Targeting Immediate Early Genes in Melanoma and Vascular Diseases

Total Page:16

File Type:pdf, Size:1020Kb

Targeting Immediate Early Genes in Melanoma and Vascular Diseases Targeting immediate early genes in melanoma and vascular diseases Ahmad Mohammad Nabil Alhendi A thesis submitted in fulfilment of the requirements for the degree of Doctorate of Philosophy (Biochemistry and Molecular Genetics) School of Biotechnology and Biomolecular Sciences The University of New South Wales March 2015 i ii ORIGINALITY STATEMENT ‘I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project's design and conception or in style, presentation and linguistic expression is acknowledged.’ Signed ……………………………… Date ………………………………….... iii COPYRIGHT STATEMENT ‘I hereby grant the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or part in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain all proprietary rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation. I also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation Abstract International (this is applicable to doctoral theses only). I have either used no substantial portions of copyright material in my thesis or I have obtained permission to use copyright material; where permission has not been granted I have applied/will apply for a partial restriction of the digital copy of my thesis or dissertation.' Signed ……………………………… Date ………………………………….... AUTHENTICITY STATEMENT ‘I certify that the Library deposit digital copy is a direct equivalent of the final officially approved version of my thesis. No emendation of content has occurred and if there are any minor variations in formatting, they are the result of the conversion to digital format.’ Signed ……………………………… Date ………………………………….... iv ABSTRACT Melanoma and cardiovascular disease (CVD) are highly prevalent diseases in Western nations. Disease initiation and progression occur via a number of different external and internal factors, often resulting in altered gene expression. The fastest response to such factors is the altered expression of the so-called immediate early genes (IEGs) and these genes are implicated in certain diseases including CVD and cancer. Dysregulation of IEGs in human aortic smooth muscle cells (hASMCs) usually results in a phenotypic transformation, involving the secretion of high levels of extracellular matrix proteins and increased proliferation and migration. In this study, 347 IEGs that were stress induced by addition of growth factor FGF2 and cytokine IL-1B and expressed in hASMCs, were categorised into three groups, early, rapid transient and late responder genes. Early growth response-1 (EGR1) an early gene and modulator of rapid transient genes NAB2, VCAM-1, ICAM-1 and late responder genes C-JUN and JUND was knocked down and the effect (down-regulation) on other IEG groups evaluated. Two miRNAs of interest with potential roles in cellular process relevant to melanoma are miR-155 and miR-125b. We demonstrated that the stress inducible transcription factors, C- JUN and C-FOS in melanoma cells are regulated by miR-125b and miR-155. Melanoma cell proliferation, migration and cell cycle analysis were performed to validate the effect of the two miRNAs on C-JUN and C-FOS expression. miRNAs caused decrease in proliferation, migration and affected cell cycle progression. The effect of miRNAs on C-JUN and C-FOS is promising in terms of down-regulating these transcription factors, which are usually upregulated in cancers. In parallel, the lead compound termed X compound, and its derivatives X4, X6, X7, BT2 and BT3, were tested on a melanoma cell line to assess their potential as chemotherapeutic agents. Treatment with these compounds resulted in cancer relevant phenotypic changes such as decreased expression of genes that are associated with melanoma, which suggest that the X compound, and its derivatives, should be explored as therapeutic agents to treat melanoma. Melanoma and CVD are so prevalent, thus, finding additional therapeutic alternatives is of great importance. v ACKNOWLEDGEMENTS First and foremost, I would like to express the deepest appreciation to my supervisor Noel for his guidance and mentorship for the past 2 years. Also, I would like to thank my co- supervisor Lionel for your assistance. Thanks for answering all those questions I had. Thank you both for always looking out for me and keeping my best interests at heart. I also would like to thank Levon for the great opportunity he offered me at the beginning of my PhD. To Jo, thank you for your patience and help. To my parents, brothers and sisters, thank you for supporting me throughout these demanding 3 years. Thank you for your endless support and love, I couldn’t have done any of this without you. To the love of my life, Hayoush; you have made my life simply better and remained the motive which kept me going throughout these tough years. Thank you for entering my life at the right time. I would like to thank my friends, Hassan, Khaled and Mohammad as this work would not have been possible without you all. Thanks for all your advice, much appreciated. To Blake, Joanna, Lucy and Sudi, your presence in my life through these tough years has been invaluable. Thanks so much for all the chats we had. Thanks for all the time you spent with me. I would never forget the lunches and coffee breaks we had together. To all my friends in BABS; Anoushcka, Akira, Beth, Chris and Nirmani thank you all for your assistance. I would also like to thank all of my friends who supported me in writing, and incented me to strive towards my goal. vi LIST OF PUBLICATIONS Research articles ñ Review for “Insight into roles of immediate early genes in angiogenesis” (Leonel- Prado-Lourenco, Ahmad M.N. Alhendi, and Levon M. Khachigian). Springer (2014). ñ Transcriptional dynamics implicate non-coding RNAs in the immediate early response. Stuart Aitken, Shigeyuki Magi, Ahmad M.N. Alhendi, Masayoshi Itoh, Hideya Kawaji, Timo Lassmann, Carsten O. Daub, Erik Arner, Piero Carninci, Alistair R.R. Forrest, Yoshihide Hayashizaki, Levon M. Khachigian, Mariko Okada-Hatakeyama and Colin A. Semple. Journal of PLOS Computational Biology (2015). ñ Dynamics of enhancer and promoter activity during mammalian cellular activation and differentiation. Erik Arner &, Carsten O Daub &, Kristoffer Vitting-Seerup &, Robin Andersson &, Berit Lilje, Finn Drablos, Andreas Lennartsson, Michelle Rönnerblad, Olga Hrydziuszsko, Morana Vitezic, Tom C Freeman, Ahmad M.N. Alhendi…el. Journal of Science (2015). ñ Structure & Dynamic of the TnI inhibitory peptide in reconstituted thin filaments as determined by SDSL-EPR. J. Cook, Ahmad M.N. Alhendi, P. Curmi, P. Fajer & L. Brown. In preparation ñ Targeting C-JUN and C-FOS through miR-155 and miR-125b, Potential in combatting melanoma. Ahmad M.N. Alhendi, Leonel-Prado-Lourenco, Noel Whittaker. In preparation Select conference publications ñ Scanning of the inhibitory region of troponin in the muscle thin filament complex. Phani Rekha Potluri, James.A. Cooke, Nicole M. Cordina, Ahmad M.N. Alhendi and Louise J. Brown. Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia. East Coast Protein Meeting 2013. ñ Immediate Early Gene Profiling in Vascular Smooth Muscle Cells Responding to Growth Factor and Cytokine Stimulation. Ahmad M.N. Alhendi, Margaret Patrikakis, Levon M. Khachigian. Centre for Vascular Research, University of New South Wales, New South Wales, Sydney 2052, Australia. Lorne Genome Conference Feb.2014. vii ñ Targeting c-Jun and c-Fos using microRNAs has a potential in contesting melanoma. Ahmad M.N. Alhendi, Leonel Prado-Lourenço, Noel Whitaker. School of Biotechnology and Biomolecular Science, Faculty of Science, University of New South Wales, Sydney, 2052, Australia. American Association of Cancer research conference. April 2015 ñ Novel transcriptional inhibitors for the inhibition of melanoma growth. Taylor, KM; Alhendi, AMN; Halliday, GM; Prado-Lourenço L. Centre for Vascular Research, University of New South Wales, New South Wales, Sydney 2052, Australia. American Association of Cancer research conference. April 2015 viii Table of Contents 1 Introduction .............................................................................................................. 1 1.1 General Introduction Part I: Cardiovascular Disease ............................................ 1 1.1.1 The relevance of the evolution and development of heart to cardiovascular disease 1 1.1.2 History, background and epidemiology of cardiovascular disease ..................... 4 1.1.3 Types of cardiovascular disease ........................................................................... 4 1.1.4 Cardiovascular disease prevention and therapy ................................................. 7 1.1.5 Inflammation and its correlation with atherosclerosis
Recommended publications
  • Deregulated Gene Expression Pathways in Myelodysplastic Syndrome Hematopoietic Stem Cells
    Leukemia (2010) 24, 756–764 & 2010 Macmillan Publishers Limited All rights reserved 0887-6924/10 $32.00 www.nature.com/leu ORIGINAL ARTICLE Deregulated gene expression pathways in myelodysplastic syndrome hematopoietic stem cells A Pellagatti1, M Cazzola2, A Giagounidis3, J Perry1, L Malcovati2, MG Della Porta2,MJa¨dersten4, S Killick5, A Verma6, CJ Norbury7, E Hellstro¨m-Lindberg4, JS Wainscoat1 and J Boultwood1 1LRF Molecular Haematology Unit, NDCLS, John Radcliffe Hospital, Oxford, UK; 2Department of Hematology Oncology, University of Pavia Medical School, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; 3Medizinische Klinik II, St Johannes Hospital, Duisburg, Germany; 4Division of Hematology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden; 5Department of Haematology, Royal Bournemouth Hospital, Bournemouth, UK; 6Albert Einstein College of Medicine, Bronx, NY, USA and 7Sir William Dunn School of Pathology, University of Oxford, Oxford, UK To gain insight into the molecular pathogenesis of the the World Health Organization.6,7 Patients with refractory myelodysplastic syndromes (MDS), we performed global gene anemia (RA) with or without ringed sideroblasts, according to expression profiling and pathway analysis on the hemato- poietic stem cells (HSC) of 183 MDS patients as compared with the the French–American–British classification, were subdivided HSC of 17 healthy controls. The most significantly deregulated based on the presence or absence of multilineage dysplasia. In pathways in MDS include interferon signaling, thrombopoietin addition, patients with RA with excess blasts (RAEB) were signaling and the Wnt pathways. Among the most signifi- subdivided into two categories, RAEB1 and RAEB2, based on the cantly deregulated gene pathways in early MDS are immuno- percentage of bone marrow blasts.
    [Show full text]
  • RNA Expression Patterns in Serum Microvesicles from Patients With
    Noerholm et al. BMC Cancer 2012, 12:22 http://www.biomedcentral.com/1471-2407/12/22 RESEARCHARTICLE Open Access RNA expression patterns in serum microvesicles from patients with glioblastoma multiforme and controls Mikkel Noerholm1,2*, Leonora Balaj1, Tobias Limperg1,3, Afshin Salehi1,4, Lin Dan Zhu1, Fred H Hochberg1, Xandra O Breakefield1, Bob S Carter1,4 and Johan Skog1,2 Abstract Background: RNA from exosomes and other microvesicles contain transcripts of tumour origin. In this study we sought to identify biomarkers of glioblastoma multiforme in microvesicle RNA from serum of affected patients. Methods: Microvesicle RNA from serum from patients with de-novo primary glioblastoma multiforme (N = 9) and normal controls (N = 7) were analyzed by microarray analysis. Samples were collected according to protocols approved by the Institutional Review Board. Differential expressions were validated by qRT-PCR in a separate set of samples (N = 10 in both groups). Results: Expression profiles of microvesicle RNA correctly separated individuals in two groups by unsupervised clustering. The most significant differences pertained to down-regulated genes (121 genes > 2-fold down) in the glioblastoma multiforme patient microvesicle RNA, validated by qRT-PCR on several genes. Overall, yields of microvesicle RNA from patients was higher than from normal controls, but the additional RNA was primarily of size < 500 nt. Gene ontology of the down-regulated genes indicated these are coding for ribosomal proteins and genes related to ribosome production. Conclusions: Serum microvesicle RNA from patients with glioblastoma multiforme has significantly down- regulated levels of RNAs coding for ribosome production, compared to normal healthy controls, but a large overabundance of RNA of unknown origin with size < 500 nt.
    [Show full text]
  • United States Patent ( 10 ) Patent No.: US 10,468,120 B2 Hakozaki Et Al
    US010468120B2 United States Patent ( 10 ) Patent No.: US 10,468,120 B2 Hakozaki et al. (45 ) Date of Patent : * Nov . 5 , 2019 (54 ) METHOD OF GENERATING A 2008/0280844 A1 * 11/2008 Lessnick C12Q 1/6886 HYPERPIGMENTATION CONDITION GENE 514/44 A 2009/0017080 A1 1/2009 Tanner et al. EXPRESSION SIGNATURE 2010/0189669 A1 * 7/2010 Hakozaki 424/60 2010/0292085 A1 * 11/2010 Lum GOIN 33/5067 (71 ) Applicant: The Procter & Gamble Company , 506/7 Cincinnati, OH (US ) 2011/0150798 A1 6/2011 Bacus 2011/0269852 A1 * 11/2011 McDaniel 514/789 ( 72 ) Inventors: Tomohiro Hakozaki, Cincinnati, OH 2012/0149773 A1 * 6/2012 Park A61K 31/203 (US ) ; Wenzhu Zhao , Mason , OH (US ) ; 514/552 Robert Lloyd Binder , Montgomery, 2013/0165470 A1 * 6/2013 Isfort A61K 31/439 OH (US ) ; Jun Xu , Mason , OH (US ) 514/289 (73 ) Assignee : The Procter & Gamble Company , FOREIGN PATENT DOCUMENTS Cincinnati , OH (US ) WO WO 2003/100557 12/2003 WO WO 2005/040416 5/2005 ( * ) Notice : Subject to any disclaimer, the term of this WO 2012011904 A1 1/2012 patent is extended or adjusted under 35 WO 2012116081 A2 8/2012 WO WO2012116081 8/2012 U.S.C. 154 ( b ) by 162 days . WO WO 2014/028572 2/2014 This patent is subject to a terminal dis claimer. OTHER PUBLICATIONS ( 21) Appl. No .: 13 /851,873 Affymetrix HGU133A 2.0 ( release 33 , submitted Oct. 30 , 2012 ) , Affymetrix.com . * Filed : Hakozaki et al. ( 2002 )British Journal of Dermatology 147.1 (2002 ) : ( 22 ) Mar. 27 , 2013 20-31 . * Aoki et al . (British Journal of Dermatology 156.6 (2007 ) : 1214 (65 ) Prior Publication Data 1223 ) .
    [Show full text]
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • Fine Mapping Chromosome 16Q12 in a Collection of 231 Systemic Lupus Erythematosus Sibpair and Multiplex Families
    Genes and Immunity (2005) 6, 19–23 & 2005 Nature Publishing Group All rights reserved 1466-4879/05 $30.00 www.nature.com/gene FULL PAPER Fine mapping chromosome 16q12 in a collection of 231 systemic lupus erythematosus sibpair and multiplex families CD Gillett1,2, CD Langefeld3, AH Williams3, WA Ortmann2, RR Graham4, PR Rodine2, SA Selby2, PM Gaffney1,2, TW Behrens1,2 and KL Moser1,2 1Department of Molecular, Cellular, Developmental Biology and Genetics, University of Minnesota, Minneapolis, MN, USA; 2Department of Medicine and the Center for Lupus Research, University of Minnesota, Minneapolis, MN, USA; 3Department of Public Health Sciences, Wake Forest University Health Sciences, Winston-Salem, NC, USA; 4Department of Medicine, Massachusetts General Hospital, Boston, MA, USA Systemic lupus erythematosus (SLE) is a chronic, autoimmune disorder influenced by multiple genetic and environmental factors. Linkage of SLE to chromosome 16q12–13 (LOD score ¼ 3.85) was first identified in pedigrees collected at the University of Minnesota, and has been replicated in several independent SLE collections. We performed fine mapping using microsatellites to further refine the susceptibility region(s), and the best evidence for linkage was identified at marker D16S3396 (LOD ¼ 2.28, P ¼ 0.0006). Evidence of association was suggested in the analysis of all families (D16S3094, P ¼ 0.0516) and improved to the level of significance (P ¼ 0.0106) when only the Caucasian families were analyzed. Subsets of pedigrees were then selected on the basis of clinical manifestations, and these subsets showed evidence for association with several markers: GATA143D05 (renal, P ¼ 0.0064), D16S3035 (renal, P ¼ 0.0418), D16S3117 (renal, P ¼ 0.0366), D16S3071 (malar rash, P ¼ 0.03638; neuropsychiatric, P ¼ 0.0349; oral ulcers, P ¼ 0.0459), D16S3094 (hematologic, P ¼ 0.0226), and D16S3089 (arthritis, P ¼ 0.0141).
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Identification of Proteins That Are Differentially Expressed in Brains
    Journal of Proteomics 139 (2016) 103–121 Contents lists available at ScienceDirect Journal of Proteomics journal homepage: www.elsevier.com/locate/jprot Identification of proteins that are differentially expressed in brains with Alzheimer's disease using iTRAQ labeling and tandem mass spectrometry Benito Minjarez a,1, Karla Grisel Calderón-González a, Ma. Luz Valero Rustarazo b,2, María Esther Herrera-Aguirre a,MaríaLuisaLabra-Barriosa, Diego E. Rincon-Limas c,d, Manuel M. Sánchez del Pino b,3,RaulMenae,4, Juan Pedro Luna-Arias a,⁎ a Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, C.P. 07360 Ciudad de México, México b Unidad de Proteómica, Centro de Investigación Príncipe Felipe, C/Rambla del Saler 16, 46012 Valencia, España c Department of Neurology, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA d Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA e Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, C.P. 07360 Ciudad de México, México article info abstract Article history: Alzheimer's disease is one of the leading causes of dementia in the elderly. It is considered the result of complex Received 5 November 2015 events involving both genetic and environmental factors. To gain further insights into this complexity, we Received in revised form 26 February 2016 quantitatively analyzed the proteome of cortex region of brains from patients diagnosed with Alzheimer's Accepted 11 March 2016 disease, using a bottom-up proteomics approach.
    [Show full text]
  • Protein Kinase CK2: Intricate Relationships Within Regulatory Cellular Networks
    pharmaceuticals Review Protein Kinase CK2: Intricate Relationships within Regulatory Cellular Networks Teresa Nuñez de Villavicencio-Diaz 1, Adam J. Rabalski 1 and David W. Litchfield 1,2,* 1 Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; [email protected] (T.N.d.V.D.); [email protected] (A.J.R.) 2 Department of Oncology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada * Correspondence: litchfi@uwo.ca; Tel.: +1-519-661-4186 Academic Editor: Joachim Jose Received: 14 January 2017; Accepted: 2 March 2017; Published: 5 March 2017 Abstract: Protein kinase CK2 is a small family of protein kinases that has been implicated in an expanding array of biological processes. While it is widely accepted that CK2 is a regulatory participant in a multitude of fundamental cellular processes, CK2 is often considered to be a constitutively active enzyme which raises questions about how it can be a regulatory participant in intricately controlled cellular processes. To resolve this apparent paradox, we have performed a systematic analysis of the published literature using text mining as well as mining of proteomic databases together with computational assembly of networks that involve CK2. These analyses reinforce the notion that CK2 is involved in a broad variety of biological processes and also reveal an extensive interplay between CK2 phosphorylation and other post-translational modifications. The interplay between CK2 and other post-translational modifications suggests that CK2 does have intricate roles in orchestrating cellular events. In this respect, phosphorylation of specific substrates by CK2 could be regulated by other post-translational modifications and CK2 could also have roles in modulating other post-translational modifications.
    [Show full text]
  • Appendix 2. Significantly Differentially Regulated Genes in Term Compared with Second Trimester Amniotic Fluid Supernatant
    Appendix 2. Significantly Differentially Regulated Genes in Term Compared With Second Trimester Amniotic Fluid Supernatant Fold Change in term vs second trimester Amniotic Affymetrix Duplicate Fluid Probe ID probes Symbol Entrez Gene Name 1019.9 217059_at D MUC7 mucin 7, secreted 424.5 211735_x_at D SFTPC surfactant protein C 416.2 206835_at STATH statherin 363.4 214387_x_at D SFTPC surfactant protein C 295.5 205982_x_at D SFTPC surfactant protein C 288.7 1553454_at RPTN repetin solute carrier family 34 (sodium 251.3 204124_at SLC34A2 phosphate), member 2 238.9 206786_at HTN3 histatin 3 161.5 220191_at GKN1 gastrokine 1 152.7 223678_s_at D SFTPA2 surfactant protein A2 130.9 207430_s_at D MSMB microseminoprotein, beta- 99.0 214199_at SFTPD surfactant protein D major histocompatibility complex, class II, 96.5 210982_s_at D HLA-DRA DR alpha 96.5 221133_s_at D CLDN18 claudin 18 94.4 238222_at GKN2 gastrokine 2 93.7 1557961_s_at D LOC100127983 uncharacterized LOC100127983 93.1 229584_at LRRK2 leucine-rich repeat kinase 2 HOXD cluster antisense RNA 1 (non- 88.6 242042_s_at D HOXD-AS1 protein coding) 86.0 205569_at LAMP3 lysosomal-associated membrane protein 3 85.4 232698_at BPIFB2 BPI fold containing family B, member 2 84.4 205979_at SCGB2A1 secretoglobin, family 2A, member 1 84.3 230469_at RTKN2 rhotekin 2 82.2 204130_at HSD11B2 hydroxysteroid (11-beta) dehydrogenase 2 81.9 222242_s_at KLK5 kallikrein-related peptidase 5 77.0 237281_at AKAP14 A kinase (PRKA) anchor protein 14 76.7 1553602_at MUCL1 mucin-like 1 76.3 216359_at D MUC7 mucin 7,
    [Show full text]
  • Management of Women with Premature Ovarian Insufficiency
    Management of women with premature ovarian insufficiency Guideline of the European Society of Human Reproduction and Embryology POI Guideline Development Group December 2015 1 Disclaimer The European Society of Human Reproduction and Embryology (hereinafter referred to as 'ESHRE') developed the current clinical practice guideline, to provide clinical recommendations to improve the quality of healthcare delivery within the European field of human reproduction and embryology. This guideline represents the views of ESHRE, which were achieved after careful consideration of the scientific evidence available at the time of preparation. In the absence of scientific evidence on certain aspects, a consensus between the relevant ESHRE stakeholders has been obtained. The aim of clinical practice guidelines is to aid healthcare professionals in everyday clinical decisions about appropriate and effective care of their patients. However, adherence to these clinical practice guidelines does not guarantee a successful or specific outcome, nor does it establish a standard of care. Clinical practice guidelines do not override the healthcare professional's clinical judgment in diagnosis and treatment of particular patients. Ultimately, healthcare professionals must make their own clinical decisions on a case-by-case basis, using their clinical judgment, knowledge, and expertise, and taking into account the condition, circumstances, and wishes of the individual patient, in consultation with that patient and/or the guardian or carer. ESHRE makes no warranty, express or implied, regarding the clinical practice guidelines and specifically excludes any warranties of merchantability and fitness for a particular use or purpose. ESHRE shall not be liable for direct, indirect, special, incidental, or consequential damages related to the use of the information contained herein.
    [Show full text]
  • Biological Role of Conceptus Derived Factors During Early Pregnancy In
    Biological Role of Conceptus Derived Factors During Early Pregnancy in Ruminants A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY IN ANIMAL SCIENCES UNIVERSITY OF MISSOURI- COLUMBIA Division of Animal Science By KELSEY BROOKS Dr. Thomas Spencer, Dissertation Supervisor August 2016 The undersigned have examined the dissertation entitled, BIOLOGICAL ROLE OF CONCEPTUS DERIVED FACTORS DURING EARLY PREGNANCY IN RUMINANTS presented by Kelsey Brooks, a candidate for the degree of doctor of philosophy, and hereby certify that, in their opinion, it is worthy of acceptance. __________________________________ Chair, Dr. Thomas Spencer ___________________________________ Dr. Rodney Geisert ___________________________________ Dr. Randall Prather ___________________________________ Dr. Laura Schulz ACKNOWLEDGMENTS I would like to acknowledge all the students, faculty and staff at Washington State University and the University of Missouri for their help and support throughout my doctoral program. I am grateful for the opportunity to work with Dr. Thomas Spencer, and thank him for his input and guidance not only in planning experiments and completing projects but for helping me turn my love of science into a career in research. I would also like to acknowledge the members of my graduate committee at Washington State University for their help and input during the first 3 years of my studies. A special thanks to Dr. Jim Pru and Cindy Pru for providing unlimited entertainment, and the occasional missing reagent. Thank you to my committee members at the University of Missouri for adopting me late in my program and helping shape my future as an independent scientist. Thanks are also extended to members of the Prather lab and Wells lab for letting me in on the secrets of success using the CRISPR/Cas9 system.
    [Show full text]
  • Single-Cell Transcriptome Profiling of the Kidney Glomerulus Identifies Key Cell Types and Reactions to Injury
    BASIC RESEARCH www.jasn.org Single-Cell Transcriptome Profiling of the Kidney Glomerulus Identifies Key Cell Types and Reactions to Injury Jun-Jae Chung ,1 Leonard Goldstein ,2 Ying-Jiun J. Chen,2 Jiyeon Lee ,1 Joshua D. Webster,3 Merone Roose-Girma,2 Sharad C. Paudyal,4 Zora Modrusan,2 Anwesha Dey,5 and Andrey S. Shaw1 Due to the number of contributing authors, the affiliations are listed at the end of this article. ABSTRACT Background The glomerulus is a specialized capillary bed that is involved in urine production and BP control. Glomerular injury is a major cause of CKD, which is epidemic and without therapeutic options. Single-cell transcriptomics has radically improved our ability to characterize complex organs, such as the kidney. Cells of the glomerulus, however, have been largely underrepresented in previous single-cell kidney studies due to their paucity and intractability. Methods Single-cell RNA sequencing comprehensively characterized the types of cells in the glomerulus from healthy mice and from four different disease models (nephrotoxic serum nephritis, diabetes, doxo- rubicin toxicity, and CD2AP deficiency). Results Allcelltypesintheglomeruluswereidentified using unsupervised clustering analysis. Novel marker genes and gene signatures of mesangial cells, vascular smooth muscle cells of the afferent and efferent arteri- oles, parietal epithelial cells, and three types of endothelial cells were identified. Analysis of the disease models revealed cell type–specific and injury type–specific responses in the glomerulus, including acute activation of the Hippo pathway in podocytes after nephrotoxic immune injury. Conditional deletion of YAP or TAZ resulted in more severe and prolonged proteinuria in response to injury, as well as worse glomerulosclerosis.
    [Show full text]