Estimating the Parameters of Background Selection and Selective Sweeps in Drosophila in the Presence of Gene Conversion
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Weak Selection Revealed by the Whole-Genome Comparison of the X Chromosome and Autosomes of Human and Chimpanzee
Weak selection revealed by the whole-genome comparison of the X chromosome and autosomes of human and chimpanzee Jian Lu and Chung-I Wu* Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637 Communicated by Tomoko Ohta, National Institute of Genetics, Mishima, Japan, January 19, 2005 (received for review November 22, 2004) The effect of weak selection driving genome evolution has at- An alternative approach to measuring the extent and strength tracted much attention in the last decade, but the task of measur- of selection, both positive and negative, is to contrast the ing the strength of such selection is particularly difficult. A useful evolution of X-linked and autosomal genes (18, 19). If the fitness approach is to contrast the evolution of X-linked and autosomal effect of a mutation is (partially) recessive, then this effect can genes in two closely related species in a whole-genome analysis. If be more readily manifested on the X chromosome than on the the fitness effect of mutations is recessive, X-linked genes should autosomes (20). When the recessive mutations are still rare, they evolve more rapidly than autosomal genes when the mutations are will nonetheless be expressed in the hemizygous males of the XY advantageous, and they should evolve more slowly than autoso- system. On the other hand, autosomal mutations have to become mal genes when the mutations are deleterious. We found synon- sufficiently frequent to form homozygotes to be influenced by ymous substitutions on the X chromosome of human and chim- natural selection under random mating. Therefore, if recessive panzee to be less frequent than those on the autosomes. -
Population Size and the Rate of Evolution
Review Population size and the rate of evolution 1,2 1 3 Robert Lanfear , Hanna Kokko , and Adam Eyre-Walker 1 Ecology Evolution and Genetics, Research School of Biology, Australian National University, Canberra, ACT, Australia 2 National Evolutionary Synthesis Center, Durham, NC, USA 3 School of Life Sciences, University of Sussex, Brighton, UK Does evolution proceed faster in larger or smaller popu- mutations occur and the chance that each mutation lations? The relationship between effective population spreads to fixation. size (Ne) and the rate of evolution has consequences for The purpose of this review is to synthesize theoretical our ability to understand and interpret genomic varia- and empirical knowledge of the relationship between tion, and is central to many aspects of evolution and effective population size (Ne, Box 1) and the substitution ecology. Many factors affect the relationship between Ne rate, which we term the Ne–rate relationship (NeRR). A and the rate of evolution, and recent theoretical and positive NeRR implies faster evolution in larger popula- empirical studies have shown some surprising and tions relative to smaller ones, and a negative NeRR implies sometimes counterintuitive results. Some mechanisms the opposite (Figure 1A,B). Although Ne has long been tend to make the relationship positive, others negative, known to be one of the most important factors determining and they can act simultaneously. The relationship also the substitution rate [5–8], several novel predictions and depends on whether one is interested in the rate of observations have emerged in recent years, causing some neutral, adaptive, or deleterious evolution. Here, we reassessment of earlier theory and highlighting some gaps synthesize theoretical and empirical approaches to un- in our understanding. -
Demography and Weak Selection Drive Patterns of Transposable Element Diversity in Natural Populations of Arabidopsis Lyrata
Demography and weak selection drive patterns of transposable element diversity in natural populations of Arabidopsis lyrata Steven Lockton, Jeffrey Ross-Ibarra, and Brandon S. Gaut* Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697 Edited by M. T. Clegg, University of California, Irvine, CA, and approved June 25, 2008 (received for review May 13, 2008) Transposable elements (TEs) are the major component of most approximately 6,000 TEs within the A. thaliana genome have been plant genomes, and characterizing their population dynamics is well characterized (4, 19). A. lyrata diverged from A. thaliana Ϸ5 key to understanding plant genome complexity. Yet there have million years ago (20) and has become a model system for plant been few studies of TE population genetics in plant systems. To molecular population genetics (21). A. lyrata is a predominantly study the roles of selection, transposition, and demography in self-incompatible, perennial species distributed across northern and shaping TE population diversity, we generated a polymorphism central Europe, Asia, and North America. A. lyrata consists of large, dataset for six TE families in four populations of the flowering stable populations, particularly in Central Europe where popula- plant Arabidopsis lyrata. The TE data indicated significant differ- tions are hypothesized to have served as Pleistocene refugia (21– entiation among populations, and maximum likelihood procedures 23). Importantly, Ross-Ibarra et al. (24) modeled the demographic suggested weak selection. For strongly bottlenecked populations, history of six natural A. lyrata populations based on single- the observed TE band-frequency spectra fit data simulated under nucleotide polymorphism (SNP) data from 77 nuclear genes. -
Joint Effects of Genetic Hitchhiking and Background Selection on Neutral Variation
Copyright 2000 by the Genetics Society of America Joint Effects of Genetic Hitchhiking and Background Selection on Neutral Variation Yuseob Kim and Wolfgang Stephan Department of Biology, University of Rochester, Rochester, New York 14627 Manuscript received December 7, 1999 Accepted for publication March 20, 2000 ABSTRACT Due to relatively high rates of strongly selected deleterious mutations, directional selection on favorable alleles (causing hitchhiking effects on linked neutral polymorphisms) is expected to occur while a deleteri- ous mutation-selection balance is present in a population. We analyze this interaction of directional selection and background selection and study their combined effects on neutral variation, using a three- locus model in which each locus is subjected to either deleterious, favorable, or neutral mutations. Average heterozygosity is measured by simulations (1) at the stationary state under the assumption of recurrent hitchhiking events and (2) as a transient level after a single hitchhiking event. The simulation results are compared to theoretical predictions. It is shown that known analytical solutions describing the hitchhiking effect without background selection can be modi®ed such that they accurately predict the joint effects of hitchhiking and background on linked, neutral variation. Generalization of these results to a more appro- priate multilocus model (such that background selection can occur at multiple sites) suggests that, in regions of very low recombination rates, stationary levels of nucleotide diversity are primarily determined by hitchhiking, whereas in regions of high recombination, background selection is the dominant force. The implications of these results on the identi®cation and estimation of the relevant parameters of the model are discussed. -
Codon Usage Bias in the Model Moss Physcomitrella Patens
GBE Selfing in Haploid Plants and Efficacy of Selection: Codon Usage Bias in the Model Moss Physcomitrella patens Pe´ ter Szo¨ve´nyi,1,* Kristian K. Ullrich,2,7 Stefan A. Rensing,2,3 Daniel Lang,4 Nico van Gessel,5 Hans K. Stenøien,6 Elena Conti,1 and Ralf Reski3,5 1Department of Systematic and Evolutionary Botany, University of Zurich, Switzerland 2Plant Cell Biology, Faculty of Biology, University of Marburg, Germany 3BIOSS—Centre for Biological Signalling Studies, University of Freiburg, Germany 4Plant Genome and Systems Biology, Helmholtz Zentrum Mu¨ nchen, German Research Center for Environmental Health, Neuherberg, Germany 5Plant Biotechnology, Faculty of Biology, University of Freiburg, Germany 6NTNU University Museum, Trondheim, Norway 7Present address: Max-Planck-Insitut fu¨ r Evolutionsbiologie, Plo¨n,Germany *Corresponding author: E-mail: [email protected]. Accepted: May 25, 2017 Data deposition: This project has been deposited at EMBL ENA under the accession PRJEB8683. Abstract A long-term reduction in effective population size will lead to major shift in genome evolution. In particular, when effective population size is small, genetic drift becomes dominant over natural selection. The onset of self-fertilization is one evolutionary event considerably reducing effective size of populations. Theory predicts that this reduction should be more dramatic in organ- isms capable for haploid than for diploid selfing. Although theoretically well-grounded, this assertion received mixed experimen- tal support. Here, we test this hypothesis by analyzing synonymous codon usage bias of genes in the model moss Physcomitrella patens frequently undergoing haploid selfing. In line with population genetic theory, we found that the effect of natural selection on synonymous codon usage bias is very weak. -
Recombination, Dominance and Selection on Amino Acid Polymorphism in the Drosophila Genome: Contrasting Patterns on the X and Fourth Chromosomes
Copyright 2003 by the Genetics Society of America Recombination, Dominance and Selection on Amino Acid Polymorphism in the Drosophila Genome: Contrasting Patterns on the X and Fourth Chromosomes Lea A. Sheldahl, Daniel M. Weinreich and David M. Rand1 Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912 Manuscript received December 14, 2002 Accepted for publication June 27, 2003 ABSTRACT Surveys of nucleotide polymorphism and divergence indicate that the average selection coefficient on Drosophila proteins is weakly positive. Similar surveys in mitochondrial genomes and in the selfing plant Arabidopsis show that weak negative selection has operated. These differences have been attributed to the low recombination environment of mtDNA and Arabidopsis that has hindered adaptive evolution through the interference effects of linkage. We test this hypothesis with new sequence surveys of proteins lying in low recombination regions of the Drosophila genome. We surveyed Ͼ3800 bp across four proteins at the tip of the X chromosome and Ͼ3600 bp across four proteins on the fourth chromosome in 24 strains of D. melanogaster and 5 strains of D. simulans. This design seeks to study the interaction of selection and linkage by comparing silent and replacement variation in semihaploid (X chromosome) and diploid (fourth chromosome) environments lying in regions of low recombination. While the data do indicate very low rates of exchange, all four gametic phases were observed both at the tip of the X and across the ϭ fourth chromosome. Silent variation is very low at the tip of the X ( S 0.0015) and on the fourth ϭ chromosome ( S 0.0002), but the tip of the X shows a greater proportional loss of variation than the fourth shows relative to normal-recombination regions. -
Detecting the Form of Selection from DNA Sequence Data
Outlook COMMENT Male:female mutation ratio muscular dystrophy, neurofibromatosis and retinoblast- outcome of further investigation, this unique transposition oma), there is a large male excess. So, I believe the evidence event and perhaps others like it are sure to provide impor- is convincing that the male base-substitution rate greatly tant cytogenetic and evolutionary insights. exceeds the female rate. There are a number of reasons why the historical Acknowledgements male:female mutation ratio is likely to be less than the I have profited greatly from discussions with my colleagues current one, the most important being the lower age of B. Dove, B. Engels, C. Denniston and M. Susman. My reproduction in the earliest humans and their ape-like greatest debt is to D. Page for a continuing and very fruitful ancestors. More studies are needed. But whatever the dialog and for providing me with unpublished data. References Nature 406, 622–625 6 Engels, W.R. et al. (1994) Long-range cis preference in DNA 1 Vogel, F. and Motulsky, A. G. (1997) Human Genetics: 4 Shimmin, L.C. et al. (1993) Potential problems in estimating homology search over the length of a Drosophila chromosome. Problems and Approaches. Springer-Verlag the male-to-female mutation rate ratio from DNA sequence Science 263, 1623–1625 2 Crow, J. F. (1997) The high spontaneous mutation rate: is it a data. J. Mol. Evol. 37, 160–166 7 Crow, J.F. (2000) The origins, patterns and implications of health risk? Proc. Natl. Acad. Sci. U. S. A. 94, 8380–8386 5 Richardson, C. et al. -
Gene Flow 1 6 James Mallet
Gene Flow 1 6 James Mallet Calton Laboratory, Department of Biology, Univetsity College London, 4 Stephenson Way, London NWI 2HE, UK What is Gene Flow? 'Gene flow' means the movement of genes. In some cases, small fragments of DNA may pass from one individual directly into the germline of another, perhaps transduced by a pathogenic virus or other vector, or deliberately via a human transgenic manipulation. However, this kind of gene flow, known as horizontal gene transfer, is rare. Most of the time, gene flow is caused by the movement or dispersal of whole organisms or genomes from one popula- tion to another. After entering a new population, immigrant genomes may become incorporated due to sexual reproduction or hybridization, and will be gradually broken up by recombination. 'Genotype flow' would therefore be a more logical term to indicate that the whole genome is moving at one time. The term 'gene flow' is used probably because of an implicit belief in abundant recombination, and because most theory is still based on simple single locus models: it does not mean that genes are transferred one at a time. The fact that gene flow is usually caused by genotype flow has important consequences for its measurement, as we shall see. Two Meanings of 'Gene Flow' We are often taught that 'dispersal does not necessarily lead to gene flow'. The term 'gene flow' is then being used in the sense of a final state of the population, i.e. successful establishment of moved genes. This disagrees somewhat with a more straightforward interpretation of gene flow as actual EICAR International 2001. -
1 1 Title: Background Selection and the Statistics of Population Differentiation: 2 Consequences for Detecting Local
bioRxiv preprint doi: https://doi.org/10.1101/326256; this version posted May 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 2 Title: Background selection and the statistics of population differentiation: 3 consequences for detecting local adaptation 4 5 Authors: Remi Matthey-Doret1 and Michael C. Whitlock 6 7 Affiliation: Department of Zoology and Biodiversity Research Centre, University of 8 British Columbia, Vancouver, British Columbia V6T 1Z4, Canada 9 10 1 Corresponding author: [email protected] 11 12 1 bioRxiv preprint doi: https://doi.org/10.1101/326256; this version posted May 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 13 Abstract 14 Background selection is a process whereby recurrent deleterious mutations cause a 15 decrease in the effective population size and genetic diversity at linked loci. Several 16 authors have suggested that variation in the intensity of background selection could 17 cause variation in FST across the genome, which could confound signals of local 18 adaptation in genome scans. We performed realistic simulations of DNA sequences, 19 using parameter estimates from humans and sticklebacks, to investigate how 20 variation in the intensity of background selection affects different statistics of 21 population differentiation. -
Arxiv:1302.1148V1 [Q-Bio.PE] 5 Feb 2013 I
Genetic draft, selective interference, and population genetics of rapid adaptation Richard A. Neher Max Planck Institute for Developmental Biology, T¨ubingen, 72070, Germany. [email protected] (Dated: January 8, 2018) To learn about the past from a sample of genomic sequences, one needs to understand how evolutionary processes shape genetic diversity. Most population genetic inference is based on frameworks assuming adaptive evolution is rare. But if positive selection operates on many loci simultaneously, as has recently been suggested for many species including animals such as flies, a different approach is necessary. In this review, I discuss recent progress in characterizing and understanding evolution in rapidly adapting populations where random associations of mutations with genetic backgrounds of different fitness, i.e., genetic draft, dominate over genetic drift. As a result, neutral genetic diversity depends weakly on population size, but strongly on the rate of adaptation or more generally the variance in fitness. Coalescent processes with multiple merg- ers, rather than Kingman's coalescent, are appropriate genealogical models for rapidly adapting populations with important implications for population genetic inference. Contents I. Introduction 1 II. Adaptation of large and diverse asexual populations 2 A. Clonal Interference 3 B. Genetic background and multiple mutations 5 III. Evolution of facultatively sexual populations 6 IV. Selective interference in obligately sexual organisms 8 V. Genetic diversity, draft, and coalescence 9 A. Genetic draft in obligately sexual populations 9 B. Soft sweeps 10 C. The Bolthausen-Sznitman coalescent and rapidly adapting populations 11 D. Background selection and genetic diversity 11 VI. Conclusions and future directions 12 Acknowledgments 13 References 13 A. -
Genomic Insights Into Positive Selection
Review TRENDS in Genetics Vol.22 No.8 August 2006 Genomic insights into positive selection Shameek Biswas and Joshua M. Akey Department of Genome Sciences, University of Washington, 1705 NE Pacific, Seattle, WA 98195, USA The traditional way of identifying targets of adaptive more utilitarian benefits, each target of positive selection evolution has been to study a few loci that one has a story to tell about the historical forces and events hypothesizes a priori to have been under selection. that have shaped the history of a population. This approach is complicated because of the confound- Several genome-wide analyses for positive selection ing effects that population demographic history and have been performed in a variety of species. In this review, selection have on patterns of DNA sequence variation. In we summarize some of the recent studies, primarily principle, multilocus analyses can facilitate robust focusing on humans, critically evaluate what genome- inferences of selection at individual loci. The deluge of wide scans for selection are and are not likely to find and large-scale catalogs of genetic variation has stimulated suggest future avenues of research. A brief overview of many genome-wide scans for positive selection in statistical methods used to detect deviations from several species. Here, we review some of the salient neutrality is summarized in Box 1. For more detailed observations of these studies, identify important chal- discussions, see Refs [6,7]. lenges ahead, consider the limitations of genome-wide scans for selection and discuss the potential significance Thinking genomically of a comprehensive understanding of genomic patterns Positive selection perturbs patterns of genetic variation of selection for disease-related research. -
Background Selection Does Not Mimic the Patterns of Genetic Diversity Produced by Selective Sweeps
bioRxiv preprint doi: https://doi.org/10.1101/2019.12.13.876136; this version posted June 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Background selection does not mimic the patterns of genetic diversity 2 produced by selective sweeps 1 3 Daniel R. Schrider 1 4 Department of Genetics, University of North Carolina, Chapel Hill, NC 27514 5 1 Abstract 6 It is increasingly evident that natural selection plays a prominent role in shaping patterns of diversity across the genome. The 7 most commonly studied modes of natural selection are positive selection and negative selection, which refer to directional 8 selection for and against derived mutations, respectively. Positive selection can result in hitchhiking events, in which a 9 beneficial allele rapidly replaces all others in the population, creating a valley of diversity around the selected site along with 10 characteristic skews in allele frequencies and linkage disequilibrium (LD) among linked neutral polymorphisms. Similarly, 11 negative selection reduces variation not only at selected sites but also at linked sites|a phenomenon called background 12 selection (BGS). Thus, discriminating between these two forces may be difficult, and one might expect efforts to detect 13 hitchhiking to produce an excess of false positives in regions affected by BGS. Here, we examine the similarity between BGS 14 and hitchhiking models via simulation. First, we show that BGS may somewhat resemble hitchhiking in simplistic scenarios in 15 which a region constrained by negative selection is flanked by large stretches of unconstrained sites, echoing previous results.