Novel Models of Streptococcus Canis Colonization and Disease Reveal Modest Contributions of M-Like (SCM) Protein

Total Page:16

File Type:pdf, Size:1020Kb

Novel Models of Streptococcus Canis Colonization and Disease Reveal Modest Contributions of M-Like (SCM) Protein microorganisms Article Novel Models of Streptococcus canis Colonization and Disease Reveal Modest Contributions of M-Like (SCM) Protein Ingrid Cornax 1,†,‡, Jacob Zulk 2,† , Joshua Olson 1, Marcus Fulde 3, Victor Nizet 1,4 and Kathryn A Patras 2,* 1 Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA; [email protected] (I.C.); [email protected] (J.O.); [email protected] (V.N.) 2 Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; [email protected] 3 Institute of Microbiology and Epizootics, Centre of Infection Medicine, Freie Universität Berlin, 14163 Berlin, Germany; [email protected] 4 Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA 92093, USA * Correspondence: [email protected] † These authors contributed equally to this work. ‡ Present address: Janssen Research & Development, LLC, La Jolla, CA 92121, USA. Abstract: Streptococcus canis is a common colonizing bacterium of the urogenital tract of cats and dogs that can also cause invasive disease in these animal populations and in humans. Although the virulence mechanisms of S. canis are not well-characterized, an M-like protein, SCM, has recently identified been as a potential virulence factor. SCM is a surface-associated protein that binds to host plasminogen and IgGs suggesting its possible importance in host-pathogen interactions. In this study, we developed in vitro and ex vivo blood component models and murine models of S. canis vaginal colonization, systemic infection, and dermal infection to compare the virulence potential of the zoonotic S. canis vaginal isolate G361 and its isogenic SCM-deficient mutant (G361Dscm). We found that while S. canis establishes vaginal colonization and causes invasive disease in vivo, the contribution of the SCM protein to virulence phenotypes in these models is modest. We conclude Citation: Cornax, I.; Zulk, J.; Olson, that SCM is dispensable for invasive disease in murine models and for resistance to human blood J.; Fulde, M.; Nizet, V.; Patras, K.A. components ex vivo, but may contribute to mucosal persistence, highlighting a potential contribution Novel Models of Streptococcus canis to the recently appreciated genetic diversity of SCM across strains and hosts. Colonization and Disease Reveal Modest Contributions of M-Like Keywords: Streptococcus canis; M protein; virulence factor; innate immunity; vaginal colonization (SCM) Protein. Microorganisms 2021, 9, 183. https://doi.org/10.3390/ microorganisms9010183 1. Introduction Received: 7 January 2021 Accepted: 14 January 2021 Streptococcus canis is a Gram-positive beta-hemolytic group G Streptococcus that col- Published: 16 January 2021 onizes the epithelial, respiratory, gastrointestinal, and urogenital surfaces of cats and dogs [1–3]. Officially named a species in 1986, S. canis is well-recognized in veterinary Publisher’s Note: MDPI stays neu- medicine for causing a variety of invasive diseases across domestic animal species including tral with regard to jurisdictional clai- sepsis, necrotizing fasciitis, urinary tract infection, ulcerative keratitis, and mastitis [4–9]. ms in published maps and institutio- Similar S. canis colonization and disease manifestations have been reported in wild animal nal affiliations. populations [10–12]. Since its first description as a zoonotic agent in 1996 [13], human cases of S. canis-mediated endocarditis, septicemia, cellulitis, and periprosthetic joint infection have been reported [14–21]. A retrospective study identified S. canis as the causative agent in ~1% of human streptococcal infections, however, given the reliance of Lancefield classi- Copyright: © 2021 by the authors. Li- Streptococcus censee MDPI, Basel, Switzerland. fication for group G identification without further speciation, coupled with This article is an open access article close interactions between humans and companion animals, it is likely that S. canis human distributed under the terms and con- infections are underestimated [22,23]. ditions of the Creative Commons At- The genetic diversity and molecular pathogenesis of S. canis is being actively explored. tribution (CC BY) license (https:// There are currently more than 50 multi-locus sequence types (MLST) and 20 genomes for creativecommons.org/licenses/by/ S. canis [23,24]. The host immune response to S. canis is not well-described, yet the pyogenic 4.0/). nature of many S. canis soft tissue infections suggest neutrophils and macrophages may Microorganisms 2021, 9, 183. https://doi.org/10.3390/microorganisms9010183 https://www.mdpi.com/journal/microorganisms Microorganisms 2021, 9, 183 2 of 16 be involved. To date, knowledge of S. canis virulence factors remains limited, and is largely extrapolated from genetic similarities to the widely-studied group A Streptococcus (S. pyogenes)[12]. Similar to S. pyogenes, S. canis possesses an arginine deiminase system [25], a streptolysin O orthologue [26], lysogenic bacteriophage [27], and an M-like protein termed SCM (or SPASc) [28], which is currently the best characterized among candidate S. canis virulence factors [29]. In S. pyogenes, the M protein, which is genetically diverse with more than 200 emm types, serves multiple roles in pathogenesis and immune evasion [30]. Likewise, S. canis SCM displays genetic heterogeneity. There are currently 15 SCM types divided into group I and II alleles [23]. SCM is a fibrillar surface protein [26] which binds plasminogen [29] and the Fc region of IgGs from multiple species including human, dog, cat, and mouse [31]. We recently demonstrated that SCM self-interactions facilitate bacterial aggregation and that SCM interactions with IgG initiate formation of protein complexes in human plasma [32]. However, the contribution of SCM, and impact of its allelic variability, to S. canis coloniza- tion and virulence remains undefined. In this study, we incorporated in vitro and ex vivo human blood component models, together with murine models of S. canis vaginal colonization, systemic infection, and dermal infection to broadly characterize the virulence potential of the zoonotic S. canis vaginal isolate G361, originally isolated from a 40-year-old female, and its isogenic SCM-deficient mutant (G361Dscm). 2. Materials and Methods 2.1. Bacterial Strains, Growth Conditions, and In Vitro Phenotyping Assays Bacterial strains used in this study include Streptococcus canis human vaginal wild- type (WT) isolate G361 [33] and isogenic scm-targeted insertional mutant G361Dscm [32], Streptococcus pyogenes human invasive isolate 5448 M1 and isogenic Demm1 [34], and Streptococcus agalactiae human meningeal isolate COH1 (ATCC BAA-1176). All bacterial strains were grown to stationary phase in Todd-Hewitt broth (THB, Hardy Diagnostics), or THB agar plates, at 37 ◦C without shaking. Erythromycin (5 µg/mL) was added to G361Dscm to retain the plasmid insertion. Cultures were diluted in fresh THB and incu- ◦ bated at 37 C until mid-logarithmic phase (defined as OD600 = 0.4). For growth curves, stationary cultures were diluted to OD600 = 0.1 in either fresh THB or RPMI-1640 (Gibco) and incubated at 37 ◦C for 3 h with optical density measured every 30 min. To assess hemolytic activity, WT G361 and G361Dscm were grown overnight and 10 µL was spot- ted onto blood agar plates (TSA with 5% sheep blood, Thermo Scientific) and incubated ◦ for 24 h at 37 C with 5% CO2. For minimum inhibitory concentrations (MIC), mid-log phase S. canis was diluted 1:100 in THB and 100 µL was added to 96-well microtiter plates. Hydrogen peroxide or hypochlorite (1.5-fold dilution series, final concentrations tested 0–3.5 mM and 0–0.34 mM respectively) was diluted in THB and 100 µL was added to the ◦ bacterial plates (200 µL total). The plates were then incubated at 37 C for 18 h and OD600 was measured to determine MIC values (calculated as 90% reduction in OD600 from S. canis only controls). 2.2. Biofilm Formation S. canis and S. pyogenes biofilms were assessed using methods adapted from previous work [35]. Briefly, stationary cultures were diluted in THB or RPMI-1640 to OD600 = 0.1, and 200 µL added to tissue culture-treated 96-well plates. Biofilms were allowed to form for 48 h at 37 ◦C without shaking. After washing 3X with PBS, biofilms were stained with 1µM SYTO 13 nucleic acid stain (Invitrogen) for 30 min in the dark. Biofilms were then washed 3X with PBS and quantified by measuring fluorescence at OD485/OD520 on an Infinite 200 Pro (Tecan) plate reader. Fluorescent images of biofilms were also collected using an Echo Revolve microscope at 100X magnification. Microorganisms 2021, 9, 183 3 of 16 2.3. Mammalian Cell Lines and Growth Conditions Canine macrophage-like cells (DH82), immortalized human vaginal epithelial cells (VK2/E6E7), and human monocyte cell line (THP-1) were acquired from the American Type Culture Collection (ATCC CRL-10389, ATCC CRL-2616, and ATCC TIB-202 respec- tively). HEK-Blue IL-1β cells (Cat# hkb-il1b) were purchased from InvivoGen. DH82 cells were cultured in Eagle’s Minimum Essential Medium (EMEM) (Gibco) + 15% FBS (heat inactivated). VK2 cells were cultured in keratinocyte serum-free medium (KSFM) (Gibco) with 0.5 ng/mL human recombinant epidermal growth factor and 0.05 mg/mL bovine pituitary extract. THP-1 cells were grown in suspension in the following media: RPMI-1640 (Gibco) + 10% FBS (heat inactivated) + 10 mM HEPES + 1 mM sodium pyruvate + 4500 mg/L glucose + 1500 µg/mL sodium bicarbonate + 0.05 mM 2-mercaptoethanol. When macrophage differentiation was necessary, the cells were treated for 24 h with 25 nM phorbol myristate acetate (PMA) to produce an adherent culture. HEK-Blue IL-1β cells were grown in adherent culture in Dulbecco’s Modified Eagle Medium (DMEM) with L-glutamine (Gibco) + 10% FBS (heat inactivated) + 200 µg/mL HygromycinB (InvivoGen) ◦ + 100 µg/mL Zeocin (Invitrogen). All cells were cultured in a 37 C incubator with 5% CO2. Adherent cells were split every 3–4 days at ~80% confluency, and 0.25% trypsin/2.21mM EDTA (Corning) were used to detach DH82 and VK2 cells for passaging.
Recommended publications
  • Canine Streptococcal Toxic Shock Syndrome Associated with Necrotizing Fasciitis: an Overview
    Vet. World, 2012, Vol.5(5):311-319 REVIEW Canine Streptococcal Toxic Shock Syndrome associated with Necrotizing Fasciitis: An Overview Barkha Sharma*1 , Mukesh Kumar Srivastava2 , Ashish Srivastava2 and Rashmi Singh1 1.Department of Epidemiology and Veterinary Preventive Medicine, 2.Department of Veterinary Medicine, Pandit deen Dayal Upadhyay Pashuchikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU) Mathura, UP, 281001, India * Corresponding author email: [email protected] Received: 18-09-2011, Accepted: 23-10-2011, Published Online: 21-01-2012 doi: 10.5455/vetworld.2012.311-319 Abstract Canine Toxic Shock Syndrome (CSTSS) is a serious often fatal disease syndrome seen in dogs caused as a result of an infection caused by gram positive cocci of the family Streptococci. The main bacterium involved in the etiology of Canine Streptococcal Toxic Shock Syndrome is Streptoccoccus canis, which was discovered by Deveriese in 1986 and implicated as a cause of this disease syndrome in 1996 by Miller and Prescott. The clinical findings in this syndrome are very much similar to those seen in the infamous 'Toxic Shock 'caused by staphylococcal toxins in humans, especially females. Like in humans, the reason for emergence/reemergence of Canine Streptococcal Toxic Shock Syndrome (CSTSS) is unclear and very little is known about its transmission and prevention. The disease is characterized by multi systemic organ failure and a shock like condition in seemingly healthy dog often following an injury. In absence of proper and prompt diagnosis and subsequent treatment by injectable antibiotics and aggressive shock therapy, dog often succumbs to the disease within a few hours. The dog may have some rigidity and muscle spasms or convulsions and a deep unproductive cough followed by haemorrhage from nasal and mouth along with melena.
    [Show full text]
  • Streptococcaceae
    STREPTOCOCCACEAE Instructor Dr. Maytham Ihsan Ph.D Vet Microbiology 1 STREPTOCOCCACEAE Genus: Streptococcus and Enterocccus Streptococcus and Enterocccus genera, are Gram‐positive ovoid (lanceolate) cocci, approximately 1 μm in diameter, that tend to occur in singles, pairs & chains (rosary‐like) may be long or short. Streptococcus species occur as commensals on skin, upper & lower respiratory tract and mucous membranes; some may act as opportunistic pathogens causing pyogenic infections. Enteroccci spp. are enteric opportunistic & can be found in the intestinal tract of many animlas & humans. Growth & Culture Characteristics • Most streptococci are facultative anaerobes and catalase‐negative. • They are non‐motile and oxidase‐negative and do not form spores & susceptible to desiccation. • They are fastidious bacteria and require the addition of blood or serum to culture media. They grow at temperature ranging from 37°C to 42°C. Group D (Enterocooci), are considered thermophilic & can gorw at 45°C or even higher. • Colonies are small about 1 mm in size, smooth, translucent & may be greyish. • Streptococcus pneumoniae (pneumococcus or diplococcus) occurs as slightly pear‐shaped cocci in pairs. Pathogenic strains have thick capsules and produce mucoid colonies or flat colonies with smooth borders & a central concavity “draughtsman colonies” aer 48‐72 hrs on blood agar. These bacteria cause pneumonia in humans and rats. 2 • Some of streptococci grow on MacConkey like: Enterococcus faecalis, Strept. bovis, Sterpt. uberis & strept. lactis producing very tiny colonies like pin‐point appearance aer 48 hrs of incubaon at 37°C. • Streptococci genera grow slowly in broth media, sometimes forming faint opacity; whereas others with a fluffy deposit adherent to the side of the tube.
    [Show full text]
  • Suppl Table 2
    Table S2. Large subunit rRNA gene sequences of Bacteria and Eukarya from V5. ["n" indicates information not specified in the NCBI GenBank database.] Accession number Q length Q start Q end e-value %-ident %-sim GI number Domain Phylum Family Genus / Species JQ997197 529 30 519 3E-165 89% 89% 48728139 Bacteria Actinobacteria Frankiaceae uncultured Frankia sp. JQ997198 732 17 128 2E-35 93% 93% 48728167 Bacteria Actinobacteria Frankiaceae uncultured Frankia sp. JQ997196 521 26 506 4E-95 81% 81% 48728178 Bacteria Actinobacteria Frankiaceae uncultured Frankia sp. JQ997274 369 8 54 4E-14 100% 100% 289551862 Bacteria Actinobacteria Mycobacteriaceae Mycobacterium abscessus JQ999637 486 5 321 7E-62 82% 82% 269314044 Bacteria Actinobacteria Mycobacteriaceae Mycobacterium immunoGenum JQ999638 554 17 509 0 92% 92% 44368 Bacteria Actinobacteria Mycobacteriaceae Mycobacterium kansasii JQ999639 552 18 455 0 93% 93% 196174916 Bacteria Actinobacteria Mycobacteriaceae Mycobacterium sHottsii JQ997284 598 5 598 0 90% 90% 2414571 Bacteria Actinobacteria Propionibacteriaceae Propionibacterium freudenreicHii JQ999640 567 14 560 8E-152 85% 85% 6714990 Bacteria Actinobacteria THermomonosporaceae Actinoallomurus spadix JQ997287 501 8 306 4E-119 93% 93% 5901576 Bacteria Actinobacteria THermomonosporaceae THermomonospora cHromoGena JQ999641 332 26 295 8E-115 95% 95% 291045144 Bacteria Actinobacteria Bifidobacteriaceae Bifidobacterium bifidum JQ999642 349 19 255 5E-82 90% 90% 30313593 Bacteria Bacteroidetes Bacteroidaceae Bacteroides caccae JQ997308 588 20 582 0 90%
    [Show full text]
  • Streptococcosis Humans and Animals
    Zoonotic Importance Members of the genus Streptococcus cause mild to severe bacterial illnesses in Streptococcosis humans and animals. These organisms typically colonize one or more species as commensals, and can cause opportunistic infections in those hosts. However, they are not completely host-specific, and some animal-associated streptococci can be found occasionally in humans. Many zoonotic cases are sporadic, but organisms such as S. Last Updated: September 2020 equi subsp. zooepidemicus or a fish-associated strain of S. agalactiae have caused outbreaks, and S. suis, which is normally carried in pigs, has emerged as a significant agent of streptoccoccal meningitis, septicemia, toxic shock-like syndrome and other human illnesses, especially in parts of Asia. Streptococci with human reservoirs, such as S. pyogenes or S. pneumoniae, can likewise be transmitted occasionally to animals. These reverse zoonoses may cause human illness if an infected animal, such as a cow with an udder colonized by S. pyogenes, transmits the organism back to people. Occasionally, their presence in an animal may interfere with control efforts directed at humans. For instance, recurrent streptococcal pharyngitis in one family was cured only when the family dog, which was also colonized asymptomatically with S. pyogenes, was treated concurrently with all family members. Etiology There are several dozen recognized species in the genus Streptococcus, Gram positive cocci in the family Streptococcaceae. Almost all species of mammals and birds, as well as many poikilotherms, carry one or more species as commensals on skin or mucosa. These organisms can act as facultative pathogens, often in the carrier. Nomenclature and identification of streptococci Hemolytic reactions on blood agar and Lancefield groups are useful in distinguishing members of the genus Streptococcus.
    [Show full text]
  • Treatment of Necrotizing Fasciitis Using Negative Pressure Wound Therapy in a Puppy
    VlaamsVlaams DiergeneeskundigDiergeneeskundig Tijdschrift,Tijdschrift, 2015,2015, 8484 Case report 147147 Treatment of necrotizing fasciitis using negative pressure wound therapy in a puppy Behandeling van necrotiserende fasciitis met negatieve druktherapie bij een puppy 1E. Abma, 1A. M. Kitshoff, 1S. Vandenabeele, 1T. Bosmans, 2E. Stock, 1H. de Rooster 1Department of Medicine and Clinical Biology of Small Animals, Faculty of Veterinary Medicine, University of Ghent, Salisburylaan 133, B-9820 Merelbeke, Belgium 2Department of Medical Imaging and Orthopedics of Small Animals, Faculty of Veterinary Medicine, University of Ghent, Salisburylaan 133, B-9820 Merelbeke, Belgium [email protected] A BSTRACT A two-month-old German shepherd dog was presented with anorexia, lethargy and left hind limb lameness associated with swelling of the thigh. Clinical findings combined with cytology led to the presumptive diagnosis of necrotizing fasciitis (NF). Extensive debridement was performed and silver-foam-based negative pressure wound therapy (NPWT) was applied. During the first 48 hours, a negative pressure of -75 mmHg was used. Evaluation of the wound demonstrated no progression of necrosis and a moderate amount of granulation tissue formation. A new dress- ing was placed and a second 48-hour cycle of NPWT was initiated at -125 mmHg. At removal, a healthy wound bed was observed and surgical closure was performed. The prompt implementation of NPWT following surgical debridement led to accelerated wound healing without progression of necrosis in this case of canine NF. Negative pressure wound therapy could become an integral part of the management strategy of canine NF, improving the prognosis of this life-threatening disease. SAMENVATTING Een Duitse herder van twee maanden oud werd aangeboden met anorexie, lethargie, kreupelheid en een pijnlijke zwelling aan de linkerachterpoot.
    [Show full text]
  • The Pennsylvania State University
    SCHREYER HONORS COLLEGE DEPARTMENT OF VETERINARY AND BIOMEDICAL SCIENCES CHARACTERIZATION OF THE NASAL BACTERIAL MICROFLORA OF HOUSEHOLD DOGS MARGARET ZEMANEK SPRING 2019 A thesis submitted in partial fulfillment of the requirements for a baccalaureate degree in Veterinary and Biomedical Sciences with honors in Veterinary and Biomedical Sciences Reviewed and approved* by the following: Bhushan Jayarao Professor of Veterinary and Biomedical Sciences Resident Director, Penn State Animal Diagnostic Laboratory Thesis Supervisor Lester Griel Jr. Professor Emeritus of Veterinary Sciences Honors Adviser * Signatures are on file in the Schreyer Honors College. i ABSTRACT In this study, the bacterial microflora in the nasal cavity of healthy dogs and their resistance to antimicrobials was determined. Identification of bacterial isolates was done using MALDI-TOF MS (matrix-assisted laser desorption/ionization time-of-flight mass spectrometer) and the results compared to 16S rRNA sequence analysis. A total of 203 isolates were recovered from the nasal passages of 63 dogs. The 203 isolates belonged to 58 bacterial species. The predominant genera were Streptococcus and Staphylococcus, followed by Corynebacterium, Rothia, and Carnobacterium. The species most commonly isolated were Streptococcus pluranimalium and Staphylococcus pseudointermedius, followed by Rothia nasimurium, Carnobacterium inhibens, and Staphylococcus epidermidis. Many of the other bacterial species were infrequently isolated from nasal passages, accounting for one or two dogs in the study. MALDI-TOF identified certain groups of bacteria, specifically non-spore-forming, catalase- positive, gram-positive cocci, but was less reliable in identifying non-spore-forming, catalase- negative, gram-positive rods. This study showed that MALDI-TOF can be used for identifying “clinically relevant” bacteria, but many times failed to identify less important species.
    [Show full text]
  • Necrotising Fasciitis, a Potential Threat Following Conservative Treatment of a Leucopenic Cat: a Case Report
    Case Report Veterinarni Medicina, 60, 2015 (8): 460–467 doi: 10.17221/8422-VETMED Necrotising fasciitis, a potential threat following conservative treatment of a leucopenic cat: a case report T. Plavec1, I. Zdovc1, P. Juntes1, T. Svara1, I. Ambrozic-Avgustin2, S. Suhadolc-Scholten1 1Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia 2Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia ABSTRACT: An eight-month-old, not vaccinated, intact male domestic shorthair cat from a multi-cat household was presented at the clinic because of fever, inappetence and listlessness. Although leucopenic, it was first treated with antibiotics and subcutaneous fluid administration. After several days of hospitalisation with only symptomatic treatment, it developed a vast area of skin necrosis and was consequently euthanised. Necropsy was performed revealing morphological lesions consistent with necrotising fasciitis (NF). Three multidrug resistant bacteria were isolated from the tissue. Keywords: cat; necrotising fasciitis; immunosuppression; ESBL; MRSH; HLAR List of abbreviations ESBL = extended spectrum beta lactamase-producing E. coli, HE = haematoxylin and eosin, HLAR = high-level aminoglycoside-resistant Enterococcus sp., MRSH = methicillin-resistant Staphylococcus haemolyticus, NF = necrotising fasciitis Necrotising fasciitis (NF) is a rapidly spreading cases per 100 000 people (Worth et al. 2005), and potentially life-threatening bacterial infection there are no records of its incidence in veteri- of the subcutaneous and fascial tissues, minor skin nary medicine. It is a rare condition, although, in injuries being the usual portal of entry. Signs of the last two decades, accounts of its occurrence infection appear a few days following infection and are emerging, mostly in dogs (Miller et al. 1996; include localised erythema, oedema and pain of the Prescott et al.
    [Show full text]
  • Toxoplasmosis Toxoplasma Gondii
    1 Delaware Valley Academy of Veterinary Medicine, October 17, 2012 © Christopher W. Olsen, DVM PhD Professor of Public Health, School of Veterinary Medicine Master of Public Health Program Faculty, School of Medicine and Public Health Interim Vice Provost for Teaching and Learning University of Wisconsin-Madison Toxoplasmosis Toxoplasma gondii Toxoplasma gondii is an obligate intracellular, protozoal pathogen of humans and a variety of animal species. In all hosts, the organism enters a chronic, persistent phase following acute infection, and this persistence leads to the potential for reactivation of clinical disease at a later date (a particularly serious problem in AIDS patients). Toxoplasmosis is one of the best known zoonotic diseases among physicians, veterinarians and the general public, and cats play a critical role in the life cycle and maintenance of the organism in nature. Cats (domestic and non-domestic felids) are, in fact, the only definitive host in which Toxoplasma gondii undergoes sexual reproduction. - Sexual replication of Toxoplasma gondii occurs in the gut of the cat during the enteroepithelial stage of the life cycle, which takes about 3-10 days. Sexual replication leads to the production of oocysts. The oocysts are passed in the cat’s feces and sporulate in the soil to become infectious. After ingestion by intermediate hosts (rodents, birds, sheep, pigs, [humans]), they cause a systemic infection (asexual replication, initially as rapidly dividing tachyzoites, followed by encystation as bradyzoites). The organism’s life cycle is completed when new cats ingest tissues of the intermediate hosts containing Toxoplasma cysts containing bradyzoites. (Note: cats can also be infected by ingestion of oocysts shed from other cats, but this is a much less efficient method of infection.
    [Show full text]
  • INFECTIOUS CAUSES of ABORTION in the CAT Donald H. Lein, DVM
    INFECTIOUS CAUSES OF ABORTION IN THE CAT Donald H. Lein, DVM, Ph.D. Director Diagnostic Laboratory Associate Professor Pathology and Theriogenology New York State College of Veterinary Medicine P.O. Box 786 Ithaca, NY 14851 Society for Theriogenology Proceedings of the Annual Meeting, Orlando, FL September 16-17, 1988 Several infectious diseases are the cause or associated with the female and occasionally the male reproductive system of the cat.1>2,3,4,5,6^7,a Most notable are the viral diseases that cause infertility, embryonal-fetal death and resorption, malformations, abortion, mummification, stillborns and kitten neonatal death. Two classical viral infections, panleukopenia and feline viral rhinotracheitis (Feline herpesvirus-1) cause the above clinical manifestations by transplacental fetal viral infections. Feline leukemia virus and feline infectious peritonitis virus have been associated with the above clinical manifestations but have not been directly incriminated. Since both of these viruses cause immunosuppression in cats, this mechanism may be involved in the above clinical reproductive disorders. Other viral infections, such as the calicivirus infection, may cause stress during active infections of pregnant queens resulting in abortions. Their direct role as a primary cause of infection has not been documented. Bacterial infections have been incriminated with infertility in the queen, resulting in abortion and infertility caused by endometritis, pyometritis, cervicitis and vaginitis. Fetal death, emphysematous fetuses, and
    [Show full text]
  • Streptococcosis Iowa State University Center for Food Security and Public Health
    Center for Food Security and Public Health Center for Food Security and Public Health Technical Factsheets 5-1-2005 Streptococcosis Iowa State University Center for Food Security and Public Health Follow this and additional works at: http://lib.dr.iastate.edu/cfsph_factsheets Part of the Animal Diseases Commons, and the Veterinary Infectious Diseases Commons Recommended Citation Iowa State University Center for Food Security and Public Health, "Streptococcosis" (2005). Center for Food Security and Public Health Technical Factsheets. 127. http://lib.dr.iastate.edu/cfsph_factsheets/127 This Report is brought to you for free and open access by the Center for Food Security and Public Health at Iowa State University Digital Repository. It has been accepted for inclusion in Center for Food Security and Public Health Technical Factsheets by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Streptococcosis Etiology Streptococci are Gram positive cocci in the family Streptococcaceae. They often occur in pairs or chains, especially in fluids. Many members of the genus Streptococcus are pathogenic for humans and animals. Some species are proven or Last Updated: May 2005 suspected to be zoonotic. Nomenclature and identification of the streptococci The classification of streptococcal species is complex and sometimes confusing. Many new species have recently been added to the genus Streptococcus and strains from some species have been reclassified. In the 1980s, some species of Streptococcus were moved to the new genera Lactococcus and Enterococcus. Recently, six more new genera — Abiotrophia, Granulicatella, Dolosicoccus, Facklamia, Globicatella and Ignavigranum — were established; these genera mainly contain organisms that previously belonged to the genus Streptococcus.
    [Show full text]
  • Streptococcosis Etiology Streptococci Are Gram Positive Cocci in the Family Streptococcaceae
    Streptococcosis Etiology Streptococci are Gram positive cocci in the family Streptococcaceae. They often occur in pairs or chains, especially in fluids. Many members of the genus Streptococcus are pathogenic for humans and animals. Some species are proven or Last Updated: May 2005 suspected to be zoonotic. Nomenclature and identification of the streptococci The classification of streptococcal species is complex and sometimes confusing. Many new species have recently been added to the genus Streptococcus and strains from some species have been reclassified. In the 1980s, some species of Streptococcus were moved to the new genera Lactococcus and Enterococcus. Recently, six more new genera — Abiotrophia, Granulicatella, Dolosicoccus, Facklamia, Globicatella and Ignavigranum — were established; these genera mainly contain organisms that previously belonged to the genus Streptococcus. Clinical identification of the streptococci is based partly on their hemolytic reactions on blood agar and Lancefield grouping. There are three types of hemolysis: beta, alpha and gamma hemolysis. Beta-hemolytic streptococci are those that completely lyse the red cells surrounding the colony. These bacteria tend to cause most acute streptococcal diseases. Alpha-hemolytic streptococci cause a partial or “greening” hemolysis around the colony, associated with the reduction of red cell hemoglobin. Gamma-hemolysis is a term sometimes used for non-hemolytic colonies. In many cases, it is of limited value to distinguish alpha- from gamma- hemolysis; many species can be described simply as “non-beta-hemolytic.” Hemolysis is not completely reliable for species identification. The species and age of the red cells, other properties of the medium, and the culture conditions affect hemolysis. Some species can be beta-hemolytic under some conditions but alpha- or non-hemolytic under others.
    [Show full text]
  • A Case of Canine Streptococcal Infection in a Diabetic Patient
    CASE REPORT Sharing a microbe with man’s best friend: A case of canine streptococcal infection in a diabetic patient Brian M K Cheong, MRCP, Ai Y’ng Lim, MD Department of Medicine, Hospital Raja Permaisuri Bainun, Ipoh, Perak, Malaysia. The patient had been diagnosed with type 2 Diabetes Mellitus SUMMARY and hypertension for the past 20 years. He was not known to We report a case of a diabetic patient with an infected leg have any micro or macro-vascular complications. He was on wound leading to septicemia and abscess formation in the basal bolus insulin for his diabetes but he omitted his regular contra-lateral leg due to Streptococcus canis. This organism insulin doses for the last three days due to poor oral intake. belongs to the Lancefield group G and is more commonly The initial capillary blood sugar reading was 11.1 mmol/l. He found in dogs. It is often mistaken for Streptococcus did not smoke or drink alcohol. dysgalactiae which is a human strain of streptococci. Infections in humans are not common and usually involve The patient was resuscitated with intravenous fluids and infected wounds or ulcers and the surrounding soft tissue. started on inotropes. His haemoglobin was 9.4 g/dl, White In most reported cases, patients had close contact with Cell Count (WCC) 10,900/l (predominantly neutrophils) and domestic dogs and a pre-existing wound as a portal of entry. platelets 287,000/l. He also had evidence of acute renal Our patient recovered after surgical debridement and failure with urea of 16.7 mmol/l, potassium 5.4 mmol/l and drainage of abscess together with antibiotics.
    [Show full text]