<<

CALA and plans

S Karsch

Max-Planck-Institut für Quantenoptik Ludwig-Maximilians-Universität München ()

EuroNNAc Workshop, CERN, Geneva, May 3-6, 2011

Montag, 2. Mai 2011 Research Network ALA

Munich Centre for Advanced Photonics (MAP)

MAP - Munich Centre for Advanced Photonics

Munich Center for Integrated Protein Origin and Structure of Science (CIPSM) the Universe

Cognition for Technical Nanosystems Initiative Systems (CoTeSys) Munich (NIM)

Montag, 2. Mai 2011 What is CALA?

Max-Planck-Inst. f. Quantenoptik (MPQ)

TUM Informatik

TUM Maschinenwesen

FRM II LMU Physik TUM Chemie TUM Physik CALA

Montag, 2. Mai 2011 Step 1: Pre-CALA until mid 2011 ALA

Pre-CALA • 500-m² laser-/experimental hall • Transfer of the MPQ-high-intensity laser ATLAS-100 and its upgrade to 300TW cost: 5 M€ financed by LMU and MAP

Pre-CALA allows the continuation and expansion of MAP-activities until 2014

Pre-CALA until mid 2011

Montag, 2. Mai 2011 Step 2: CALA ALA

Forschungsbauantrag CALA • 1600 m² experimental/laser hall • 500 m² office- and 600 m² laboratory space total cost: ca. 63 Mio € Funded by Land Bayern and Germany

CALA as a whole 2100 m² laser- and experimental area CALA until 2014 + 500 m² offices + Pre-CALA until 600 m² support laboratories mid 2011

Montag, 2. Mai 2011 Ultimate goal: Improve and combine both diagnostics and therapy ALA Diagnostics: Phase-contrast imaging dramatically Therapy: Ion therapy promises higher irradiation improves visibility of structures (F. Pfeiffer et al.) accuracy with lower dose to healthy tissue (Molls et al.)

Conventional CT Photon therapy

High-quality laser-driven Phase-contrast CT beams may Proton therapy Lung become an attractive alternative for large-scale conventional facilities

Heart

Montag, 2. Mai 2011 BRIX PFS-pro ATLAS-3000 Thomson kHz OPCPA synchr. 1 Hz Ti:Sa laser source 0.5J, 5fs 60 J, 20 fs primary sources 1011 ph/s 700-1400 nm 800 nm 20-35 keV 100 TW 3000 TW

electrons: electrons: ions: 50-300 MeV 0.5-5 GeV 250 MeV 10-100 pC 100 pC – 1(10) nC protons < 10 fs < 10 fs >400 MeV / ΔE/E < 5% ΔE/E 0.1-1% amu C6+ synchronized femto- SPECTRE HHG LUX ETTF LION and aosecond > 50 keV 1 keV 1-25 keV GeV, high Laser-driven secondary sources Thomson aosecond Undulator charge ions source X-rays X-rays beams

LXL: free electron laser

Ultrafast me- bio-medical Tumour therapy with brilliant X-ray imaging resolved radiaon laser-accelerated applicaons 70-200 keV biology parcles AAC 2010 Karsch 1-25 keV

Montag, 2. Mai 2011 X-rays: Description of beamlines ALA

Name Applicaon electron photon photon

energy energy number SPECTRE biomedical imaging with phase contrast method 50-100 MeV > 70 keV 1010 ph/s Source for Powerful, Energec, @ 1 kHz Compact Thomson Radiaon Experiments ETTF development of electron acceleraon: basic 1-5 GeV > 1 MeV 106-107 ph in 5fs Electron and Thomson Test research for LUX and LXL, high energy Thomson Facility scaering LUX ion pump / X-ray probe: preliminary studies for 0.5-5 GeV < 25 keV 108 ph in ~5 fs Laser-driven Undulator X-ray ultrafast radiaon biology source ions from “mini-LION”

LXL ion pump / X-ray probe for ultrafast radiaon 0.5-5 GeV ~ 5 keV 1012 ph in 5 fs Laboratory-scale X-ray free biology coherent! electron Laser

LUX/LXL SPECTRE λU ≫ λL

1. magnets GeV- 70 MeV- electrons electrons 1. laser field 2. electrons 2. electrons 3. undulator radiation 3. Thomson radiation

Montag, 2. Mai 2011 Electron acceleration for SPECTRE: 50 – 300 MeV, 1kHz ALA Few-cycle-pulses (8 fs, 50 mJ) drive quasi-monoenergetic electrons with low background: 50-250 MeV high-quality electrons need a 0.5-1J few-cycle-laser at 1 kHz repetition rate PFS-pro

K. Schmid et al, Phys. Rev. Lett. 102, 124801 (2009)

Stable 200 MeV electron beams with 40fs, 800 mJ pulses: Beams with low energy and charge fluctuation are created with every laser shot:

J. Osterhoff et al, Phys. Rev. Lett. 101, 085002 (2008)

Montag, 2. Mai 2011 PFS-pro ALA

kHz kHz kHz amplifier amplifier amplifier 200 mJ 1J 4x1J pump laser

OPA amplification

pulse generation

• Upgraded pump laser drives OPA stages at 1 kHz up to the 1 J-level • remaining last 5 J stage operates at 10 Hz • Pump upgrade uses disk laser technology

Montag, 2. Mai 2011 ATLAS

5nJ 50µJ 3µJ 2mJ 25mJ 0.5J 1.5J 3J 2J (3x) (2x)

20fs 20fs 300ps Regen 300ps 300ps 300ps 300ps 300ps 20fs Preamp Stretcher Oscillator Mulpass 1 Mulpass 2 Mulpass 3 Mulpass 4 70MHz 70MHz 70MHz 10Hz 10Hz 5Hz 5Hz 5Hz Compressor 5Hz 2J 2J 2J 2J 2J 20mJ 40mJ 40mJ 800mJ 800mJ Bigsky Minilite Surelite Propulse Propulse Propulse Powerlite Powerlite Macholite Macholite new cryocooled last amplifier under development (Amplitude) Energy (compressed/on target) (J) 2 / 1,6

pulse duration (fs) 25

contrast @ -10 ps (with absorber) 108 (1010)

Strehl ratio 0,7 ensures future upgradeablility

Montag, 2. Mai 2011 e-beams from gas cell: 600 MeV, 200 pC: allows LUX experiments into water window

800MeV 600MeV

400MeV

200MeV

300pC

200pC

100pC

Shot #

Montag, 2. Mai 2011 injected beams, gas jet: 50 MeV, 100 pC: target parameters for SPECTRE

a0=2.5, ne= 1.2x1018 cm-3

Montag, 2. Mai 2011 Optical to THz CTR spectra of electrons crossing a metal foil (very preliminary)

Preliminary wide-bandwidth data:

indicate approx. 5 fs duration 4.5 fs gaussian spectrum

at high pressure and/or long gas cell:

oscillations with a period ~16µm

Montag, 2. Mai 2011 Electron acceleration for LUX and LXL: >> 1 GeV ALA

Scaling of electron acceleration to higher energies and charge (0.5 GeV>5 GeV, 100 pC>1 nC):

• Energy conservation: 100x higher laser energy needed (0.6 J > 60 J)

• analytical scaling laws have been confirmed experimentally

Boosted-Frame Particle-in-Cell simulations recently have demonstrated the ability to simulate m-scale laser-wakefield interactions with multi-PW lasers:

electrons laser

Montag, 2. Mai 2011 ATLAS-3000: schematic layout ALA ELI and its spin-offs started several new enabling technologies for large-scale Ti:Sa lasers:

Large Ti:Sa high-power, rep-rated new large-size, crystals: pump lasers high-efficiency gratings

192 mm dia. Ti:Sa crystal 15 J, 1 Hz green pump laser direct-etched gratings (image courtesy Crystal Systems) (image courtesy Thales laser) (image courtesy Plymouth grating labs)

8Jmax 90Jmax 60Jmax

0.5ns 0.5ns 20fs 4J 6J 1.6J 10mJ 30mJ compressor 100mJ 5Hz 5Hz 5Hz twin- multipass 5 (10x) multipass twin- 3 3 PW beam

5nJ 5µJ 3µJ 2mJ 25mJ 0.5J 1.5J 8J

0.5ns 0.5ns 0.5ns 0.5ns stretcher oscillator 20fs 20fs 0.5ns 260J regen (400x) regen

5Hz cleaning pulse 5Hz 5Hz 5Hz 10Hz 10Hz 3 (3x) multipass 4 (5x) multipass

70MHz 1 (12x) multipass 2 (20x) multipass preamplifier (1000x) preamplifier variable beam distribution beam variable

8Jmax 6Jmax

Seed from PFS-pro

12J 0.5ns 20fs compressor Ti:Sapphire amplifier new components: pre-CALA 5Hz 5Hz

pump laser (Nd:YAG 532nm) new components: CALA 300 TW beam

Montag, 2. Mai 2011 brilliance comparison (© F. Pfeiffer) ALA brilliance [ph/ (sec mm2 CALA: peak brilliance of laser driven 2 mrad 0.1% BW)] sources

1022 undulator

deflecting magnet 1015

CALA: BRIX, laser driven sources 1011

107 rotating anode 100 kW, Bremsstrahlung costs (size) 1 10 100 1000 [M€ (meter)]

Montag, 2. Mai 2011 Conclusions

• CALA is going to become the backbone for laser acceleration research in Munich from 2014/15 onwards

• CALA applications focus on compact accelerators for medical purposes - but with EuroNNAc, we are keen for more...

• CALA aims at combining medical diagnosis and therapy, and at developing new imaging/treatment techniques early on

• Key electron parameters for CALA projects have been realized even with the current laser systems at MPQ

• Access to CALA is possible through collaboration with Munich groups in the MAP framework

Montag, 2. Mai 2011