimeline hydrochloride hemihydrate (-)-Cevimeline hydrochloride hemihydrate Cat. No.: HY-76772A Cat. No.: HY-76772B Bioactivity: Cevimeline hydrochloride hemihydrate, a novel muscarinic Bioactivity: Cevimeline hydrochloride hemihydrate, a novel muscarinic receptor agonist, is a candidate therapeutic drug for receptor agonist, is a candidate therapeutic drug for xerostomia in Sjogren's syndrome. IC50 value: Target: mAChR xerostomia in Sjogren's syndrome. IC50 value: Target: mAChR The general pharmacol. properties of this drug on the The general pharmacol. properties of this drug on the gastrointestinal, urinary, and reproductive systems and other… gastrointestinal, urinary, and reproductive systems and other… Purity: >98% Purity: >98% Clinical Data: No Development Reported Clinical Data: No Development Reported Size: 10mM x 1mL in DMSO, Size: 10mM x 1mL in DMSO, 1 mg, 5 mg 1 mg, 5 mg AC260584 Aclidinium Bromide Cat. No.: HY-100336 (LAS 34273; LAS-W 330) Cat.
    [Show full text]
  • Potentially Harmful Drugs in the Elderly: Beers List
    −This Clinical Resource gives subscribers additional insight related to the Recommendations published in− March 2019 ~ Resource #350301 Potentially Harmful Drugs in the Elderly: Beers List In 1991, Dr. Mark Beers and colleagues published a methods paper describing the development of a consensus list of medicines considered to be inappropriate for long-term care facility residents.12 The “Beers list” is now in its sixth permutation.1 It is intended for use by clinicians in outpatient as well as inpatient settings (but not hospice or palliative care) to improve the care of patients 65 years of age and older.1 It includes medications that should generally be avoided in all elderly, used with caution, or used with caution or avoided in certain elderly.1 There is also a list of potentially harmful drug-drug interactions in seniors, as well as a list of medications that may need to be avoided or have their dosage reduced based on renal function.1 This information is not comprehensive; medications and interactions were chosen for inclusion based on potential harm in relation to benefit in the elderly, and availability of alternatives with a more favorable risk/benefit ratio.1 The criteria no longer address drugs to avoid in patients with seizures or insomnia because these concerns are not unique to the elderly.1 Another notable deletion is H2 blockers as a concern in dementia; evidence of cognitive impairment is weak, and long-term PPIs pose risks.1 Glimepiride has been added as a drug to avoid. Some drugs have been added with cautions (dextromethorphan/quinidine, trimethoprim/sulfamethoxazole), and some have had cautions added (rivaroxaban, tramadol, SNRIs).
    [Show full text]
  • Viewed the Existence of Multiple Muscarinic CNS Penetration May Occur When the Blood-Brain Barrier Receptors in the Mammalian Myocardium and Have Is Compromised
    BMC Pharmacology BioMed Central Research article Open Access In vivo antimuscarinic actions of the third generation antihistaminergic agent, desloratadine G Howell III†1, L West†1, C Jenkins2, B Lineberry1, D Yokum1 and R Rockhold*1 Address: 1Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA and 2Tougaloo College, Tougaloo, MS, USA Email: G Howell - [email protected]; L West - [email protected]; C Jenkins - [email protected]; B Lineberry - [email protected]; D Yokum - [email protected]; R Rockhold* - [email protected] * Corresponding author †Equal contributors Published: 18 August 2005 Received: 06 October 2004 Accepted: 18 August 2005 BMC Pharmacology 2005, 5:13 doi:10.1186/1471-2210-5-13 This article is available from: http://www.biomedcentral.com/1471-2210/5/13 © 2005 Howell et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Muscarinic receptor mediated adverse effects, such as sedation and xerostomia, significantly hinder the therapeutic usefulness of first generation antihistamines. Therefore, second and third generation antihistamines which effectively antagonize the H1 receptor without significant affinity for muscarinic receptors have been developed. However, both in vitro and in vivo experimentation indicates that the third generation antihistamine, desloratadine, antagonizes muscarinic receptors. To fully examine the in vivo antimuscarinic efficacy of desloratadine, two murine and two rat models were utilized. The murine models sought to determine the efficacy of desloratadine to antagonize muscarinic agonist induced salivation, lacrimation, and tremor.
    [Show full text]