CALA and Garching Plans

CALA and Garching Plans

CALA and Garching plans S Karsch Max-Planck-Institut für Quantenoptik Ludwig-Maximilians-Universität München (Germany) EuroNNAc Workshop, CERN, Geneva, May 3-6, 2011 Montag, 2. Mai 2011 Munich Research Network ALA Munich Centre for Advanced Photonics (MAP) MAP - Munich Centre for Advanced Photonics Munich Center for Integrated Protein Origin and Structure of Science (CIPSM) the Universe Cognition for Technical Nanosystems Initiative Systems (CoTeSys) Munich (NIM) Montag, 2. Mai 2011 What is CALA? Max-Planck-Inst. f. Quantenoptik (MPQ) TUM Informatik TUM Maschinenwesen FRM II LMU Physik TUM Chemie TUM Physik CALA Montag, 2. Mai 2011 Step 1: Pre-CALA until mid 2011 ALA Pre-CALA • 500-m² laser-/experimental hall • Transfer of the MPQ-high-intensity laser ATLAS-100 and its upgrade to 300TW cost: 5 M€ financed by LMU and MAP Pre-CALA allows the continuation and expansion of MAP-activities until 2014 Pre-CALA until mid 2011 Montag, 2. Mai 2011 Step 2: CALA ALA Forschungsbauantrag CALA • 1600 m² experimental/laser hall • 500 m² office- and 600 m² laboratory space total cost: ca. 63 Mio € Funded by Land Bayern and Germany CALA as a whole 2100 m² laser- and experimental area CALA until 2014 + 500 m² offices + Pre-CALA until 600 m² support laboratories mid 2011 Montag, 2. Mai 2011 Ultimate goal: Improve and combine both diagnostics and therapy ALA Diagnostics: Phase-contrast imaging dramatically Therapy: Ion therapy promises higher irradiation improves visibility of structures (F. Pfeiffer et al.) accuracy with lower dose to healthy tissue (Molls et al.) Conventional CT Photon therapy High-quality laser-driven Phase-contrast CT beams may Proton therapy Lung become an attractive alternative for large-scale conventional facilities Heart Montag, 2. Mai 2011 BRIX PFS-pro ATLAS-3000 Thomson kHz OPCPA synchr. 1 Hz Ti:Sa laser source 0.5J, 5fs 60 J, 20 fs primary sources 1011 ph/s 700-1400 nm 800 nm 20-35 keV 100 TW 3000 TW electrons: electrons: ions: 50-300 MeV 0.5-5 GeV 250 MeV 10-100 pC 100 pC – 1(10) nC protons < 10 fs < 10 fs >400 MeV / ΔE/E < 5% ΔE/E 0.1-1% amu C6+ synchronized femto- SPECTRE HHG LUX ETTF LION and aosecond > 50 keV 1 keV 1-25 keV GeV, high Laser-driven secondary sources Thomson aosecond Undulator charge ions source X-rays X-rays beams LXL: free electron laser Ultrafast @me- bio-medical Tumour therapy with brilliant X-ray imaging resolved radiaon laser-accelerated applicaons 70-200 keV biology par@cles AAC 2010 Karsch 1-25 keV Montag, 2. Mai 2011 X-rays: Description of beamlines ALA Name Applicaon electron photon photon energy energy number SPECTRE biomedical imaging with phase contrast method 50-100 MeV > 70 keV 1010 ph/s Source for Powerful, Energec, @ 1 kHz Compact Thomson Radiaon Experiments ETTF development of electron acceleraon: basic 1-5 GeV > 1 MeV 106-107 ph in 5fs Electron and Thomson Test research for LUX and LXL, high energy Thomson Facility scaering LUX ion pump / X-ray probe: preliminary studies for 0.5-5 GeV < 25 keV 108 ph in ~5 fs Laser-driven Undulator X-ray ultrafast radiaon biology source ions from “mini-LION” LXL ion pump / X-ray probe for ultrafast radiaon 0.5-5 GeV ~ 5 keV 1012 ph in 5 fs Laboratory-scale X-ray free biology coherent! electron Laser LUX/LXL SPECTRE λU ≫ λL 1. magnets GeV- 70 MeV- electrons electrons 1. laser field 2. electrons 2. electrons 3. undulator radiation 3. Thomson radiation Montag, 2. Mai 2011 Electron acceleration for SPECTRE: 50 – 300 MeV, 1kHz ALA Few-cycle-pulses (8 fs, 50 mJ) drive quasi-monoenergetic electrons with low background: 50-250 MeV high-quality electrons need a 0.5-1J few-cycle-laser at 1 kHz repetition rate PFS-pro K. Schmid et al, Phys. Rev. Lett. 102, 124801 (2009) Stable 200 MeV electron beams with 40fs, 800 mJ pulses: Beams with low energy and charge fluctuation are created with every laser shot: J. Osterhoff et al, Phys. Rev. Lett. 101, 085002 (2008) Montag, 2. Mai 2011 PFS-pro ALA kHz kHz kHz amplifier amplifier amplifier 200 mJ 1J 4x1J pump laser OPA amplification pulse generation • Upgraded pump laser drives OPA stages at 1 kHz up to the 1 J-level • remaining last 5 J stage operates at 10 Hz • Pump upgrade uses disk laser technology Montag, 2. Mai 2011 ATLAS 5nJ 50µJ 3µJ 2mJ 25mJ 0.5J 1.5J 3J 2J (3x) (2x) 20fs 20fs 300ps Regen 300ps 300ps 300ps 300ps 300ps 20fs Preamp Stretcher Oscillator Mul@pass 1 Mul@pass 2 Mul@pass 3 Mul@pass 4 70MHz 70MHz 70MHz 10Hz 10Hz 5Hz 5Hz 5Hz Compressor 5Hz 2J 2J 2J 2J 2J 20mJ 40mJ 40mJ 800mJ 800mJ Bigsky Minilite Surelite Propulse Propulse Propulse Powerlite Powerlite Macholite Macholite new cryocooled last amplifier under development (Amplitude) Energy (compressed/on target) (J) 2 / 1,6 pulse duration (fs) 25 contrast @ -10 ps (with absorber) 108 (1010) Strehl ratio 0,7 ensures future upgradeablility Montag, 2. Mai 2011 e-beams from gas cell: 600 MeV, 200 pC: allows LUX experiments into water window 800MeV 600MeV 400MeV 200MeV 300pC 200pC 100pC Shot # Montag, 2. Mai 2011 injected beams, gas jet: 50 MeV, 100 pC: target parameters for SPECTRE a0=2.5, ne= 1.2x1018 cm-3 Montag, 2. Mai 2011 Optical to THz CTR spectra of electrons crossing a metal foil (very preliminary) Preliminary wide-bandwidth data: indicate approx. 5 fs duration 4.5 fs gaussian spectrum at high pressure and/or long gas cell: oscillations with a period ~16µm Montag, 2. Mai 2011 Electron acceleration for LUX and LXL: >> 1 GeV ALA Scaling of electron acceleration to higher energies and charge (0.5 GeV>5 GeV, 100 pC>1 nC): • Energy conservation: 100x higher laser energy needed (0.6 J > 60 J) • analytical scaling laws have been confirmed experimentally Boosted-Frame Particle-in-Cell simulations recently have demonstrated the ability to simulate m-scale laser-wakefield interactions with multi-PW lasers: electrons laser Montag, 2. Mai 2011 ATLAS-3000: schematic layout ALA ELI and its spin-offs started several new enabling technologies for large-scale Ti:Sa lasers: Large Ti:Sa high-power, rep-rated new large-size, crystals: pump lasers high-efficiency gratings 192 mm dia. Ti:Sa crystal 15 J, 1 Hz green pump laser direct-etched gratings (image courtesy Crystal Systems) (image courtesy Thales laser) (image courtesy Plymouth grating labs) 8Jmax 90Jmax 60Jmax 0.5ns 0.5ns 20fs 4J 6J 1.6J 10mJ 30mJ compressor 100mJ 5Hz 5Hz 5Hz twin- multipass 5(10x) 3 PW beam3 PW 5nJ 5µJ 3µJ 2mJ 25mJ 0.5J 1.5J 8J 0.5ns 0.5ns 0.5ns 0.5ns stretcher oscillator 20fs 20fs 0.5ns 260J regen(400x) 5Hz pulse cleaning 5Hz 5Hz 5Hz 10Hz 10Hz multipass 3(3x) multipass 4(5x) 70MHz multipass1(12x) multipass 2(20x) preamplifier (1000x) variable beam distribution 8Jmax 6Jmax Seed from PFS-pro 12J 0.5ns 20fs compressor Ti:Sapphire amplifier new components: pre-CALA 5Hz 5Hz pump laser (Nd:YAG 532nm) new components: CALA TW beam 300 Montag, 2. Mai 2011 brilliance comparison (© F. Pfeiffer) ALA brilliance [ph/ (sec mm2 CALA: peak brilliance of laser driven 2 mrad 0.1% BW)] sources 1022 undulator deflecting magnet 1015 CALA: BRIX, laser driven sources 1011 107 rotating anode 100 kW, Bremsstrahlung costs (size) 1 10 100 1000 [M€ (meter)] Montag, 2. Mai 2011 Conclusions • CALA is going to become the backbone for laser acceleration research in Munich from 2014/15 onwards • CALA applications focus on compact accelerators for medical purposes - but with EuroNNAc, we are keen for more... • CALA aims at combining medical diagnosis and therapy, and at developing new imaging/treatment techniques early on • Key electron parameters for CALA projects have been realized even with the current laser systems at MPQ • Access to CALA is possible through collaboration with Munich groups in the MAP framework Montag, 2. Mai 2011.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    18 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us