Phylogenetic Relationships of Corallinaceae (Corallinales, Rhodophyta): Taxonomic Implications for Reef-Building Corallines1

Total Page:16

File Type:pdf, Size:1020Kb

Phylogenetic Relationships of Corallinaceae (Corallinales, Rhodophyta): Taxonomic Implications for Reef-Building Corallines1 J. Phycol. 52, 412–431 (2016) © 2016 Phycological Society of America DOI: 10.1111/jpy.12404 PHYLOGENETIC RELATIONSHIPS OF CORALLINACEAE (CORALLINALES, RHODOPHYTA): TAXONOMIC IMPLICATIONS FOR REEF-BUILDING CORALLINES1 Anja Rosler€ 2 Departamento de Estratigrafıa y Paleontologıa, Universidad de Granada, Campus Fuente Nueva, Granada 18002, Spain Francisco Perfectti Departamento de Genetica, Universidad de Granada, Campus Fuente Nueva, Granada 18002, Spain Viviana Pena~ Grupo de investigacion BIOCOST, Facultade de Ciencias, Universidade da Coruna,~ Campus de A Coruna,~ A Coruna~ 15071, Spain Phycology Research Group, Ghent University, Krijgslaan 281, Building S8, Ghent 9000, Belgium Equipe Exploration, Especes et Evolution, Institut de Systematique, Evolution, Biodiversite, UMR 7205 ISYEB CNRS, MNHN, UPMC, EPHE, Museum national d’Histoire naturelle (MNHN), Sorbonne Universites, 57 rue Cuvier CP 39, Paris F-75005, France and Juan Carlos Braga Departamento de Estratigrafıa y Paleontologıa, Universidad de Granada, Campus Fuente Nueva, Granada 18002, Spain A new, more complete, five-marker (SSU, LSU, son 2009) through their sensitivity to climate psbA, COI, 23S) molecular phylogeny of the family change and ocean acidification (Hall-Spencer et al. Corallinaceae, order Corallinales, shows a paraphyletic 2008, Burdett et al. 2012, Diaz-Pulido et al. 2012, grouping of seven well-supported monophyletic clades. Kato et al. 2014, McCoy and Kamenos 2015), to The taxonomic implications included the amendment their use as paleoenvironmental indicators (Braga of two subfamilies, Neogoniolithoideae and Metago- et al. 2010, Abbey et al. 2011, Aguirre et al. 2012, niolithoideae, and the rejection of Porolithoideae as an Novak et al. 2013). Coralline red algae are impor- independent subfamily. Metagoniolithoideae contai- tant components in many shallow-water marine ned Harveylithon gen. nov., with H. rupestre comb. nov. ecosystems (Adey and Mcintyre 1973, Adey 1986). as the generitype, and H. canariense stat. nov., They are major builders in coral reefs (Littler and H. munitum comb. nov., and H. samoense€ comb. nov. Littler 1984, Mallela 2013) and contribute signifi- Spongites and Pneophyllum belonged to separate clades. cantly to the preservation of reef health and biodi- The subfamily Neogoniolithoideae included the versity (Morse et al. 1996, reviewed in Nelson 2009, generitype of Spongites, S. fruticulosus, for which an Vermeij et al. 2011). The main coralline reef epitype was designated. Pneophyllum requires reass- builders are members of the order Corallinales, fam- esment. The generitype of Hydrolithon, H. reinboldii, ily Corallinaceae, that are predominant in the fossil was a younger heterotypic synonym of H. boergesenii. record (since the Miocene) and on recent coral The evolutionary novelty of the subfamilies Hydro- reefs to a depth of ~50 m (Adey et al. 1982, Braga lithoideae, Metagoniolithoideae, and Lithophylloideae et al. 2010). was the development of tetra/bisporangial conceptacle Despite their significance, the taxonomy of coral- roofs by filaments surrounding and interspersed line algae is not resolved at any rank, although it among the sporangial initials. has been subject to continuous debate since the 19th century (Johansen 1981, Woelkerling 1988, Le Key index words: coral reef; Corallinales; coralline Gall et al. 2010, Bittner et al. 2011, Kato et al. 2011, algae; Hydrolithoideae; Mastophoroideae; Metago- Woelkerling et al. 2012). Recent systematic work niolithoideae; molecular phylogeny; Neogonioli- based on multigene analyses resulted in the separa- thoideae tion of the new order Hapalidiales from Corallinales sensu Silva and Johansen (1986), characterized by multiporate and uniporate tetrasporangial concepta- cles, respectively (Nelson et al. 2015). Coralline The ongoing scientific interest in coralline algae algae show extreme phenotypic plasticity dependent is based on many factors, from their ecological on external factors (Steneck 1986, Woelkerling importance in various shallow marine habitats (Nel- 1988, Braga et al. 1993, Woelkerling et al. 1993a, Farr et al. 2009) and, on the other hand, they 1Received 13 June 2014. Accepted 19 January 2016. possess a relatively simple thallus with limited 2Author for correspondence: e-mail [email protected]. morphoanatomical character variation. Several Editorial Responsibility: P. Gabrielson (Associate Editor) 412 PHYLOGENYOFREEFCORALLINES 413 diagnostic features (e.g., gametangial conceptacle conicum (E.Y.Dawson) Keats, Y.M.Chamberlain & primordia or developing gametangial conceptacles) M.Baba. On the other hand, H. munitum (Foslie & are rarely observed in samples with the added diffi- M.Howe) Penrose, H. cymodoceae (Foslie) Penrose, culty that sample preparation to detect those and H. rupestre (Foslie) Penrose were not included features is arduous (Woelkerling 1988, Farr et al. in the analyses of Kato et al. (2011). 2009). Woelkerling (1988) (pp. 62–73 and table Using four genetic markers (SSU, LSU, psbA and 5.2) listed the characters historically considered COI), Bittner et al. (2011) also separated Porolithon delimiting for subfamilies and genera and proposed Foslie from Hydrolithon. In this work, Porolithon com- a classification scheme for both taxonomic ranks. prised those coralline taxa possessing primarily Since this seminal publication, the diagnostic fea- monomerous thalli and trichocytes in large horizon- tures and circumscription of a number of genera tal pustulose fields without interspersed filaments. and subfamilies have changed (Harvey et al. 2003, Woelkerling et al. (2012), however, pointed out that Le Gall and Saunders 2007, Le Gall et al. 2010, Kato the separation based on horizontal trichocyte fields et al. 2011, Adey et al. 2015), demonstrating that would be untenable because this character is not even at the subfamily rank the taxonomy of coral- present in every specimen, as already stated by Men- line algae is still unresolved (Bittner et al. 2011, doza and Cabioch (1986). In Bittner et al. (2011) Woelkerling et al. 2012). and Kato et al. (2011), Metagoniolithoideae was sis- As stated by Harvey et al. (2003), one of the main ter to Porolithon. impediments to classifying coralline taxa is to deter- In this study, the phylogeny of Corallinaceae was mine which morphological characters result from analyzed with a set of five DNA markers (SSU, LSU, homoplasy and which from common ancestry. The psbA, COI, and 23S). SSU was the first marker used uncertainties in the answers to this question led to in coralline algal phylogeny (Bailey and Chapman the proposal of very different classification schemes 1996) and has been confirmed to be a highly infor- during the last decades (e.g., Adey 1965, Cabioch mative marker in phylogenetic studies for a very 1971, Bailey 1999, Le Gall et al. 2010, Nelson et al. broad group of organisms (White et al. 1990, 2015). However, molecular phylogenetics is now Armando Sanchez et al. 2003, Meyer et al. 2010). providing new insights into biological systematics. In However, SSU is a conservative marker for coralline fact, in the last 10 years the use of molecular tools algae, showing little variation in shallow phylogenies in phylogeny and species identification has seen a (Bailey and Freshwater 1997). Later, Broom et al. sharp increase in genetic sequences of coralline (2008) also used psbA, a plastid gene with substan- algae available in GenBank. In 2003, for example, tial variation between genera and between taxa to the orders Corallinales and Hapalidiales (sensu Nel- improve phylogenetic resolution within the order son et al. 2015) had 38 entries of only the nuclear Corallinales. The combination of the first four marker SSU (18S rDNA) (Bailey et al. 2004), which already showed good resolution of the phylogeny of had risen to 5,845 total sequences by 2015, includ- coralline algae in Bittner et al. (2011). UPA (univer- ing 463 SSU sequences (http://www.ncbi.nlm.nih. sal plastid amplificon, 23S) has been used as a fifth gov/nuccore/, verified 21 October 2015). marker due to its utility in evolutionary studies and Bailey et al. (2004) recognized that the subfamily high amplification success (Sherwood and Presting Mastophoroideae sensu Harvey et al. (2003) was 2007, Clarkston and Saunders 2010). It is able to polyphyletic. Later, Bittner et al. (2011) and Kato distinguish species but is also applicable over a et al. (2011) analyzed with multigen approaches the broad phylogenetic distance. Herein, we provided new placement of the genera once grouped in this new insights in the evolutionary history of Coralli- obsolete subfamily within Corallinaceae. Based on naceae, and clarified some taxonomic uncertainties two genetic markers, Kato et al. (2011) established still remaining in this family. the subfamily Porolithoideae, including Porolithon onkodes (Heydrich) Foslie, the generitype species, MATERIALS AND METHODS P. pachydermum (Foslie) Foslie, and P. gardineri (Foslie) Foslie, characterized by horizontal fields of Fifty-seven intertidal and subtidal samples were collected, trichocytes without interspersed vegetative cells. The snorkeling and scuba diving in different localities in the Paci- subfamily Hydrolithoideae, whose members lack fic, Indian, and Atlantic Oceans and the Caribbean and Mediterranean Seas (see Table 1 for details). Samples col- those “tightly packed” trichocyte fields, was lected by AR and JCB were air-dried for at least one hour restricted to Hydrolithon reinboldii (Weber-van Bosse and then stored in silica gel that was changed several times
Recommended publications
  • Articulated Coralline Algae of the Gulf of California, Mexico, I: Amphiroa Lamouroux
    SMITHSONIAN CONTRIBUTIONS TO THE MARINE SCIENCES • NUMBER 9 Articulated Coralline Algae of the Gulf of California, Mexico, I: Amphiroa Lamouroux James N. Norris and H. William Johansen SMITHSONIAN INSTITUTION PRESS City of Washington 1981 ABSTRACT Norris, James N., and H. William Johansen. Articulated Coralline Algae of the Gulf of California, Mexico, I: Amphiroa Lamouroux. Smithsonian Contributions to the Marine Sciences, number 9, 29 pages, 18 figures, 1981.—Amphiroa (Coral- linaceae, Rhodophyta) is a tropical and subtropical genus of articulated coralline algae and is prominent in shallow waters of the Gulf of California, Mexico. Taxonomic and distributional investigations of Amphiroa from the Gulf have revealed the presence of seven species: A. beauvoisn Lamouroux, A. brevianceps Dawson, A. magdalensis Dawson, A. misakiensis Yendo, A. ngida Lamouroux, A. valomoides Yendo, and A. van-bosseae Lemoine. Only two of these species names are among the 16 taxa of Amphiroa previously reported from this body of water; all other names are now considered synonyms. Of the seven species in the Gulf of California, A. beauvoisii, A. misakiensis, A. valomoides and A. van-bosseae are common, while A. brevianceps, A. magdalensis, and A. ngida are rare and poorly known. None of these species is endemic to the Gulf, and four of them, A. beauvoisii, A. misakiensis, A. valomoides, and A. ngida, also occur in Japan. OFFICIAL PUBLICATION DATE is handstamped in a limited number of initial copies and is recorded in the Institution's annual report, Smithsonian Year. SERIES COVER DESIGN: Seascape along the Atlantic coast of eastern North America. Library of Congress Cataloging in Publication Data Norris, James N.
    [Show full text]
  • Amphiroa Fragilissima (Linnaeus) Lamouroux (Corallinales, Rhodophyta) from Myanmar
    Journal of Aquaculture & Marine Biology Research Article Open Access Morphotaxonomy, culture studies and phytogeographical distribution of Amphiroa fragilissima (Linnaeus) Lamouroux (Corallinales, Rhodophyta) from Myanmar Abstract Volume 7 Issue 3 - 2018 Articulated coralline algae belonging to the genus Amphiroa collected from the coastal zones of Myanmar were identified as A. fragilissima based on the characters such as shape Mya Kyawt Wai of intergenicula, branching type, type of genicula (number of tiers formed at the genicula), Department of Marine Science, Mawlamyine University, shape (composition and arrangement of short and long tiers of medullary cells), presence Myanmar or absence of secondary pit-connections and lateral fusions at medullary filaments of the intergenicula and position of conceptacles. A comparison on the taxonomic characters of A. Correspondence: Mya Kyawt Wai, Lecturer, Department of fragilissima growing in Myanmar and in different countries was discussed. A. fragilissima Marine Science, Mawlamyine University, Myanmar, showed Amphiroa-type which was characterized by transversely divided cells in the first Email [email protected] division of the early stages of spore germination in laboratory culture. Moreover, the Received: May 31, 2018 | Published: June 12, 2018 distribution ranges of A. fragilissima along both the coastal zones of Myanmar and the world oceans were presented. In addition, ecological records of this species were briefly reported. Keywords: A. fragilissima, articulated coralline algae, corallinaceae, corallinales, germination patterns, laboratory culture, morphotaxonomy, Myanmar, phytogeographical distribution, Rhodophyta Introduction Lamouroux and A. anceps (Lamarck) Decaisne, along the 3 coastal zones of Myanmar. Mya Kyawt Wai12 also described five species of The coralline algae are assigned to the family Corallinaceae Amphiroa from Myanmar namely, A.
    [Show full text]
  • Taxonomic Implications of Sporanglial Ultrastructure Within the Subfamily Melobesioideae Corallinales, Rhodophyta)
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 1997 Taxonomic Implications of Sporanglial Ultrastructure Within the Subfamily Melobesioideae Corallinales, Rhodophyta) Bethany Ann Griffin College of William & Mary - Arts & Sciences Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Systems Biology Commons Recommended Citation Griffin, Bethany Ann, ax"T onomic Implications of Sporanglial Ultrastructure Within the Subfamily Melobesioideae Corallinales, Rhodophyta)" (1997). Dissertations, Theses, and Masters Projects. Paper 1539626098. https://dx.doi.org/doi:10.21220/s2-pnjz-de41 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. TAXONOMIC IMPLICATIONS OF SPORANGIAL ULTRASTRUCTURE WITHIN THE SUBFAMILY MELOBESIOIDEAE (CORALLINALES, RHODOPHYTA) A Thesis Presented to The Faculty of the Department of Biology The College of William and Mary in Virginia In Partial Fulfillment Of the Requirements for the Degree of Master of Arts By Bethany Ann Griffin 1997 APPROVAL SHEET This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Arts Bethany Ann Griffin Approved, April 1997 Sharon T. Broadwater A ^ Scott I\$artha A. Case DEDICATION To Jon, for giving new meaning to
    [Show full text]
  • Rhodolith Forming Coralline Algae in the Upper Miocene of Santa Maria Island (Azores, NE Atlantic): a Critical Evaluation
    Phytotaxa 190 (1): 370–382 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Article PHYTOTAXA Copyright © 2014 Magnolia Press ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.190.1.22 Rhodolith forming coralline algae in the Upper Miocene of Santa Maria Island (Azores, NE Atlantic): a critical evaluation ANA CRISTINA REBELO1,2,3,4*, MICHAEL W. RASSER4, RAFAEL RIOSMENA-RODRÍGUEZ5, ANA ISABEL NETO1,6,7 & SÉRGIO P. ÁVILA1,2,3,8 1 Departamento de Biologia, Universidade dos Açores, Campus de Ponta Delgada, Apartado 1422-801 Ponta Delgada, Açores, Portugal 2 CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores - Departamento de Biologia da Universidade dos Açores, 9501-801, Ponta Delgada, Açores, Portugal 3 MPB - Marine Palaeobiogeography Working group, University of Azores, Portugal 4 SMNS - Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, D-70191 Stuttgart, Germany 5 Programa de Investigación en Botánica Marina, Departamento de Biologia Marina, Universidad Autónoma de Baja California Sur, Km 5.5 Carretera al Sur, Col. Mezquitito, La Paz BCS 23080 México 6 Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, P 4050-123 Porto, Portugal 7 CIRN - University of the Azores, Portugal 8 Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal * Corresponding author, email: [email protected] ABSTRACT The Late Miocene Malbusca outcrop is located in the southeastern coast of Santa Maria Island (Azores, NE Atlantic), interspersed in volcanic formations. At ~20 meters above present sea level, a prominent discontinuous layer of rhodoliths seizes with an extension of ~250 meters.
    [Show full text]
  • Colonization and Growth of Crustose Coralline Algae (Corallinales, Rhodophyta) on the Rocas Atoll
    BRAZILIAN JOURNAL OF OCEANOGRAPHY, 53(3/4):147-156, 2005 Colonization and growth of crustose coralline algae (Corallinales, Rhodophyta) on the Rocas Atoll Alexandre Bigio Villas Bôas1*; Marcia A. de O.Figueiredo 2 & Roberto Campos Villaça 1 1Universidade Federal Fluminense (Caixa Postal 100644, 24001-970Niterói, RJ, Brasil) 2Instituto de Pesquisas Jardim Botânico do Rio de Janeiro (Rua Pacheco Leão 915, 22460-030 Rio de Janeiro, RJ, Brasil) *[email protected] A B S T R A C T Crustose coralline algae play a fundamental role in reef construction all over the world. The aims fo this study were to identify and estimate the abundance of the dominant crustose coralline algae in shallow reef habitats, measuring their colonization, growth rates and productivity. Crusts sampled from different habitats were collected on leeward and windward reefs. Discs made of epoxy putty were fixed on the reef surface to follow coralline colonization and discs containing the dominant coralline algae were fixed on different habitats to measure the crusts’ marginal growth. The primary production experiments followed the clear and dark bottle method for dissolved oxygen reading. Porolithon pachydermum was confirmed as the dominant crustose coralline alga on the Rocas Atoll. The non-cryptic flat form of P. pachydermum showed a faster growth rate on the leeward than on the windward reef. This form also had a faster growth rate on the reef crest (0.05 mm.day-1) than on the reef flat (0.01 mm.day-1). The cryptic protuberant form showed a trend, though not significant, towards a faster growth rate on the reef crest and in tidal pools than on the reef flat.
    [Show full text]
  • PROGRAMME 4 - 7 July 2017 • Boardwalk Convention Centre • Port Elizabeth • South Africa
    SAMssPORT ELIZABETH 2017 THE 16TH SOUTHERN AFRICAN MARINE SCIENCE SYMPOSIUM PROGRAMME 4 - 7 July 2017 • www.samss2017.co.za Boardwalk Convention Centre • Port Elizabeth • South Africa Theme: Embracing the blue l Unlocking the Ocean’s economic potential whilst maintaining social and ecological resilience SAMSS is hosted by NMMU, CMR and supported by SANCOR WELCOME PLENARY SPEAKERS It is our pleasure to welcome all SAMSS 2017 participants on behalf of the ROBERT COSTANZA - The Australian National University - Australia Institute for Coastal and Marine Research at Nelson Mandela Metropolitan University and the city of Port Elizabeth. NMMU has a long tradition of marine COSTANZA has an H-index above 100 and >60 000 research and its institutional marine and maritime strategy is coming to citations. His area of specialisation is ecosystem goods fruition, which makes this an ideal time for us to host this triennial meeting. and services and ecological economics. Costanza’s Under the auspices of SANCOR, this is the second time we host SAMSS in PE and the transdisciplinary research integrates the study of theme ‘Embracing the blue – unlocking the ocean’s potential whilst maintaining social humans and nature to address research, policy, and and ecological resilience’ is highly topical and appropriate, aligning with Operation management issues. His work has focused on the Phakisa, which is the national approach to developing a blue economy. South Africa is interface between ecological and economic systems, at a cross roads and facing economic challenges. Economic growth and lifting people particularly at larger temporal and spatial scales, from out of poverty is a priority and those of us in the ‘marine’ community need to be part small watersheds to the global system.
    [Show full text]
  • Tropical Coralline Algae (Diurnal Response)
    Burdett, Heidi L. (2013) DMSP dynamics in marine coralline algal habitats. PhD thesis. http://theses.gla.ac.uk/4108/ Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] DMSP Dynamics in Marine Coralline Algal Habitats Heidi L. Burdett MSc BSc (Hons) University of Plymouth Submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy School of Geographical and Earth Sciences College of Science and Engineering University of Glasgow March 2013 © Heidi L. Burdett, 2013 ii Dedication In loving memory of my Grandads; you may not get to see this in person, but I hope it makes you proud nonetheless. John Hewitson Burdett 1917 – 2012 and Denis McCarthy 1923 - 1998 Heidi L. Burdett March 2013 iii Abstract Dimethylsulphoniopropionate (DMSP) is a dimethylated sulphur compound that appears to be produced by most marine algae and is a major component of the marine sulphur cycle. The majority of research to date has focused on the production of DMSP and its major breakdown product, the climatically important gas dimethylsulphide (DMS) (collectively DMS/P), by phytoplankton in the open ocean.
    [Show full text]
  • Sequencing Type Material Resolves the Identity and Distribution of the Generitype Lithophyllum Incrustans, and Related European Species L
    J. Phycol. 51, 791–807 (2015) © 2015 Phycological Society of America DOI: 10.1111/jpy.12319 SEQUENCING TYPE MATERIAL RESOLVES THE IDENTITY AND DISTRIBUTION OF THE GENERITYPE LITHOPHYLLUM INCRUSTANS, AND RELATED EUROPEAN SPECIES L. HIBERNICUM AND L. BATHYPORUM (CORALLINALES, RHODOPHYTA)1 Jazmin J. Hernandez-Kantun2 Botany Department, National Museum of Natural History, Smithsonian Institution, MRC 166 PO Box 37012, Washington District of Columbia, USA Irish Seaweed Research Group, Ryan Institute, National University of Ireland, University Road, Galway Ireland Fabio Rindi Dipartimento di Scienze della Vita e dell’Ambiente, Universita Politecnica delle Marche, Via Brecce Bianche, Ancona 60131, Italy Walter H. Adey Botany Department, National Museum of Natural History, Smithsonian Institution, MRC 166 PO Box 37012, Washington District of Columbia, USA Svenja Heesch Irish Seaweed Research Group, Ryan Institute, National University of Ireland, University Road, Galway Ireland Viviana Pena~ BIOCOST Research Group, Departamento de Bioloxıa Animal, Bioloxıa Vexetal e Ecoloxıa, Facultade de Ciencias, Universidade da Coruna,~ Campus de A Coruna,~ A Coruna~ 15071, Spain Equipe Exploration, Especes et Evolution, Institut de Systematique, Evolution, Biodiversite, UMR 7205 ISYEB CNRS, MNHN, UPMC, EPHE, Museum National d’Histoire Naturelle (MNHN), Sorbonne Universites, 57 rue Cuvier CP 39, Paris 75005, France Phycology Research Group, Ghent University, Krijgslaan 281, Building S8, Ghent 9000, Belgium Line Le Gall Equipe Exploration, Especes et Evolution, Institut de Systematique, Evolution, Biodiversite, UMR 7205 ISYEB CNRS, MNHN, UPMC, EPHE, Museum National d’Histoire Naturelle (MNHN), Sorbonne Universites, 57 rue Cuvier CP 39, Paris 75005, France and Paul W. Gabrielson Department of Biology and Herbarium, University of North Carolina, Chapel Hill, Coker Hall CB 3280, Chapel Hill, North Carolina 27599-3280, USA DNA sequences from type material in the belonging in Lithophyllum.
    [Show full text]
  • The Genus Phymatolithon (Hapalidiaceae, Corallinales, Rhodophyta) in South Africa, Including Species Previously Ascribed to Leptophytum
    South African Journal of Botany 90 (2014) 170–192 Contents lists available at ScienceDirect South African Journal of Botany journal homepage: www.elsevier.com/locate/sajb The genus Phymatolithon (Hapalidiaceae, Corallinales, Rhodophyta) in South Africa, including species previously ascribed to Leptophytum E. Van der Merwe, G.W. Maneveldt ⁎ Department of Biodiversity and Conservation Biology, University of the Western Cape, P. Bag X17, Bellville 7535, South Africa article info abstract Article history: Of the genera within the coralline algal subfamily Melobesioideae, the genera Leptophytum Adey and Received 2 May 2013 Phymatolithon Foslie have probably been the most contentious in recent years. In recent publications, the Received in revised form 4 November 2013 name Leptophytum was used in quotation marks because South African taxa ascribed to this genus had not Accepted 5 November 2013 been formally transferred to another genus or reduced to synonymy. The status and generic disposition of Available online 7 December 2013 those species (L. acervatum, L. ferox, L. foveatum) have remained unresolved ever since Düwel and Wegeberg Edited by JC Manning (1996) determined from a study of relevant types and other specimens that Leptophytum Adey was a heterotypic synonym of Phymatolithon Foslie. Based on our study of numerous recently collected specimens and of published Keywords: data on the relevant types, we have concluded that each of the above species previously ascribed to Leptophytum Non-geniculate coralline algae represents a distinct species of Phymatolithon, and that four species (incl. P. repandum)ofPhymatolithon are Phymatolithon acervatum currently known to occur in South Africa. Phymatolithon ferox Here we present detailed illustrated accounts of each of the four species, including: new data on male and female/ Phymatolithon foveatum carposporangial conceptacles; ecological and morphological/anatomical comparisons; and a review of the infor- Phymatolithon repandum mation on the various features used previously to separate Leptophytum and Phymatolithon.
    [Show full text]
  • The Role of Encrusting Coralline Algae in the Diets of Intertidal Herbivores
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of the Western Cape Research Repository Maneveldt, G.W. et al. (2006). The role of encrusting coralline algae in the diets of selected intertidal herbivores. JOURNAL OF APPLIED PHYCOLOGY, 18: 619-627 The role of encrusting coralline algae in the diets of selected intertidal herbivores Gavin W. Maneveldt*, Deborah Wilby, Michelle Potgieter & Martin G.J. Hendricks Department of Biodiversity and Conservation Biology University of the Western Cape P. Bag X17 Bellville 7535 South Africa * Correcsponding author: [email protected] Key words: encrusting coralline algae, diet, grazers, herbivory, organic content, rocky shore. Abstract Kalk Bay, South Africa, has a typical south coast zonation pattern with a band of seaweed dominating the mid-eulittoral and sandwiched between two molluscan- herbivore dominated upper and lower eulittoral zones. Encrusting coralline algae were very obvious features of these zones. The most abundant herbivores in the upper eulittoral were the limpet, Cymbula oculus (10.4 + 1.6 m-2; 201.65 + 32.68 g.m-2) and the false limpet, Siphonaria capensis (97.07 + 19.92 m-2; 77.93 + 16.02 g.m-2). The territorial gardening limpet, Scutellastra cochlear, dominated the lower eulittoral zone, achieving very high densities (545.27 + 84.35 m-2) and biomass (4630.17 + 556.13 g.m-2), and excluded all other herbivores and most seaweeds, except for its garden alga and the encrusting coralline alga, Spongities yendoi (35.93 + 2.26 % cover). For the upper eulittoral zone, only the chiton Acanthochiton garnoti 30.5 + 1.33 % and the limpet C.
    [Show full text]
  • The Genus Phymatolithon in the Gulf of Maine By
    The Genus Phymatolithon in the Gulf of Maine by WALTER H. ADEY Department of Botany University of Michigan Ann Arbor, Michigan, U.S.A. 1 INTRODUCTION The shallow coastal waters in the area extending from Long Island Sound to Cape Roseway in southern Nova Scotia were surveyed in this study. Collections were made at all seasons of the year, largely by SCUBA diving, the primary sublittoral stations being indicated in fig. 8. The investigation as a whole included all of the rock-en- crusting crustose corallines in the region and is based on about 2500 specimens of coralline covered rock and shell from over 100 localities . Microtome and ground sections of about 800 individual plants were prepared for the anatomical work. The genera Phymatolithon and Clathromorphum were first described by FOSLIE (1898a), being based on Millepora polymorpha L. and on Lithothamnium compactum KJELLMAN respectively. The descriptions were later reworded by FosLIE (1900), but the essentials were unchanged . These genera were separated from Lit hothamnium because of their immersed conceptacles . However, there are all degrees of conceptacle immersion among the species of Lithotham- nium, and even within a single species the character can be somewhat variable. Many authors have not accepted this as a valid distinction : *) Received 18 October 1963 . 1) Now at Colorado School of Mines, Golden, Colorado, U.S .A. The necessary field work for this study was made possible through the generous support of : The American Petroleum Institute, The Geological Society of America, the ONR (through the Department of Geology and Geophysics, Massachusetts Institute of Technology) and the Woods Hole Oceanographie Institution (Contr .
    [Show full text]
  • Timing of the Evolutionary History of Corallinaceae (Corallinales, Rhodophyta)1
    J. Phycol. 53, 567–576 (2017) © 2017 Phycological Society of America DOI: 10.1111/jpy.12520 TIMING OF THE EVOLUTIONARY HISTORY OF CORALLINACEAE (CORALLINALES, RHODOPHYTA)1 Anja Rosler€ 2 Departamento de Estratigrafıa y Paleontologıa, Universidad de Granada, Campus Fuente Nueva, 18002 Granada, Spain Francisco Perfectti Departamento de Genetica, Universidad de Granada, Campus Fuente Nueva, 18002 Granada, Spain Viviana Pena~ Grupo de investigacion BIOCOST, Facultade de Ciencias, Universidade da Coruna,~ Campus de A Zapateira s/n, 15071 A Coruna,~ Spain Phycology Research Group, Ghent University, Krijgslaan 281, Building S8, 9000 Ghent, Belgium Equipe Exploration, Especes et Evolution, Institut de Systematique, Evolution, Biodiversite, UMR 7205 ISYEB CNRS, MNHN, UPMC, EPHE, Museum national d’Histoire naturelle (MNHN), Sorbonne Universites, 57 rue Cuvier CP 39, F-75005 Paris, France Julio Aguirre and Juan Carlos Braga Departamento de Estratigrafıa y Paleontologıa, Universidad de Granada, Campus Fuente Nueva, 18002 Granada, Spain The temporal dimension of the most recent Abbreviations: mya, million years ago; myr, million Corallinaceae (order Corallinales) phylogeny was years; OTU, operational taxonomic unit presented here, based on first occurrence time estimates from the fossil record. Calibration of the molecular clock of the genetic marker SSU entailed a Coralline red algae (Corallinophycidae, Rhodo- separation of Corallinales from Hapalidiales in the phyta) constitute the major extant group of Albian (Early Cretaceous ~105 mya). Neither calcareous algae and are important components of the calibration nor the fossil record resolved the shallow-water marine hard and sediment bottoms in succession of appearance of the first three emerging areas of low siliciclastic influx from subpolar regions subfamilies: Mastophoroideae, Corallinoideae, and to the Equator (Adey and Mcintyre 1973, Adey Neogoniolithoideae.
    [Show full text]