Conserving Mires in the European Union

Total Page:16

File Type:pdf, Size:1020Kb

Conserving Mires in the European Union &216(59,1*0,5(6 ,17+( (8523($181,21 $FWLRQVFRILQDQFHGE\ /,)(1DWXUH Author: Geert Raeymaekers Editors: Kerstin Sundseth & Anton Gazenbeek (FRV\VWHPV/7' service contract n° B4-3200/98/000411/MAR/D2 $&.12:/('*(0(176 Just as small mosses, sedges and other flowering plants combined to form mires, so too did different elements of the LIFE-Nature projects come together to build up the picture presented in this report. Firstly, I would like to thank the project managers and their colleagues of the 66 LIFE-Nature mire projects, who took the time to answer my questions and to supply us with some evocative photos of their work. Then, I must express my gratitude to my colleagues in the external teams, MECOMAT and ECOSYSTEMS, who monitor these LIFE-Nature mire projects, and who provided me with invaluable assistance in distilling the substantial amount of information accumulated from the projects into a more coherent whole. The actual report writing was only possible thanks to the comments from, and the discussions I had with Bruno Julien, Micheal O’Briain, Maria Gaivao, Oliver Schall and other staff in the European Commission (DG XI/D2) and with colleagues at ECOSYSTEMS and MECOMAT. Richard Lindsay (University of East London, UK) kindly provided interesting comments on the decline of mires in the European Union. Finally, I would like to thank Kerstin Sundseth and Anton Gazenbeek, for their substantial contributions in preparing the final document. 7$%/(2)&217(176 ; (;(&87,9(6800$5<SDJHL , 0,5(6,17+((8523($181,21 SDJH - Centuries in the making ...........................................................................page 1 - Recent trends ...........................................................................................page 2 - Their biogeographical distribution...........................................................page 3 ,, (8&216(59$7,21/(*,6/$7,21 SDJH - EU Nature conservation policy ..............................................................page 9 - Protection under the Habitats Directive .................................................page 11 ,,, 7+5($76(1&2817(5(' SDJH - A long history of land use........................................................................page 23 - Identifying the source of the threats ........................................................page 24 - Types of damaging action........................................................................page 25 ,9 352-(&76)81'('81'(5/,)(1$785( SDJH - LIFE – The EU’s financial instrument for nature ...................................page 31 - Projects funded for mire conservation ....................................................page 33 - Country-by-country overview..................................................................page 36 9 5(6725,1*7+('$0$*( SDJH - Essential prerequisites ............................................................................page 45 - Re-instating the hydrological balance of the mire ...................................page 47 - Restoring the mire vegetation..................................................................page 55 - Restoration actions did not always succeed, why? ..................................page 59 9, 0$1$*,1*6,7(6)25&216(59$7,21SDJH - Mimicking traditional farming practices .................................................page 61 - Developing innovative techniques and approaches ................................page 62 - LIFE after LIFE: Who foot the bill?........................................................page 67 9,, 6$)(*8$5',1*35,67,1(0,5(6SDJH - Buy it then leave it! .................................................................................page 71 9,,, :,11,1*/2&$/6833257 SDJH - Mires’ image problem..............................................................................page 75 - Negotiating with the stakeholders............................................................page 75 - Informing the public at large ...................................................................page 81 - Disseminating the results of LIFE ...........................................................page 82 $11(;SDJH - List and contacts addresses of LIFE funded mire projects .......................page 85 ÃÃÃ/,)(1DWXUHÃSURMHFWVÃIRUÃPLUHV EXECUTIVE SUMMARY From Stockholm’s elegant waterfront to the traditional practices were abandoned in the Rome’s bustling streets, Berlin’s modern early part of this century through agricultural museums to Lisbon’s famous streetcars - one of intensification or changing land uses, the most striking features of Europe today is its consequently much of the management know- cultural diversity. The second may be its how was lost too. Thus, many LIFE projects weather! driving rain in Dublin, scorching hot either experimented with new ways to recreate evenings in Athens…. This combination of these traditional farming practices, or developed different climates and human activities is also innovative schemes to stimulate long-term responsible for another of Europe’s more management. Moreover, for mires that still obscure jewels: its mire habitats. These are have an economic farming interest, the key to particularly well represented considering the their long-term conservation is through the size of the continent, but their decline is now a participation of the farmers themselves. Several matter of grave concern – 70% of their former projects focused therefore on pump-priming mire range has already been lost. long-term agreements through the agri- environment regulation 2078/92/EEC. To protect what remains of Europe’s natural heritage, the EU is in the process of establishing Just as active and continued management is a European network of protected areas – called vital for some mire types, others survive best NATURA 2000. This will be made up of sites with no intervention. This is especially true for designated under the Birds Directive and the climax vegetation such as bog woodland, Habitats Directive, which together form the blanket bogs, aapa mires and raised bogs. To central pillar of the EU’s nature conservation achieve this, a small but important sub-set of policy. In 1992, a European financial LIFE projects focused on acquiring strategic instrument – called LIFE-Nature - was also and representative examples of these habitat introduced to help set up NATURA 2000. Over types. It is estimated that around 35,000 ha has the last seven years some 350 projects were co- been bought so far under LIFE-Nature. financed to the tune of 283 million euro. Finally, because mires are intimately linked to a This report gives an overview of the projects complex matrix of other land uses, it is co-financed for mire conservation under LIFE. inconceivable to consider restoring or managing It starts by describing the 13 mire habitat types a mire without taking the local interest groups covered under the Habitats Directive, looks at and users into account. Not only is their support the principal threats identified through the essential for the success of the project, but they projects and provides a country-by-country often play a central role in safeguarding the summary of what has been funded so far. It conservation value of the sites in the long run. then goes on to present the main actions used to Virtually all LIFE projects had therefore a combat these threats, using a wide selection of component dedicated to dialogue, real-LIFE examples from the projects communication and raising awareness. This themselves to illustrate this. ranged from negotiating with the stakeholders to actively involving them in the project and Altogether, 66 LIFE-Nature projects were raising interest amongst the public at large over funded for mire conservation over the last 7 the value of the habitats. years – with an EU contribution of approximately 25-35 million euro. The large One last but essential element of LIFE-Nature majority (2/3) focused on restoration – which is projects is that the experiences gained by one – perhaps not surprising given the drastic decline whether positive or negative – should be in ecological quality of so many mires in available to others to learn from. A list of all the Europe. Actions principally involved restoring mire projects covered by this report, together the hydrology of the mire and/or re-establishing with their contact addresses, is given in annex the ecological value of the vegetation. for anyone who wishes to receive more information about the different activities Depending on the habitat types involved, a described. Also, in Chapter 8 a selection is significant number of mire sites also required given of some of the methodology manuals and recurring management. This was, however, not handbooks produced under LIFE. as easy at it sounds, mainly because many of /,)(1DWXUHÃSURMHFWVÃIRUÃPLUHV 6200$,5( De l’élégant front de mer de Stockholm aux rues agricoles intensives ou de modifications de l’utilisation animées de Rome, en passant par les musées modernes des terres conduisant à la perte du savoir faire au de Berlin aux fameux funiculaires de Lisbonne - l’une niveau de la gestion. Par conséquent, dans de des caractéristiques les plus frappantes de l’Europe nombreux projets LIFE du temps et de l’énergie ont d’aujourd’hui est bien sa diversité culturelle. L’autre été consacrés à expérimenter de nouvelles méthodes est sans nul doute son climat ! pluie incessante à permettant de recréer ces pratiques agricoles Dublin, soirées torrides à Athènes ..... C’est dans la traditionnelles ou d’élaborer des schémas innovants en combinaison de ces différents climats
Recommended publications
  • Mangrove Swamp (Caroni Wetland, Trinidad)
    FIGURE 1.3 Swamps. (a) Floodplain swamp (Ottawa River, Canada). (b) Mangrove swamp (Caroni wetland, Trinidad). FIGURE 1.4 Marshes. (a) Riverine marsh (Ottawa River, Canada; courtesy B. Shipley). (b) Salt marsh (Petpeswick Inlet, Canada). FIGURE 1.5 Bogs. (a) Lowland continental bog (Algonquin Park, Canada). (b) Upland coastal bog (Cape Breton Island, Canada). FIGURE 1.6 Fens. (a) Patterned fen (northern Canada; courtesy C. Rubec). (b) Shoreline fen (Lake Ontario, Canada). FIGURE 1.7 Wet meadows. (a) Sand spit (Long Point, Lake Ontario, Canada; courtesy A. Reznicek). (b) Gravel lakeshore (Tusket River, Canada; courtesy A. Payne). FIGURE 1.8 Shallow water. (a) Bay (Lake Erie, Canada; courtesy A. Reznicek). (b) Pond (interdunal pools on Sable Island, Canada). FIGURE 2.1 Flooding is a natural process in landscapes. When humans build cities in or adjacent to wetlands, flooding can be expected. This example shows Cedar Rapids in the United States in 2008 (The Gazette), but incidences of flood damage to cities go far back in history to early cities such as Nineveh mentioned in The Epic of Gilgamesh (Sanders 1972). FIGURE 2.5 Many wetland organisms are dependent upon annual flood pulses. Animals discussed here include (a) white ibis (U.S. Fish and Wildlife Service), (b) Mississippi gopher frog (courtesy M. Redmer), (c) dragonfly (courtesy C. Rubec), and (d) tambaqui (courtesy M. Goulding). Plants discussed here include (e) furbish lousewort (bottom left; U.S. Fish and Wildlife Service) and ( f ) Plymouth gentian. -N- FIGURE 2.10 Spring floods produce the extensive bottomland forests that accompany many large rivers, such as those of the southeastern United States of America.
    [Show full text]
  • This Article Appeared in a Journal Published by Elsevier. the Attached
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Quaternary Research 75 (2011) 531–540 Contents lists available at ScienceDirect Quaternary Research journal homepage: www.elsevier.com/locate/yqres Response of a warm temperate peatland to Holocene climate change in northeastern Pennsylvania Shanshan Cai, Zicheng Yu ⁎ Department of Earth and Environmental Sciences, Lehigh University, 1 West Packer Avenue, Bethlehem, PA 18015, USA article info abstract Article history: Studying boreal-type peatlands near the edge of their southern limit can provide insight into responses of Received 11 September 2010 boreal and sub-arctic peatlands to warmer climates. In this study, we investigated peatland history using Available online 18 February 2011 multi-proxy records of sediment composition, plant macrofossil, pollen, and diatom analysis from a 14C-dated sediment core at Tannersville Bog in northeastern Pennsylvania, USA. Our results indicate that peat Keywords: accumulation began with lake infilling of a glacial lake at ~9 ka as a rich fen dominated by brown mosses.
    [Show full text]
  • Managing Iowa Habitats
    Managing Iowa Habitats Fen Wetlands Introduction Why should I be concerned? Fens are the rarest of Iowa’s wetland commu- Fens are an important and unique wetland nities and of great scientific interest. While type. Not only are the fens themselves rare, but their geology varies, they all are the products they shelter over 200 plant species, 20 of which of the seepage of groundwater to the surface. are Iowa endangered and threatened species. Because the water is rich in calcium and other Many of the plant species have been in these minerals, only a select group of plants is able to areas for thousands of years. The fen’s vegeta- grow there. As a result, fens contain many tion, in turn, shelters wildlife by providing plant species considered endangered or valuable habitat. threatened in Iowa. Fens are valuable to humans as well. They are A few of the oldest fens contain plant remains important as sites of groundwater discharge — that date back 10,000 years, though most Iowa good indicators of shallow aquifers. Vegetation fens are less than 5,000 years old. A few of in all wetlands plays an important role in these “younger” fens may have existed 10,000 recycling nutrients, trapping eroding soil, and years ago, but because of dramatic climate filtering out polluting chemicals such as changes, they may have dried up and lost the nitrates. However, the rarity of fens and their plant remains (by burning or erosion) that relatively small size makes it important could prove their age. When the climate grew to protect them from overloading by wetter again about 5,000 years ago, these fens these materials.
    [Show full text]
  • Northern Fen Communitynorthern Abstract Fen, Page 1
    Northern Fen CommunityNorthern Abstract Fen, Page 1 Community Range Prevalent or likely prevalent Infrequent or likely infrequent Absent or likely absent Photo by Joshua G. Cohen Overview: Northern fen is a sedge- and rush-dominated 8,000 years. Expansion of peatlands likely occurred wetland occurring on neutral to moderately alkaline following climatic cooling, approximately 5,000 years saturated peat and/or marl influenced by groundwater ago (Heinselman 1970, Boelter and Verry 1977, Riley rich in calcium and magnesium carbonates. The 1989). community occurs north of the climatic tension zone and is found primarily where calcareous bedrock Several other natural peatland communities also underlies a thin mantle of glacial drift on flat areas or occur in Michigan and can be distinguished from shallow depressions of glacial outwash and glacial minerotrophic (nutrient-rich) northern fens, based on lakeplains and also in kettle depressions on pitted comparisons of nutrient levels, flora, canopy closure, outwash and moraines. distribution, landscape context, and groundwater influence (Kost et al. 2007). Northern fen is dominated Global and State Rank: G3G5/S3 by sedges, rushes, and grasses (Mitsch and Gosselink 2000). Additional open wetlands occurring on organic Range: Northern fen is a peatland type of glaciated soils include coastal fen, poor fen, prairie fen, bog, landscapes of the northern Great Lakes region, ranging intermittent wetland, and northern wet meadow. Bogs, from Michigan west to Minnesota and northward peat-covered wetlands raised above the surrounding into central Canada (Ontario, Manitoba, and Quebec) groundwater by an accumulation of peat, receive inputs (Gignac et al. 2000, Faber-Langendoen 2001, Amon of nutrients and water primarily from precipitation et al.
    [Show full text]
  • FEN BOG from the Website North Yorkshire for the Book Discover Butterflies in Britain © D E Newland 2009
    FEN BOG from www.discoverbutterflies.com the website North Yorkshire for the book Discover Butterflies in Britain © D E Newland 2009 The North Yorkshire Moors Railway passes along the western edge of Fen Bog Fen Bog is 20 ha (50 acres) of This well-known site in TARGET SPECIES boggy marshland at the head Yorkshire is noted for its Large Heath (June and early of Newtondale, near Pickering many different species of July), Small Pearl-bordered in North Yorkshire. It is 3 butterflies, moths and and Dark Green Fritillaries; miles south of Goathland and dragonflies. There is a deep commoner species. lies on the route of the North bed of peat where many Yorkshire Moors Railway different bog plants flourish. It from Pickering to Grosmont. lies within a wide valley with heather, hard fern, mat grass and purple moor grass all growing stongly. The reserve is cared for by the Yorkshire Wildlife Trust. The North York Moors became one of our first National Parks in 1952. Its moors are one of the largest areas of heather moorland in Britain and cover an area of 550 square miles. It is hard to imagine that they were once permanently covered in ice and snow. When global warming took effect at the end of the Ice Age, the snowfields began to melt and melt water flowed south. It gouged out the deep valley of Newtondale where the Pickering Beck now flows. Newtondale runs roughly north-south parallel to the A169 Whitby to Pickering road and is a designated SSSI of 940 ha (2,300 acres).
    [Show full text]
  • Wind Turbines, Sensitive Bird Populations and Peat Soils
    Charity No. 229 325 Wind Turbines, Sensitive Bird Populations and Peat Soils: A Spatial Planning Guide for on-shore wind farm developments in Lancashire, Cheshire, Greater Manchester and Merseyside. July 2008 For more details, contact Tim Youngs [email protected] or Steve White [email protected] Produced by the RSPB and The Wildlife Trust for Lancashire, Manchester & North Merseyside (LWT), in partnership with Lancashire County Council, Natural England and the Merseyside Environmental Advisory Service (EAS) 1 Contents Section Map Annex Page Background 2 How to use the alert maps 4 Introduction 4 Key findings 5 Maps showing ‘important populations’ of ‘sensitive bird 1-5 6- 10 species’ and deep peat sensitive areas in Lancashire, Cheshire, Greater Manchester and Merseyside Legal protection for birds and habitats 11 Methodology and definitions 12- 15 Caveats and notes 16 Distribution of Whooper Swan, Bewick’s Swan and Pink- 17- 22 footed Goose in inland areas of Lancashire, Cheshire, Greater Manchester and Merseyside Thresholds for ‘important’ populations’ (of sensitive species) 1 23 Definition of terms relating to ‘sensitive species’ of bird 2 24 Background The Inspectors who carried out the Examination in Public of the draft NW Regional Spatial Strategy (RSS) between December 06 to February 07, proposed that 'Maps of broad areas where the development of particular types of renewable energy may be considered appropriate should be produced as a matter of urgency and incorporated into an early review of RSS'. This proposal underpins the North West Regional Assembly’s (NWRA) research that is being carried out by Arup consultants. The Secretary of State's response is 'In line with PPS22, we consider that an evidence-based map of broad locations for installation of renewable energy technologies would benefit planning authorities and developers.
    [Show full text]
  • Stow Cum Quy Fen Pond Survey
    Stow Cum Quy Fen pond survey A report for the Freshwater Habitats Trust July 2017 (Version 2) 1. Introduction Stow-cum-Quy Fen Site of Special Scientific Interest (SSSI) covers 29.6 hectares and is located 7.5 km north-east of the centre of Cambridge. It features a number of ponds, the largest being a coprolite pit from which phosphate-rich deposits were excavated in the mid to late 19th century for fertiliser (O’Connor, 2001 & 2011). Originally believed to be fossilised dinosaur dung, the ‘coprolite’ seams were in fact phosphatic nodules derived from the remains of marine molluscs, cephalopods and other organisms deposited during the Jurassic (Cambridgeshire Archaeology Field Group, 2015). The elongate shape of some smaller ponds suggests that these too originated as coprolite pits but others are likely to be stock watering ponds. This survey was commissioned by the Freshwater Habitats Trust as part of the Flagship Ponds project. Fieldwork for was undertaken by Jonathan Graham (botanical survey) and Martin Hammond (invertebrates) on 17th May 2017. This was followed by a second visit on 21st June 2017 to seek out additional species. 2. Survey methods Eight ponds (refer to location map below) were surveyed using PSYM (Predictive System for Multimetrics), the standard methodology for evaluating the ecological quality of ponds and small lakes (Environment Agency, 2002). A PSYM survey involves: Obtaining environmental data such as pond area, altitude, grid reference, substrate composition, cover of emergent vegetation, degree of shade, accessibility to livestock and water pH Collecting a sample of aquatic macro-invertebrates using a standard protocol (three minutes’ netting divided equally between each ‘meso-habitat’ within the pond basin, plus one minute searching the water surface and submerged debris) Recording wetland plants PSYM generates six ‘metrics’ (measurements) representing important indicators of ecological quality.
    [Show full text]
  • A Fen Is a Rare, Low Shrub- and Herb- Dominated Wetland That Is Fed by Calcareous Groundwater Seepage
    Habitat fact sheet Fen A fen is a rare, low shrub- and herb- dominated wetland that is fed by calcareous groundwater seepage. Fens almost always occur in areas influenced by carbonate bedrock (e.g., limestone and marble), and are identified by their low, often sparse vegetation and their distinctive plant community. Tussocky vegetation and small BellK. 2006 seepage rivulets are often present, and some fens have substantial areas of bare mineral Typical plants soil or organic muck. • Grasses and sedges such as spike-muhly, sterile sedge, porcupine sedge, yellow sedge, and woolly-fruit sedge • Shrubs including shrubby cinquefoil, K. BellK. 2007 alder-leaf buckthorn, and autumn willow Bog turtle • Wildflowers including grass-of- Parnassus and bog goldenrod Species of conservation concern Purple cliffbrake • More than 12 state-listed rare plants are found almost exclusively in fen habitats, including handsome sedge, Schweinitz’s sedge, bog valerian, scarlet Indian paintbrush, spreading globeflower, and swamp birch • Rare butterflies such as Dion skipper and black dash • Rare dragonflies such as forcipate emerald and Kennedy’s emerald • Bog turtle (Endangered in New York) • Spotted turtle, ribbon snake • Sedge wren, northern harrier These are just a few of the species of regional or statewide conservation concern that are known to occur in fen habitats. See Kiviat & Stevens (2001) Bell 2006 K. for a more extensive list. Fringed gentian Hudsonia Ltd. PO Box 5000, Annandale, NY 12504 (845) 758-7053 www.hudsonia.org Habitat fact sheet Page 2 Threats to fens Fens are highly vulnerable to degradation from direct disturbance and from activities in nearby upland areas.
    [Show full text]
  • New Orleans, LA USA
    July 28-August 1, 2014 | New Orleans, LA USA CEER 2014 Conference on Ecological and Ecosystem Restoration ELEVATING THE SCIENCE AND PRACTICE OF RESTORATION A Collaborative Effort of NCER and SER July 28-August 1, 2014 New Orleans, Louisiana, USA www.conference.ifas.ufl.edu/CEER2014 Welcome to the UF/IFAS OCI App! The University of Florida IFAS Office of Conferences & Institutes is happy to present a mobile app for the Conference on Ecological and Ecosystem Restoration. To access the conference app, scan the QR Code or search “IFAS OCI” in the App Store or Google Play on your Apple or Android device. Log in with the email address you used to register, a social media account, or as a guest. You will be prompted to select an event – choose CEER 2014. The event password is eco14. The app allows you to build a personal conference agenda, stay updated with conference announcements, and connect with sponsors, exhibitors, and fellow attendees. Should you have any questions about the app, please stop by our registration desk for assistance. Stay connected! #CEER2014 July 28-August 1, 2014 | New Orleans, LA USA Table of Contents Welcome Letter ...................................................................................................... 3 In Honor of David Allen Vigh ................................................................................... 4 About CEER ............................................................................................................. 6 About the Society for Ecological Restoration ........................................................
    [Show full text]
  • Questioning Ten Common Assumptions About Peatlands
    Questioning ten common assumptions about peatlands University of Leeds Peat Club: K.L. Bacon1, A.J. Baird1, A. Blundell1, M-A. Bourgault1,2, P.J. Chapman1, G. Dargie1, G.P. Dooling1,3, C. Gee1, J. Holden1, T. Kelly1, K.A. McKendrick-Smith1, P.J. Morris1, A. Noble1, S.M. Palmer1, A. Quillet1,3, G.T. Swindles1, E.J. Watson1 and D.M. Young1 1water@leeds, School of Geography, University of Leeds, UK 2current address: Centre GEOTOP, CP 8888, Succ. Centre-Ville, Montréal, Québec, Canada 3current address: Geography, College of Life and Environmental Sciences, University of Exeter, UK _______________________________________________________________________________________ SUMMARY Peatlands have been widely studied in terms of their ecohydrology, carbon dynamics, ecosystem services and palaeoenvironmental archives. However, several assumptions are frequently made about peatlands in the academic literature, practitioner reports and the popular media which are either ambiguous or in some cases incorrect. Here we discuss the following ten common assumptions about peatlands: 1. the northern peatland carbon store will shrink under a warming climate; 2. peatlands are fragile ecosystems; 3. wet peatlands have greater rates of net carbon accumulation; 4. different rules apply to tropical peatlands; 5. peat is a single soil type; 6. peatlands behave like sponges; 7. Sphagnum is the main ‘ecosystem engineer’ in peatlands; 8. a single core provides a representative palaeo-archive from a peatland; 9. water-table reconstructions from peatlands provide direct records of past climate change; and 10. restoration of peatlands results in the re-establishment of their carbon sink function. In each case we consider the evidence supporting the assumption and, where appropriate, identify its shortcomings or ways in which it may be misleading.
    [Show full text]
  • Assessment on Peatlands, Biodiversity and Climate Change: Main Report
    Assessment on Peatlands, Biodiversity and Climate change Main Report Published By Global Environment Centre, Kuala Lumpur & Wetlands International, Wageningen First Published in Electronic Format in December 2007 This version first published in May 2008 Copyright © 2008 Global Environment Centre & Wetlands International Reproduction of material from the publication for educational and non-commercial purposes is authorized without prior permission from Global Environment Centre or Wetlands International, provided acknowledgement is provided. Reference Parish, F., Sirin, A., Charman, D., Joosten, H., Minayeva , T., Silvius, M. and Stringer, L. (Eds.) 2008. Assessment on Peatlands, Biodiversity and Climate Change: Main Report . Global Environment Centre, Kuala Lumpur and Wetlands International, Wageningen. Reviewer of Executive Summary Dicky Clymo Available from Global Environment Centre 2nd Floor Wisma Hing, 78 Jalan SS2/72, 47300 Petaling Jaya, Selangor, Malaysia. Tel: +603 7957 2007, Fax: +603 7957 7003. Web: www.gecnet.info ; www.peat-portal.net Email: [email protected] Wetlands International PO Box 471 AL, Wageningen 6700 The Netherlands Tel: +31 317 478861 Fax: +31 317 478850 Web: www.wetlands.org ; www.peatlands.ru ISBN 978-983-43751-0-2 Supported By United Nations Environment Programme/Global Environment Facility (UNEP/GEF) with assistance from the Asia Pacific Network for Global Change Research (APN) Design by Regina Cheah and Andrey Sirin Printed on Cyclus 100% Recycled Paper. Printing on recycled paper helps save our natural
    [Show full text]
  • Blanket Bogs
    SCOTTISH INVERTEBRATE HABITAT MANAGEMENT Blanket bogs Claish Moss © Scottish Natural Heritage Introduction that may also provide important sub-habitats. Britain has about 10-15% of the total global area Invertebrates in upland moorland or bog habitats of blanket bog, making it one of the most are an essential component of the diet of many important international locations for this habitat. bird species; cranefly larvae and adults have 80-85% of Britain’s blanket bog habitat is found in been shown to be important food for grouse Scotland, covering 1.8 million hectares, and chicks and breeding waders, such as Golden representing 23% of the country’s land area. This plover. Adult grouse may also eat craneflies to makes Scotland an internationally important supplement their diet of heather shoots. country for blanket bog. Managing habitats to benefit these invertebrates Blanket bog is found in cool, wet, typically is thus likely to have a significant impact on the oceanic climates, where it can cover whole survival of upland birds. landscapes, such as in the North-West of In addition, the Scottish Invertebrate Species Scotland. Peat accumulates slowly over many Knowledge Dossiers: Pseudoscorpiones years and can reach depths exceeding 5m, indicated the possibility that the Bog chelifer although 0.5-3m is more typical. Blanket bog is (Microbisium brevifemoratum ) is likely to occur in “ombrotrophic”, that is, the water and mineral Scottish bogs—highlighting that there may yet be supply comes entirely from atmospheric sources unrecorded species in this important Scottish (rainwater, mist, cloud-cover). The water habitat (Legg, 2010). chemistry is nutrient-poor and acidic and the Support for management described in this habitat is dominated by acid-loving plant document is available through Scotland Rural communities, especially Sphagnum mosses.
    [Show full text]