Measures and Measure Spaces

Total Page:16

File Type:pdf, Size:1020Kb

Measures and Measure Spaces Chapter 2 Measures and Measure Spaces In summarizing the flaws of the Riemann integral we can focus on two main points: 1) Many nice functions are not Riemann integrable. 2) The Riemann integral does not behave well with respect to limits of sequence of functions. That is, we cannot interchange the limit and the integral. In the core part of this course we will see how it is possible to develop a theory of integration that goes a long way to repair these flaws. To do so we will start by looking at how we go about defining an abstract notion of length for sets. 2.1 Algebras and σ-algebras Definition 2.1.1. Let X be a non-empty set. We denote by P(X) = fA j A ⊆ Xg: P(X) is called the power set of X An algebra of subsets of X is a collection A ⊆ P(X) such that 1. ; 2 A 2. E1;E2 2 A implies E1 [ E2 2 A 3. E 2 A implies Ec = X n E 2 A A is said to be a σ-algebra if 1) ; 2 A 1 S1 2) fEngn=1 ⊆ A implies n=1 En 2 A 3) E 2 A implies Ec = X n E 2 A Remark 2.1.2. 1) Every σ-algebra is an algebra. c c c 2) E1 \ E2 = (E1 [ E2) , so algebras are closed under intersection as well. A similar use of DeMorgan's Laws shows that a σ-algebra is closed under countable intersections. 3) Let A be an algebra. Let fFng ⊆ A. Let E1 = F1, E2 = F2 n F1, E3 = F3 n (F1 [ F2) and then proceed recursively to define En+1 = Fn+1 n (F1 [ F2 [···[ Fn). Then fEng ⊆ A, fEng is pairwise disjoint and 1 1 [ [ En = Fn: n=1 n=1 16 4) Let A ⊂ P(X) be an algebra (σ-algebra) and let E 2 A. Let AjE = fA \ EjA 2 Ag: Then AjE is an algebra (σ-algebra) in P(E). Example 2.1.3. P(X) is a σ-algebra. T Proposition 2.1.4. If fAαgα2I is a collection of algebras (resp. σ-algebras) then α2I Aα is an algebra (resp. σ-algebra). Proof. This proof is left as an exercise. The previous proposition leads us immediately to the following important observation. Observation. Given any set S ⊆ P(X) then there exists a smallest algebra (resp. σ-algebra) that contains S, namely \ fA j S ⊆ Ag: Notation 2.1.6. Given S ⊆ P, let A(S), the algebra generated by S, be the smallest algebra containing S, and σ(S), the σ-algebra generated by S, be the smallest σ-algebra containing S. Example 2.1.7. The collection of all finite unions of sets of the form fR; (−∞; b]; (a; b]; (a; 1)g is an algebra, but it is not a σ-algebra. Definition 2.1.8. Let S = fU ⊆ R j U is openg. The σ-algebra generated by S is called the Borel σ-algebra of R and is denoted B(R). More generally, we may take the Borel σ-algebra of any topological space (X; τ) which we denote by B(X). Of course open and closed sets are certainly the most important elements elements of B(X). However, there are other classes of sets in B(X) which also play an important role. In particular, a set A ⊆ X is called T1 S1 Gδ if A = n=1 Un where each Un is open. A set A ⊆ X is called Fσ if A = n=1 Fn where each Fn is S1 T1 closed. A set is A ⊆ X called Gδσ if A = n=1 An where each An is Gδ and it is Fσδ if A = n=1 An where each An is Fσ. Additional subscripts may be appended in the most obvious way. Remark 2.1.9. The Gδ sets are exactly the complements of the Fσ sets, and vice versa. Notice that in a metric space (X; d) closed sets are always Gδ. To see why suppose that F is closed. For each n 2 N let [ 1 U = B(x; ): n n x2F where B(x; r) = fy 2 X j d(x; y) < rg. Then Un is open and 1 \ F = Un: n=1 Problem 2.1.10. Are there sets in R which are neither Fσ or Gδ? The next fact, which is proved using transfinite induction, shows that the answer to the previous problem is clearly yes. 17 Fact 2.1.11. jB(R)j = c, the cardinality of R. Problem 2.1.12. Since singletons are closed in R it is clear that every countable set is an Fσ set. But is Q a Gδ set in R ? To answer this problem we first recall the notion of category for a topological space. Definition 2.1.13. A set A in a topological space (X; τ) is said to be nowhere dense if A has empty interior. It is of first category in (X; τ) if 1 [ A = An n=1 where An is nowhere dense for each n 2 N. A is of second category in (X; τ) if it is not of first category. A is residual if Ac is of first category. 1 Theorem 2.1.14. [Baire's Category Theorem]. Let X be a complete metric space. If fUngn=1 is a T1 collection of dense open sets then n=1 Un is dense. Proof. Let W be open and non-empty. Then there exists an x1 2 X and 0 < r1 ≤ 1 such that B(x1; r1) ⊆ B[x1; r1] ⊆ W \ U1: 1 Next we can find x2 2 X and 0 < r2 < 2 such that B(x2; r2) ⊆ B[x2; r2] ⊆ B(x1; r1) \ U2: 1 We can then proceed recursively to find sequences fxng ⊆ X and frng ⊂ R with 0 < rn ≤ n , and B(xn+1; rn+1) ⊆ B[xn+1; rn+1] ⊆ B(xn; rn) \ Un+1: Since rn ! 0 and B[xn+1; rn+1] ⊆ B[xn; rn], Cantor's Intersection Theorem implies that there exists an 1 \ x0 2 B[xn; rn:] n=1 But then x0 2 B[x1; r1] ⊆ W and x0 2 B[xn; rn] ⊆ Un for each n 2 N. This shows that 1 \ x0 2 W \ ( Un): n=1 Remark 2.1.15. The Baire Category Theorem shows that if fUng is a sequence of open dense sets, then 1 1 T T Un is dense in X. We also know that Un is a Gδ. These dense Gδ subsets of a complete metric space n=1 n=1 are always residual, as we will see below, and as such are topologically fat. Our next corollary shows the connection between the Baire Category Theorem and our notion of category. Corollary 2.1.16. [Baire Category Theorem II] Every complete metric space (X; d) is of second category in itself. 18 Proof. Assume that X is of first category. Then there exists a sequence An of nowhere dense sets so that 1 1 [ [ X = An = An: n=1 n=1 c Now let Un = (An) . Then Un is open and dense. But 1 \ Un = ; n=1 which is impossible. Corollary 2.1.17. Q is not Gδ in R. T1 S1 c Proof. Assume that Q = n=1 Un, where Un is open for each n. Then R=Q = n=1 Fn, where Fn = Un 0 is closed and nowhere dense. Let Q = fr1; r2;:::g. Then Fn = Fn [ frng is closed and nowhere dense and S1 0 R = n=1 Fn. This is a contradiction since R is not of first category. The next example is a set in R which is not Borel. Observe that the construction of this set requires the Axiom of Choice. While this is not necessary to construct non-Borel sets it turns out that this set is even more pathological than simply being non-Borel. We will see later that it is an example of a set that is also not Lebesgue measurable. Example 2.1.18. Consider [0; 1]. Define an equivalence relation on [0; 1] by x ∼ y if x − y 2 Q. Use the Axiom of Choice to choose one element from each equivalence class and denote this set by S. We will show later that S is not Borel. Remark 2.1.19. There is nothing special about using the open sets of R to define B(R). B(R) = σf(a; b) j a; b 2 Rg = σf(a; b] j a; b 2 Rg = σf[a; b) j a; b 2 Rg = σf[a; b] j a; b 2 Rg 2.2 Measures and Measure Spaces In trying to find a notion of length or measure for an arbitray subset A ⊆ R we are looking for a function m : P(R) ! R∗ = R [ {±∞} with the following properties: 1. m(I) = the usual length of I for all intervals I 2. If fAng is a sequence of pairwise disjoint subsets of R, then 1 1 [ X m( An) = m(An): n=1 n=1 3. m(x + A) = m(A) for all A 2 P(R) and x 2 R. The problem is that no such measure exists. If we weaken our conditions and only look for a measure on some sufficiently large sub-σ-algebra A of P(R) then we may succeed. More specifically, we would like A to contain B(R). The measure function that we get is called the Lebesgue measure on R.
Recommended publications
  • Measure-Theoretic Probability I
    Measure-Theoretic Probability I Steven P.Lalley Winter 2017 1 1 Measure Theory 1.1 Why Measure Theory? There are two different views – not necessarily exclusive – on what “probability” means: the subjectivist view and the frequentist view. To the subjectivist, probability is a system of laws that should govern a rational person’s behavior in situations where a bet must be placed (not necessarily just in a casino, but in situations where a decision must be made about how to proceed when only imperfect information about the outcome of the decision is available, for instance, should I allow Dr. Scissorhands to replace my arthritic knee by a plastic joint?). To the frequentist, the laws of probability describe the long- run relative frequencies of different events in “experiments” that can be repeated under roughly identical conditions, for instance, rolling a pair of dice. For the frequentist inter- pretation, it is imperative that probability spaces be large enough to allow a description of an experiment, like dice-rolling, that is repeated infinitely many times, and that the mathematical laws should permit easy handling of limits, so that one can make sense of things like “the probability that the long-run fraction of dice rolls where the two dice sum to 7 is 1/6”. But even for the subjectivist, the laws of probability should allow for description of situations where there might be a continuum of possible outcomes, or pos- sible actions to be taken. Once one is reconciled to the need for such flexibility, it soon becomes apparent that measure theory (the theory of countably additive, as opposed to merely finitely additive measures) is the only way to go.
    [Show full text]
  • (Measure Theory for Dummies) UWEE Technical Report Number UWEETR-2006-0008
    A Measure Theory Tutorial (Measure Theory for Dummies) Maya R. Gupta {gupta}@ee.washington.edu Dept of EE, University of Washington Seattle WA, 98195-2500 UWEE Technical Report Number UWEETR-2006-0008 May 2006 Department of Electrical Engineering University of Washington Box 352500 Seattle, Washington 98195-2500 PHN: (206) 543-2150 FAX: (206) 543-3842 URL: http://www.ee.washington.edu A Measure Theory Tutorial (Measure Theory for Dummies) Maya R. Gupta {gupta}@ee.washington.edu Dept of EE, University of Washington Seattle WA, 98195-2500 University of Washington, Dept. of EE, UWEETR-2006-0008 May 2006 Abstract This tutorial is an informal introduction to measure theory for people who are interested in reading papers that use measure theory. The tutorial assumes one has had at least a year of college-level calculus, some graduate level exposure to random processes, and familiarity with terms like “closed” and “open.” The focus is on the terms and ideas relevant to applied probability and information theory. There are no proofs and no exercises. Measure theory is a bit like grammar, many people communicate clearly without worrying about all the details, but the details do exist and for good reasons. There are a number of great texts that do measure theory justice. This is not one of them. Rather this is a hack way to get the basic ideas down so you can read through research papers and follow what’s going on. Hopefully, you’ll get curious and excited enough about the details to check out some of the references for a deeper understanding.
    [Show full text]
  • Measure Theory and Probability
    Measure theory and probability Alexander Grigoryan University of Bielefeld Lecture Notes, October 2007 - February 2008 Contents 1 Construction of measures 3 1.1Introductionandexamples........................... 3 1.2 σ-additive measures ............................... 5 1.3 An example of using probability theory . .................. 7 1.4Extensionofmeasurefromsemi-ringtoaring................ 8 1.5 Extension of measure to a σ-algebra...................... 11 1.5.1 σ-rings and σ-algebras......................... 11 1.5.2 Outermeasure............................. 13 1.5.3 Symmetric difference.......................... 14 1.5.4 Measurable sets . ............................ 16 1.6 σ-finitemeasures................................ 20 1.7Nullsets..................................... 23 1.8 Lebesgue measure in Rn ............................ 25 1.8.1 Productmeasure............................ 25 1.8.2 Construction of measure in Rn. .................... 26 1.9 Probability spaces ................................ 28 1.10 Independence . ................................. 29 2 Integration 38 2.1 Measurable functions.............................. 38 2.2Sequencesofmeasurablefunctions....................... 42 2.3 The Lebesgue integral for finitemeasures................... 47 2.3.1 Simplefunctions............................ 47 2.3.2 Positivemeasurablefunctions..................... 49 2.3.3 Integrablefunctions........................... 52 2.4Integrationoversubsets............................ 56 2.5 The Lebesgue integral for σ-finitemeasure.................
    [Show full text]
  • Measure and Integration
    ¦ Measure and Integration Man is the measure of all things. — Pythagoras Lebesgue is the measure of almost all things. — Anonymous ¦.G Motivation We shall give a few reasons why it is worth bothering with measure the- ory and the Lebesgue integral. To this end, we stress the importance of measure theory in three different areas. ¦.G.G We want a powerful integral At the end of the previous chapter we encountered a neat application of Banach’s fixed point theorem to solve ordinary differential equations. An essential ingredient in the argument was the observation in Lemma 2.77 that the operation of differentiation could be replaced by integration. Note that differentiation is an operation that destroys regularity, while in- tegration yields further regularity. It is a consequence of the fundamental theorem of calculus that the indefinite integral of a continuous function is a continuously differentiable function. So far we used the elementary notion of the Riemann integral. Let us quickly recall the definition of the Riemann integral on a bounded interval. Definition 3.1. Let [a, b] with −¥ < a < b < ¥ be a compact in- terval. A partition of [a, b] is a finite sequence p := (t0,..., tN) such that a = t0 < t1 < ··· < tN = b. The mesh size of p is jpj := max1≤k≤Njtk − tk−1j. Given a partition p of [a, b], an associated vector of sample points (frequently also called tags) is a vector x = (x1,..., xN) such that xk 2 [tk−1, tk]. Given a function f : [a, b] ! R and a tagged 51 3 Measure and Integration partition (p, x) of [a, b], the Riemann sum S( f , p, x) is defined by N S( f , p, x) := ∑ f (xk)(tk − tk−1).
    [Show full text]
  • An Approximate Logic for Measures
    AN APPROXIMATE LOGIC FOR MEASURES ISAAC GOLDBRING AND HENRY TOWSNER Abstract. We present a logical framework for formalizing connections be- tween finitary combinatorics and measure theory or ergodic theory that have appeared in various places throughout the literature. We develop the basic syntax and semantics of this logic and give applications, showing that the method can express the classic Furstenberg correspondence as well as provide short proofs of the Szemer´edi Regularity Lemma and the hypergraph removal lemma. We also derive some connections between the model-theoretic notion of stability and the Gowers uniformity norms from combinatorics. 1. Introduction Since the 1970’s, diagonalization arguments (and their generalization to ul- trafilters) have been used to connect results in finitary combinatorics with results in measure theory or ergodic theory [14]. Although it has long been known that this connection can be described with first-order logic, a recent striking paper by Hrushovski [22] demonstrated that modern developments in model theory can be used to give new substantive results in this area as well. Papers on various aspects of this interaction have been published from a va- riety of perspectives, with almost as wide a variety of terminology [30, 10, 9, 1, 32, 13, 4]. Our goal in this paper is to present an assortment of these techniques in a common framework. We hope this will make the entire area more accessible. We are typically concerned with the situation where we wish to prove a state- ment 1) about sufficiently large finite structures which 2) concerns the finite analogs of measure-theoretic notions such as density or integrals.
    [Show full text]
  • Notes on Ergodic Theory
    Notes on ergodic theory Michael Hochman1 January 27, 2013 1Please report any errors to [email protected] Contents 1 Introduction 4 2 Measure preserving transformations 6 2.1 Measure preserving transformations . 6 2.2 Recurrence . 9 2.3 Inducedactiononfunctionsandmeasures . 11 2.4 Dynamics on metric spaces . 13 2.5 Some technicalities . 15 3 Ergodicity 17 3.1 Ergodicity . 17 3.2 Mixing . 19 3.3 Kac’s return time formula . 20 3.4 Ergodic measures as extreme points . 21 3.5 Ergodic decomposition I . 23 3.6 Measure integration . 24 3.7 Measure disintegration . 25 3.8 Ergodic decomposition II . 28 4 The ergodic theorem 31 4.1 Preliminaries . 31 4.2 Mean ergodic theorem . 32 4.3 Thepointwiseergodictheorem . 34 4.4 Generic points . 38 4.5 Unique ergodicity and circle rotations . 41 4.6 Sub-additive ergodic theorem . 43 5 Some categorical constructions 48 5.1 Isomorphismandfactors. 48 5.2 Product systems . 52 5.3 Natural extension . 53 5.4 Inverselimits ............................. 53 5.5 Skew products . 54 1 CONTENTS 2 6 Weak mixing 56 6.1 Weak mixing . 56 6.2 Weak mixing as a multiplier property . 59 6.3 Isometricfactors ........................... 61 6.4 Eigenfunctions . 62 6.5 Spectral isomorphism and the Kronecker factor . 66 6.6 Spectral methods . 68 7 Disjointness and a taste of entropy theory 73 7.1 Joinings and disjointness . 73 7.2 Spectrum, disjointness and the Wiener-Wintner theorem . 75 7.3 Shannon entropy: a quick introduction . 77 7.4 Digression: applications of entropy . 81 7.5 Entropy of a stationary process .
    [Show full text]
  • Probability Theory: STAT310/MATH230; September 12, 2010 Amir Dembo
    Probability Theory: STAT310/MATH230; September 12, 2010 Amir Dembo E-mail address: [email protected] Department of Mathematics, Stanford University, Stanford, CA 94305. Contents Preface 5 Chapter 1. Probability, measure and integration 7 1.1. Probability spaces, measures and σ-algebras 7 1.2. Random variables and their distribution 18 1.3. Integration and the (mathematical) expectation 30 1.4. Independence and product measures 54 Chapter 2. Asymptotics: the law of large numbers 71 2.1. Weak laws of large numbers 71 2.2. The Borel-Cantelli lemmas 77 2.3. Strong law of large numbers 85 Chapter 3. Weak convergence, clt and Poisson approximation 95 3.1. The Central Limit Theorem 95 3.2. Weak convergence 103 3.3. Characteristic functions 117 3.4. Poisson approximation and the Poisson process 133 3.5. Random vectors and the multivariate clt 140 Chapter 4. Conditional expectations and probabilities 151 4.1. Conditional expectation: existence and uniqueness 151 4.2. Properties of the conditional expectation 156 4.3. The conditional expectation as an orthogonal projection 164 4.4. Regular conditional probability distributions 169 Chapter 5. Discrete time martingales and stopping times 175 5.1. Definitions and closure properties 175 5.2. Martingale representations and inequalities 184 5.3. The convergence of Martingales 191 5.4. The optional stopping theorem 203 5.5. Reversed MGs, likelihood ratios and branching processes 209 Chapter 6. Markov chains 225 6.1. Canonical construction and the strong Markov property 225 6.2. Markov chains with countable state space 233 6.3. General state space: Doeblin and Harris chains 255 Chapter 7.
    [Show full text]
  • Arxiv:1409.2662V3 [Math.FA] 12 Nov 2014
    Measures and all that — A Tutorial Ernst-Erich Doberkat Math ++ Software, Bochum [email protected] November 13, 2014 arXiv:1409.2662v3 [math.FA] 12 Nov 2014 Abstract This tutorial gives an overview of some of the basic techniques of measure theory. It in- cludes a study of Borel sets and their generators for Polish and for analytic spaces, the weak topology on the space of all finite positive measures including its metrics, as well as mea- surable selections. Integration is covered, and product measures are introduced, both for finite and for arbitrary factors, with an application to projective systems. Finally, the duals of the Lp-spaces are discussed, together with the Radon-Nikodym Theorem and the Riesz Representation Theorem. Case studies include applications to stochastic Kripke models, to bisimulations, and to quotients for transition kernels. Page 1 EED. Measures Contents 1 Overview 2 2 Measurable Sets and Functions 3 2.1 MeasurableSets .................................. 4 2.1.1 A σ-AlgebraOnSpacesOfMeasures . 10 2.1.2 The Alexandrov Topology On Spaces of Measures . 11 2.2 Real-ValuedFunctions . 17 2.2.1 Essentially Bounded Functions . 21 2.2.2 Convergence almost everywhere and in measure ............. 22 2.3 Countably Generated σ-Algebras ......................... 27 2.3.1 Borel Sets in Polish and Analytic Spaces . ..... 32 2.3.2 Manipulating Polish Topologies . 38 2.4 AnalyticSetsandSpaces . .. .. .. .. .. .. .. .. 41 2.5 TheSouslinOperation ............................. 51 2.6 UniversallyMeasurableSets . ..... 55 2.6.1 Lubin’s Extension through von Neumann’s Selectors . ........ 58 2.6.2 Completing a Transition Kernel . 61 2.7 MeasurableSelections . 64 2.8 Integration ..................................... 67 2.8.1 FromMeasuretoIntegral .
    [Show full text]
  • Probability Spaces Lecturer: Dr
    EE5110: Probability Foundations for Electrical Engineers July-November 2015 Lecture 4: Probability Spaces Lecturer: Dr. Krishna Jagannathan Scribe: Jainam Doshi, Arjun Nadh and Ajay M 4.1 Introduction Just as a point is not defined in elementary geometry, probability theory begins with two entities that are not defined. These undefined entities are a Random Experiment and its Outcome: These two concepts are to be understood intuitively, as suggested by their respective English meanings. We use these undefined terms to define other entities. Definition 4.1 The Sample Space Ω of a random experiment is the set of all possible outcomes of a random experiment. An outcome (or elementary outcome) of the random experiment is usually denoted by !: Thus, when a random experiment is performed, the outcome ! 2 Ω is picked by the Goddess of Chance or Mother Nature or your favourite genie. Note that the sample space Ω can be finite or infinite. Indeed, depending on the cardinality of Ω, it can be classified as follows: 1. Finite sample space 2. Countably infinite sample space 3. Uncountable sample space It is imperative to note that for a given random experiment, its sample space is defined depending on what one is interested in observing as the outcome. We illustrate this using an example. Consider a person tossing a coin. This is a random experiment. Now consider the following three cases: • Suppose one is interested in knowing whether the toss produces a head or a tail, then the sample space is given by, Ω = fH; T g. Here, as there are only two possible outcomes, the sample space is said to be finite.
    [Show full text]
  • 1 Random Vectors and Product Spaces
    36-752 Advanced Probability Overview Spring 2018 4. Product Spaces Instructor: Alessandro Rinaldo Associated reading: Sec 2.6 and 2.7 of Ash and Dol´eans-Dade;Sec 1.7 and A.3 of Durrett. 1 Random Vectors and Product Spaces We have already defined random variables and random quantities. A special case of the latter and generalization of the former is a random vector. Definition 1 (Random Vector). Let (Ω; F;P ) be a probability space. Let X :Ω ! IRk be a measurable function. Then X is called a random vector . There arises, in this definition, the question of what σ-field of subsets of IRk should be used. When left unstated, we always assume that the σ-field of subsets of a multidimensional real space is the Borel σ-field, namely the smallest σ-field containing the open sets. However, because IRk is also a product set of k sets, each of which already has a natural σ-field associated with it, we might try to use a σ-field that corresponds to that product in some way. 1.1 Product Spaces The set IRk has a topology in its own right, but it also happens to be a product set. Each of the factors in the product comes with its own σ-field. There is a way of constructing σ-field’s of subsets of product sets directly without appealing to any additional structure that they might have. Definition 2 (Product σ-Field). Let (Ω1; F1) and (Ω2; F2) be measurable spaces. Let F1 ⊗ F2 be the smallest σ-field of subsets of Ω1 × Ω2 containing all sets of the form A1 × A2 where Ai 2 Fi for i = 1; 2.
    [Show full text]
  • Dynamic Ham-Sandwich Cuts in the Plane∗
    Dynamic Ham-Sandwich Cuts in the Plane∗ Timothy G. Abbott† Michael A. Burr‡ Timothy M. Chan§ Erik D. Demaine† Martin L. Demaine† John Hugg¶ Daniel Kanek Stefan Langerman∗∗ Jelani Nelson† Eynat Rafalin†† Kathryn Seyboth¶ Vincent Yeung† Abstract We design efficient data structures for dynamically maintaining a ham-sandwich cut of two point sets in the plane subject to insertions and deletions of points in either set. A ham- sandwich cut is a line that simultaneously bisects the cardinality of both point sets. For general point sets, our first data structure supports each operation in O(n1/3+ε) amortized time and O(n4/3+ε) space. Our second data structure performs faster when each point set decomposes into a small number k of subsets in convex position: it supports insertions and deletions in O(log n) time and ham-sandwich queries in O(k log4 n) time. In addition, if each point set has convex peeling depth k, then we can maintain the decomposition automatically using O(k log n) time per insertion and deletion. Alternatively, we can view each convex point set as a convex polygon, and we show how to find a ham-sandwich cut that bisects the total areas or total perimeters of these polygons in O(k log4 n) time plus the O((kb) polylog(kb)) time required to approximate the root of a polynomial of degree O(k) up to b bits of precision. We also show how to maintain a partition of the plane by two lines into four regions each containing a quarter of the total point count, area, or perimeter in polylogarithmic time.
    [Show full text]
  • ERGODIC THEORY and DYNAMICS of G-SPACES (With Special Emphasis on Rigidity Phenomena)
    ERGODIC THEORY AND DYNAMICS OF G-SPACES (with special emphasis on rigidity phenomena) Renato Feres Anatole Katok Contents Chapter 1. Introduction 5 1.1. Dynamics of group actions in mathematics and applications 5 1.2. Properties of groups relevant to dynamics 6 1.3. Rigidity phenomena 7 1.4. Rigid geometric structures 9 1.5. Preliminaries on Lie groups and lattices 10 Chapter 2. Basic ergodic theory 15 2.1. Measurable G-actions 15 2.2. Ergodicity and recurrence 16 2.3. Cocycles and related constructions 23 2.4. Reductions of principal bundle extensions 27 2.5. Amenable groups and amenable actions 30 Chapter 3. Groups actions and unitary representations 35 3.1. Spectral theory 35 3.2. Amenability and property T 41 3.3. Howe-Moore ergodicity theorem 44 Chapter 4. Main classes of examples 49 4.1. Homogeneous G-spaces 49 4.2. Automorphisms of compact groups and related examples 52 4.3. Isometric actions 54 4.4. Gaussian dynamical systems 56 4.5. Examples of actions obtained by suspension 57 4.6. Blowing up 58 Chapter 5. Smooth actions and geometric structures 59 5.1. Local properties 59 5.2. Actions preserving a geometric structure 60 5.3. Smooth actions of semisimple Lie groups 65 5.4. Dynamics, rigid structures, and the topology of M 68 Chapter 6. Actions of semisimple Lie groups and lattices of higher real-rank 71 6.1. Preliminaries 71 6.2. The measurable theory 71 6.3. Topological superrigidity 80 6.4. Actions on low-dimensional manifolds 82 6.5. Local differentiable rigidity of volume preserving actions 85 6.6.
    [Show full text]