Guidelines for Managing Lesser Prairie-Chicken Populations and Their Habitats Author(S): Christian A

Total Page:16

File Type:pdf, Size:1020Kb

Guidelines for Managing Lesser Prairie-Chicken Populations and Their Habitats Author(S): Christian A Guidelines for Managing Lesser Prairie-Chicken Populations and Their Habitats Author(s): Christian A. Hagen, Brent E. Jamison, Kenneth M. Giesen, Terry Z. Riley Reviewed work(s): Source: Wildlife Society Bulletin, Vol. 32, No. 1 (Spring, 2004), pp. 69-82 Published by: Allen Press Stable URL: http://www.jstor.org/stable/3784543 . Accessed: 24/04/2012 17:07 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Allen Press is collaborating with JSTOR to digitize, preserve and extend access to Wildlife Society Bulletin. http://www.jstor.org SPECIALCOVERAGE 69 ...y Christian A. Hagen, Brent E.Jamison, Kenneth M. Giesen, and Terry Z. Riley Abstract Lesser prairie-chicken (Tympanuchus paidicinctus) populations have declined by >90% since the 1800s. These declines have concerned both biologists and private conservation groups and led to a petition to list the lesser prairie-chicken as threat- ened under the Endangered Species Act. Most of the land in the current range of the lesser prairie-chicken is privately owned, and declines have been primarily attributed to anthropogenic factors. Conversion of native rangeland to cropland and excessive grazing have been implicated as leading causes in the species' decline. Periodic drought probably has exacerbated these problems. Little research on habitat requirements was conducted prior to 1970. Despite recent advances in the knowledge of lesser prairie-chicken ecology, no comprehensive guidelines for management of the species have been published. In these guide- lines, we provide a synopsis of our current knowledge of lesser prairie-chicken habitat requirements and suggest management strategies to monitor, maintain, and enhance lesser prairie-chicken populations. Key Words Artemisia filifolia, guidelines, lesser prairie-chicken, management zone, mixed-grass prairie, Quercus havardii, sand sagebrush, shinnery oak, Tympanuchus pal- lidicinctus he distribution of lesser prairie-chicken (Tympanuchus occur in Colorado, Kansas, New Mexico, Oklahoma, and pallidicinctus) populations and their occupied habitats Texas (Figure 1). Concern for this species has escalated have declined by >90% since the beginning of the twenti- in the twenty-first century as lesser prairie-chicken eth century (Crawford and Bolen 1976a, Taylor and (LPCH) population indices still suggest long-term Guthery 1980b, Giesen 1998). Populations currently declines (Bailey and Williams 2000, Giesen 2000, Horton Address for Christian A. Hagen: Division of Biology, Kansas State University, Manhattan, KS 66502, USA; present address: Oregon Department of Fish and Wildlife, 237 5. Hines Blvd., RO. Box 8, Hines, OR 97738, USA; e-mail: [email protected]. Address for Brent E. Jamison: United States Geological Survey, Northern PrairieWildlife Research Center, 8711 37th St. SE, Jamestown, ND 58401-7317, USA; present address: Yakama Nation, Wildlife Resource Management, P.O. Box 151, Toppenish, WA 98948, USA. Address for Kenneth M. Giesen: Wildlife Research Center, Colorado Division of Wildlife, 317 W Prospect Rd., Fort Collins, CO 80526, USA; present address: 4200 North Shields, Fort Collins, CO, 80524, USA. Address for TerryZ. Riley: Wildlife Management Institute, 1 146 19th St. NW, Suite 700, Washington, DC 20036, USA. Wildlife Society Bulletin 2004, 32(1):69-82 Peer refereed 70 Wildlife Society Bulletin 2004, 32(1):69-82 2000, Jensen et al. 2000, Sullivan et al. 2000). Because Kansas. This semi-arid region receives <60 cm of annual of recent declines, sport-hunting seasons were closed in precipitation and sustains periodic drought that can affect New Mexico (1995) and Oklahoma (1998). Currently, short-term population trends (Brown 1978, Giesen 2000). LPCHs are state-listed as threatened by Colorado and Numerous anthropogenic factors have been implicated considered a "warrantedbut precluded" threatened in the decline of LPCHs. Conversion of native grassland species by the United States Fish and Wildlife Service communities to cropland, fire suppression leading to (USFWS) (Giesen 1998). Concern for LPCHs has led to juniper (Juniperus spp.) encroachment, excessive grazing research in all 5 states where the species occurs to better by livestock, suburban developments, and fossil-fuel understand population trends and habitat requirements. drilling and exploring are suspected to be the primary Mixed-grass prairie communities that historically sup- factors (Giesen 1998, Woodward et al. 2001). These fac- ported LPCHs were thought to be comprised of regions tors, coupled with periodic drought, may have driven patchily dominated by sand sagebrush (Artemisia long-term population lows to critical levels. Continued filifolia) and sand shinnery oak (Quercus havardii). human encroachment and overgrazing likely will exacer- bate population declines. Although the rate of habitatloss has slowed over the Management guidelines have been past 20 years, LPCH populationtrends continue to published for sage grouse (Centrocercusspp.) and Columbian decline, suggesting that it is the quality (i.e., human- sharp-tailed grouse (T. phasianellus induced or drought)of the habitatthat may t>e limiting columbianus), species of conservation the of these concern (Braun et al. 1977, Giesen recovery populations. and Connelly 1993, Connelly et al. 2000), but not for LPCHs. We pro- However, northern and eastern fringe areas of their range vide a synopsis of the current state of knowledge and primarily were mixed-grass interspersed with shrubs provide guidelines to monitor, maintain, and enhance including sand sagebrush, plum (Prunus spp.), sumac LPCH populations and the habitats upon which they (Rhus spp.), and yucca (Yucca spp.) (Baker 1953, depend. Lesser prairie-chickens occupy 3 distinct vege- Copelin 1963, Horak 1985). Currently,LPCHs occupy tative communities; however, data are available primarily sand sagebrush and mixed-grass communities in Kansas for populations inhabiting sand shinnery oak and sand (south of the Arkansas River) and Colorado, sand shin- sagebrush communities, and our guidelines reflect the nery oak and mixed-grass communities in New Mexico available information. and southwest Texas panhandle, an interspersion of these shrub types in Oklahoma and northeast Texas panhandle, and mixed-grass prairie north of the Arkansas River in Population biology Population monitoring r"^, Lesser prairie-chicken populations are surveyed annually during the spring VJ\% ^> when males congregate at lek sites. AJr X (J Surveys of displaying males have been '/\f \t used to provide long-term monitoring of population trends (Giesen 1998). Survey methods and effort vary by state. Harvest statistics from check sta- tions indices ••f ••f ~ provided production (age ratios) and sex ratios in New Mexico ?.'-fr ~ (1958-1968, 1988-1989, 1995) (New /~2 ~ Mexico Department of Game and Fish, unpublished data) and Texas (1967-1988) (Texas Parks and Wildlife X\~ ~ Department, unpublished data). Kansas w~J0 ~ and Texas currently monitor harvest by Figure 1. Current (2003) distribution of the lesser prairie-chicken sha ded in gray(After using surveys mailed to random sam- Jamison et al. 2002a). ples of hunters. These data are used to I Lesser prairie-chicken management * Hagen et al. 71 estimatethe numberof birdsharvested, but demographic Attwater'sprairie-chicken (T. c. attwateri)(Peterson et al. dataare not collected. 1998). Survival Seasonal movementsand home range Survivalestimates for LPCHsare basedon short-term Lesserprairie-chicken populations are considerednon- studiesof selectedpopulations using radiotelemetryand migratory,and seasonalranges and movementsof indi- bandingdata. Annualsurvival of adultLPCHs is similar vidualstypically are restrictedto suitablehabitats within to thatof otherprairie grouse species (Hagen2003). an individual'sannual range (Giesen 1998). However, Campbell(1972) estimatedannual survival of banded movementsof LPCHsin southwestKansas resembled males in New Mexico to be 35%,and Merchant(1982) partialmigrations; approximately 5% of radiomarked estimatedsurvival of radiomarkedfemales for a 5-month individualsmoved 30-50 km fromtheir capture areas period(April-August) at 59%,extrapolated to 12 months duringnesting or postnestingand returnedto the capture =31%. In Kansas,Jamison (2000) estimatedannual sur- areaduring winter (Hagen 2003). Prenesting(spring) vival of radiomarkedmales to be 57%. Male and female rangestended to be largerfor females (355-596 ha) than 6-monthsurvival curves (April-September) that included springranges for males (120-211 ha) in Coloradoand breedingand nestingwere 74%, and this estimateextrap- Kansas(Giesen 1998, Jamison2000, Walker2000). In olated to 12 months=55%. Hagen(2003) documented Coloradothe combinedannual ranges (95% ellipses) of age-specificannual survival of live recapturedata for all birds,males and females,from a lek were bandedmales from 1998-2002 in Kansas,and rankings 2,450-5,130 ha (24.5-51.3 km2)(Giesen 1998). In were: yearling=62%,adult=49%, and older adults=35%. Kansassummer ranges (95% fixed-kernel) generally Annualsurvival (April-April) of radiomarkedfemales were
Recommended publications
  • A Grassland Conservation Plan for Prairie Grouse
    A GRASSLAND CONSERVATION PLAN FOR PRAIRIE GROUSE Photo credit: Michael Schroeder Photo credit: Rick Baetsen Photo Credit: Tom Harvey North American Grouse Partnership 2008 Preferred Citation: Vodehnal, W.L., and J.B. Haufler, Editors. 2008. A grassland conservation plan for prairie grouse. North American Grouse Partnership. Fruita, CO. Page i A GRASSLAND CONSERVATION PLAN FOR PRAIRIE GROUSE 2008 STEERING COMMITTEE William L. Vodehnal (Coordinator), Nebraska Game and Parks Commission Rick Baydack, University of Manitoba Dawn M. Davis, University of Idaho Jonathan B. Haufler, Ph.D., Ecosystem Management Research Institute Rob Manes, Kansas-The Nature Conservancy Stephanie Manes, United States Fish and Wildlife Service James A. Mosher, Ph.D., North American Grouse Partnership Steven P. Riley, Nebraska Game and Parks Commission Heather Whitlaw, Texas Parks and Wildlife Department EXECUTIVE SUMMARY Prairie grouse, including all species of prairie-chicken and the sharp-tailed grouse, have declined precipitously and steadily from historical levels throughout the Great Plains of North America. While many factors have contributed to these declines, the loss and fragmentation of expansive prairies to farming, and the reduction of habitat quality within remaining prairie fragments are known to be the primary causes. The social, political and economic drivers that have facilitated this loss of native grasslands throughout the United States and Canada generally fall beyond the jurisdiction of individual local, regional, state, and provincial wildlife management authorities. As a result, many grassland- dependent species requiring high-quality native grasslands are now threatened, endangered, or species of concern. Grasslands have been identified as some of the most endangered ecosystems in North America, so it is not surprising that many associated species are of concern for their level of decline.
    [Show full text]
  • 31295015064529.Pdf (3.477Mb)
    POPULATION DYNAMICS, REPRODUCTION, AND ACTIVITIES OF THE KANGAROO RAT, DIPODOMYS ORDII, IN WESTERN TEXAS by HERSCHEL VJHITAKER GARNER, B.S., M.S. A DISSERTATION IN ZOOLOGY Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Approved Accepted August, 1970 ACKNOWL EDGMENTS I am especially grateful to Professor Robert L. Packard for advising in research methods, aiding in collecting data, and critically reading the manuscript. Additional appreciated suggestions were made by Professors Archie C. Allen, John S. Mecham, Robert W.. Mitchell, Paul V. Prior (now at the University of Nebraska- Omaha), and Chester M. Rowell. Mr. Robert B. Wadley pro­ vided useful help in developing computer programs used in sorting and analysis of the data. An honorarium from the Department of Biology defrayed some of the cost of travel to the field. My wife, Anita, aided in making collections and recording data. Additional thanks are extended to fellow graduate students who provided help and ideas.' 11 TABLE OF CONTENTS ACKNOWLEDGMENTS ii LIST OF TABLES ; . iv LIST OF ILLUSTRATIONS V I. INTRODUCTION 1 II. METHODS AND MATERIALS 3 III. REPRODUCTION 15 IV. ACTIVITIES 35 V. POPULATION DYNAMICS 43 VI. SUMlvlARY AND CONCLUSIONS 72 LITERATURE CITED 76 111 LIST OF TABLES Table Page 1. Estimation of number of D. ordii on the Kermit area 51 IV LIST OF ILLUSTRATIONS Figure Page 1. The intensive study area viewed from the southern periphery June, 1956 .... 5 2. Diagram of study area showing position of activity center values of animals used in the experimental activity studies 12 3.
    [Show full text]
  • Final Report: Lesser Prairie-Chicken Survey − Kiowa and Rita Blanca National Grasslands, 2014
    Final Report: Lesser Prairie-Chicken Survey − Kiowa and Rita Blanca National Grasslands, 2014 Project Manager: Angela Dwyer, Rocky Mountain Bird Observatory, 230 Cherry St., Fort Collins, CO 80521 ([email protected]) Project Director: David Hanni, Rocky Mountain Bird Observatory, 230 Cherry St., Fort Collins, CO 80521 ([email protected]) Introduction The Lesser Prairie-Chicken (Tympanuchus pallidicinctus) (LEPC) occupies grassland habitat consisting of sand sagebrush (Artemisia filifolia), sand shinnery oak (Quercus havardii) and mixed grass vegetation communities of the southern Great Plains. Since the 19th century, LEPC and the habitat upon which they depend has diminished across their historical range (Crawford and Bolen 1976, Taylor and Guthery 1980a), with recent estimates of current occupied range totaling approximately 17% of the estimated area of their historical range. Causes for this reduction in occupied range are primarily attributed to habitat loss and fragmentation (USFWS 2012). Habitat loss has been caused by conversion of native prairie to cropland (Bent 1932, Copelin 1963, Taylor and Guthery 1980) and long term fire suppression (Woodward et al. 2001) leading to tree invasion (Fuhlendorf et al. 2002). Grazing management practices would help improve habitat if managed to benefit LEPC. Heavily grazed fields that leave no residual vegetation for broods can be detrimental to LEPC (Sell 1979, Hunt and Best 2010). Habitat fragmentation has resulted from a combination of habitat loss and degradation caused by oil and gas development (Hunt 2004) and suspected effects of wind energy development (Pruett et al. 2009). The LEPC is not thought to occur in Kiowa and Rita Blanca National Grasslands (KRB) (Giesen 2003), however some parcels within the grasslands are managed for LEPC.
    [Show full text]
  • Dunes Sagebrush Lizard Habitat
    TECHNICAL NOTES U.S. DEPARTMENT OF AGRICULTURE NATURAL RESOURCES CONSERVATION SERVICE NEW MEXICO September, 2011 BIOLOGY TECHNICAL NOTE NO. 53 CRITERIA FOR BRUSH MANAGEMENT (314) in Lesser Prairie-Chicken and Dunes Sagebrush Lizard Habitat Introduction NRCS policy requires that when providing technical and financial assistance NRCS will recommend only conservation treatments that will avoid or minimize adverse effects, and to the extent practicable, provide long-term benefit to federal candidate species (General Manual 190 Part 410.22(E)(7)). This technical note provides the criteria to ensure that the NRCS practice of Brush Management (314) will avoid or minimize any adverse effects to two Candidate Species for Federal listing: the lesser prairie chicken Tympanuchus pallidicinctus (LEPC), and dunes sagebrush lizard Sceloporus arenicolus (DSL). Species Involved The lesser prairie chicken is a species of prairie grouse native to the southern high plains of the U.S.; including the sandhill rangelands of eastern New Mexico. The dunes sagebrush lizard is native only to a small area of southeastern New Mexico and west Texas, with a habitat range that overlaps the lesser prairie chicken range, but only occurs in the sand dune complexes associated with shinnery oak (Quercus havardii Rydb.). Both species’ habitat includes a component of brush: shinnery oak and/or sand sagebrush (Artemisia filifolia Torr.). See Appendix 1 and 2 for more details on each species. Geographic Area Covered by Technical Note No. 53 encompasses private and state lands within the range that supports the dunes sagebrush lizard and lesser prairie chicken habitat. This includes portions of seven counties in New Mexico: Chaves, Curry, De Baca, Eddy, Lea, Roosevelt, and Quay counties.
    [Show full text]
  • Biological Survey of a Prairie Landscape in Montana's Glaciated
    Biological Survey of a Prairie Landscape in Montanas Glaciated Plains Final Report Prepared for: Bureau of Land Management Prepared by: Stephen V. Cooper, Catherine Jean and Paul Hendricks December, 2001 Biological Survey of a Prairie Landscape in Montanas Glaciated Plains Final Report 2001 Montana Natural Heritage Program Montana State Library P.O. Box 201800 Helena, Montana 59620-1800 (406) 444-3009 BLM Agreement number 1422E930A960015 Task Order # 25 This document should be cited as: Cooper, S. V., C. Jean and P. Hendricks. 2001. Biological Survey of a Prairie Landscape in Montanas Glaciated Plains. Report to the Bureau of Land Management. Montana Natural Heritage Pro- gram, Helena. 24 pp. plus appendices. Executive Summary Throughout much of the Great Plains, grasslands limited number of Black-tailed Prairie Dog have been converted to agricultural production colonies that provide breeding sites for Burrow- and as a result, tall-grass prairie has been ing Owls. Swift Fox now reoccupies some reduced to mere fragments. While more intact, portions of the landscape following releases the loss of mid - and short- grass prairie has lead during the last decade in Canada. Great Plains to a significant reduction of prairie habitat Toad and Northern Leopard Frog, in decline important for grassland obligate species. During elsewhere, still occupy some wetlands and the last few decades, grassland nesting birds permanent streams. Additional surveys will have shown consistently steeper population likely reveal the presence of other vertebrate declines over a wider geographic area than any species, especially amphibians, reptiles, and other group of North American bird species small mammals, of conservation concern in (Knopf 1994), and this alarming trend has been Montana.
    [Show full text]
  • Food Habits of Rodents Inhabiting Arid and Semi-Arid Ecosystems of Central New Mexico." (2007)
    University of New Mexico UNM Digital Repository Special Publications Museum of Southwestern Biology 5-10-2007 Food Habits of Rodents Inhabiting Arid and Semi- arid Ecosystems of Central New Mexico Andrew G. Hope Robert R. Parmenter Follow this and additional works at: https://digitalrepository.unm.edu/msb_special_publications Recommended Citation Hope, Andrew G. and Robert R. Parmenter. "Food Habits of Rodents Inhabiting Arid and Semi-arid Ecosystems of Central New Mexico." (2007). https://digitalrepository.unm.edu/msb_special_publications/2 This Article is brought to you for free and open access by the Museum of Southwestern Biology at UNM Digital Repository. It has been accepted for inclusion in Special Publications by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. SPECIAL PUBLICATION OF THE MUSEUM OF SOUTHWESTERN BIOLOGY NUMBER 9, pp. 1–75 10 May 2007 Food Habits of Rodents Inhabiting Arid and Semi-arid Ecosystems of Central New Mexico ANDREW G. HOPE AND ROBERT R. PARMENTER1 Special Publication of the Museum of Southwestern Biology 1 CONTENTS Abstract................................................................................................................................................ 5 Introduction ......................................................................................................................................... 5 Study Sites ..........................................................................................................................................
    [Show full text]
  • Low-Water Native Plants for Colorado Gardens: Prairie and Plains
    Low-Water Native Plants for Colorado Gardens: Prairie and Plains Published by the Colorado Native Plant Society 1 Prairie and Plains Region Denver Botanic Gardens, Chatfield Photo by Irene Shonle Introduction This range map is approximate. Please be familiar with your area to know which This is one in a series of regional native planting guides that are a booklet is most appropriate for your landscape. collaboration of the Colorado Native Plant Society, CSU Extension, Front Range Wild Ones, the High Plains Environmental Center, Butterfly The Colorado native plant gardening guides cover these 5 regions: Pavilion and the Denver Botanic Gardens. Plains/Prairie Front Range/Foothills Many people have an interest in landscaping with native plants, Southeastern Colorado and the purpose of this booklet is to help people make the most Mountains above 7,500 feet successful choices. We have divided the state into 5 different regions Lower Elevation Western Slope that reflect different growing conditions and life zones. These are: the plains/prairie, Southeastern Colorado, the Front Range/foothills, the This publication was written by the Colorado Native Plant Society Gardening mountains above 7,500’, and lower elevation Western Slope. Find the Guide Committee: Committee Chair, Irene Shonle, Director, CSU Extension, area that most closely resembles your proposed garden site for the Gilpin County; Nick Daniel, Horticulturist, Denver Botanic Gardens; Deryn best gardening recommendations. Davidson, Horticulture Agent, CSU Extension, Boulder County; Susan Crick, Front Range Chapter, Wild Ones; Jim Tolstrup, Executive Director, High Plains Why Native? Environmental Center (HPEC); Jan Loechell Turner, Colorado Native Plant There are many benefits to using Colorado native plants for home Society (CoNPS); Amy Yarger, Director of Horticulture, Butterfly Pavilion.
    [Show full text]
  • Molecular Phylogeny of Subtribe Artemisiinae (Asteraceae), Including Artemisia and Its Allied and Segregate Genera Linda E
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications in the Biological Sciences Papers in the Biological Sciences 9-26-2002 Molecular phylogeny of Subtribe Artemisiinae (Asteraceae), including Artemisia and its allied and segregate genera Linda E. Watson Miami University, [email protected] Paul E. Bates University of Nebraska-Lincoln, [email protected] Timonthy M. Evans Hope College, [email protected] Matthew M. Unwin Miami University, [email protected] James R. Estes University of Nebraska State Museum, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/bioscifacpub Watson, Linda E.; Bates, Paul E.; Evans, Timonthy M.; Unwin, Matthew M.; and Estes, James R., "Molecular phylogeny of Subtribe Artemisiinae (Asteraceae), including Artemisia and its allied and segregate genera" (2002). Faculty Publications in the Biological Sciences. 378. http://digitalcommons.unl.edu/bioscifacpub/378 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications in the Biological Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. BMC Evolutionary Biology BioMed Central Research2 BMC2002, Evolutionary article Biology x Open Access Molecular phylogeny of Subtribe Artemisiinae (Asteraceae), including Artemisia and its allied and segregate genera Linda E Watson*1, Paul L Bates2, Timothy M Evans3,
    [Show full text]
  • Clonal Population Structure and Genetic Variation in Sand-Shinnery Oak, Quercus Havardii (Fagaceae)1
    American Journal of Botany 85(11): 1609±1617. 1998. CLONAL POPULATION STRUCTURE AND GENETIC VARIATION IN SAND-SHINNERY OAK, QUERCUS HAVARDII (FAGACEAE)1 STEVEN G. MAYES,MARK A. MCGINLEY, AND CHARLES R. WERTH2 Ecology Program, Department of Biological Sciences, Texas Tech University, Lubbock, Texas 79409±3131 We investigated clonal population structure and genetic variation in Quercus havardii (sand-shinnery oak), a deciduous rhizomatous shrub that dominates vegetation by forming uninterrupted expanses of ground cover over sandy deposits on the plains of western Texas, western Oklahoma, and eastern New Mexico. Isozyme electrophoresis (15 loci coding 11 enzymes) was used to recognize and map clones arrayed in a 2000-m transect (50-m sample intervals) and a 200 3 190 m grid (10-m sample intervals). Ninety-four clones were discovered, 38 in the transect and 56 in the grid, resulting in an estimated density of ;15 clones per hectare. Clones varied greatly in size (;100±7000 m2), shape, and degree of fragmen- tation. The larger clones possessed massive interiors free of intergrowth by other clones, while the smaller clones varied in degree of intergrowth. The population maintained substantial levels of genetic variation (P 5 60%, A 5 2.5, Hexp 5 0.289) comparable to values obtained for other Quercus spp. and for other long-lived perennials. The population was outcrossing as evidenced by conformance of most loci to Hardy-Weinberg expected genotype proportions, although exceptions indicated a limited degree of population substructuring. These data indicate that despite apparent reproduction primarily through vegetative means, Q. havardii possesses conventional attributes of a sexual population.
    [Show full text]
  • Lesser Prairie-Chicken Initiative Report
    Lesser Prairie-Chicken Conservation Beyond Boundaries Initiative Report February 2012 Background/ Did You Know? • The lesser prairie-chicken is a Purpose ground-nesting bird native to the rangelands of the south central Lesser prairie-chicken populations have plains of the U.S. and best declined dramatically during the past several known for its unique courtship decades due to loss of native prairie, habitat displays and “booming” sounds. fragmentation, and degradation of habitat on both private and public lands. The • A lek is an area where lesser Natural Resources Conservation Service prairie-chicken males display (NRCS), its partners and cooperating during the breeding season to landowners are working to increase the number and the range of the lesser attract females; may also be prairie-chicken through the Lesser Prairie-Chicken Initiative (LPCI). At the referred to as a booming ground same time, the initiative is promoting the overall health of grazing lands and or strutting ground. the long-term sustainability of ranching operations.The U.S. Fish and Wildlife Service (USFWS) has worked cooperatively with NRCS to ensure the initiative’s • The lesser prairie-chicken is conservation practices provide long-term benefits to the overall lesser prairie- comparable in morphology, chicken population; minimize or eliminate short-term harmful effects to those plumage and behavior to the populations, and cause no negative effects to other listed and candidate species greater prairie-chicken, although that share habitat with the lesser prairie-chicken. the lesser prairie-chicken is smaller and has distinctive NRCS State Conservationists in Colorado, Kansas, New Mexico, Oklahoma courtship displays and and Texas (states within the lesser prairie-chicken’s range), with the assistance vocalizations.
    [Show full text]
  • Alpha Codes for 2168 Bird Species (And 113 Non-Species Taxa) in Accordance with the 62Nd AOU Supplement (2021), Sorted Taxonomically
    Four-letter (English Name) and Six-letter (Scientific Name) Alpha Codes for 2168 Bird Species (and 113 Non-Species Taxa) in accordance with the 62nd AOU Supplement (2021), sorted taxonomically Prepared by Peter Pyle and David F. DeSante The Institute for Bird Populations www.birdpop.org ENGLISH NAME 4-LETTER CODE SCIENTIFIC NAME 6-LETTER CODE Highland Tinamou HITI Nothocercus bonapartei NOTBON Great Tinamou GRTI Tinamus major TINMAJ Little Tinamou LITI Crypturellus soui CRYSOU Thicket Tinamou THTI Crypturellus cinnamomeus CRYCIN Slaty-breasted Tinamou SBTI Crypturellus boucardi CRYBOU Choco Tinamou CHTI Crypturellus kerriae CRYKER White-faced Whistling-Duck WFWD Dendrocygna viduata DENVID Black-bellied Whistling-Duck BBWD Dendrocygna autumnalis DENAUT West Indian Whistling-Duck WIWD Dendrocygna arborea DENARB Fulvous Whistling-Duck FUWD Dendrocygna bicolor DENBIC Emperor Goose EMGO Anser canagicus ANSCAN Snow Goose SNGO Anser caerulescens ANSCAE + Lesser Snow Goose White-morph LSGW Anser caerulescens caerulescens ANSCCA + Lesser Snow Goose Intermediate-morph LSGI Anser caerulescens caerulescens ANSCCA + Lesser Snow Goose Blue-morph LSGB Anser caerulescens caerulescens ANSCCA + Greater Snow Goose White-morph GSGW Anser caerulescens atlantica ANSCAT + Greater Snow Goose Intermediate-morph GSGI Anser caerulescens atlantica ANSCAT + Greater Snow Goose Blue-morph GSGB Anser caerulescens atlantica ANSCAT + Snow X Ross's Goose Hybrid SRGH Anser caerulescens x rossii ANSCAR + Snow/Ross's Goose SRGO Anser caerulescens/rossii ANSCRO Ross's Goose
    [Show full text]
  • Quercus (Fagaceae) in the Utah Flora
    Great Basin Naturalist Volume 46 Number 1 Article 7 1-31-1986 Quercus (Fagaceae) in the Utah flora Stanley L. Welsh Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Welsh, Stanley L. (1986) "Quercus (Fagaceae) in the Utah flora," Great Basin Naturalist: Vol. 46 : No. 1 , Article 7. Available at: https://scholarsarchive.byu.edu/gbn/vol46/iss1/7 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. — QUERCUS (FAGACEAE) IN THE UTAH FLORA Stanley L. Welsh' Abstract —Reviewed are the oak taxa as they are presently understood in Utah. Keys and descriptions are included, occurrences are cited, and problems of hybridization are discussed. Named as new varieties from Utah are Qticrcus gambelii Nutt. var. honina Welsh and Qucrcus havardii Rydb. var. tuckeri Welsh. Both varieties occur in southeastern Utah. Qttercus eastwoodicie Rydb. is proposed as a hybrid. The native oaks have been a source of con- ella Greene, and Q. havardii Rydb. Within fusion ahnost from the beginning of botanical those complexes the species concepts are mostly exploration, and a huge bibliography has ac- clear and unarguable, but they have no really cumulated dealing with the oaks of Utah and apparent barriers to hybridization, and interme- the West (Harper et al. 1985). Collection of diates are known between nearly all of them, the materials serving in typification of the ear- The following taxonomic treatment is based liest known portion of the complex of species on the examination of more than 300 specimens existing in Utah confounded interpretation "i Utah herbaria and more than three decades of from the beginning.
    [Show full text]