Estimating the Genome-Wide Contribution of Selection to Temporal Allele Frequency Change
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Population Size and the Rate of Evolution
Review Population size and the rate of evolution 1,2 1 3 Robert Lanfear , Hanna Kokko , and Adam Eyre-Walker 1 Ecology Evolution and Genetics, Research School of Biology, Australian National University, Canberra, ACT, Australia 2 National Evolutionary Synthesis Center, Durham, NC, USA 3 School of Life Sciences, University of Sussex, Brighton, UK Does evolution proceed faster in larger or smaller popu- mutations occur and the chance that each mutation lations? The relationship between effective population spreads to fixation. size (Ne) and the rate of evolution has consequences for The purpose of this review is to synthesize theoretical our ability to understand and interpret genomic varia- and empirical knowledge of the relationship between tion, and is central to many aspects of evolution and effective population size (Ne, Box 1) and the substitution ecology. Many factors affect the relationship between Ne rate, which we term the Ne–rate relationship (NeRR). A and the rate of evolution, and recent theoretical and positive NeRR implies faster evolution in larger popula- empirical studies have shown some surprising and tions relative to smaller ones, and a negative NeRR implies sometimes counterintuitive results. Some mechanisms the opposite (Figure 1A,B). Although Ne has long been tend to make the relationship positive, others negative, known to be one of the most important factors determining and they can act simultaneously. The relationship also the substitution rate [5–8], several novel predictions and depends on whether one is interested in the rate of observations have emerged in recent years, causing some neutral, adaptive, or deleterious evolution. Here, we reassessment of earlier theory and highlighting some gaps synthesize theoretical and empirical approaches to un- in our understanding. -
Joint Effects of Genetic Hitchhiking and Background Selection on Neutral Variation
Copyright 2000 by the Genetics Society of America Joint Effects of Genetic Hitchhiking and Background Selection on Neutral Variation Yuseob Kim and Wolfgang Stephan Department of Biology, University of Rochester, Rochester, New York 14627 Manuscript received December 7, 1999 Accepted for publication March 20, 2000 ABSTRACT Due to relatively high rates of strongly selected deleterious mutations, directional selection on favorable alleles (causing hitchhiking effects on linked neutral polymorphisms) is expected to occur while a deleteri- ous mutation-selection balance is present in a population. We analyze this interaction of directional selection and background selection and study their combined effects on neutral variation, using a three- locus model in which each locus is subjected to either deleterious, favorable, or neutral mutations. Average heterozygosity is measured by simulations (1) at the stationary state under the assumption of recurrent hitchhiking events and (2) as a transient level after a single hitchhiking event. The simulation results are compared to theoretical predictions. It is shown that known analytical solutions describing the hitchhiking effect without background selection can be modi®ed such that they accurately predict the joint effects of hitchhiking and background on linked, neutral variation. Generalization of these results to a more appro- priate multilocus model (such that background selection can occur at multiple sites) suggests that, in regions of very low recombination rates, stationary levels of nucleotide diversity are primarily determined by hitchhiking, whereas in regions of high recombination, background selection is the dominant force. The implications of these results on the identi®cation and estimation of the relevant parameters of the model are discussed. -
Experimental Evolution
Heredity (2008) 100, 441–442 & 2008 Nature Publishing Group All rights reserved 0018-067X/08 $30.00 www.nature.com/hdy EDITORIAL Experimental evolution Heredity (2008) 100, 441–442; doi:10.1038/hdy.2008.19 and their interactions, it should be possible to predict which genes will be altered, how they will be altered and in what order, in any defined environment. Our under- Microcosms are used in ecology and evolution to shrink standing of cell biology is as yet wholly inadequate for space and time to manageable scales. They have never the task, but the smaller genomes of viruses might be been extensively used in ecology, because many ecolo- more accessible. Bull and Molineux describe the most gists doubt that any important features of large complex ambitious attempts to date in pursuit of this grail, using systems, such as lakes, can be profitably investigated in phage T7 of E. coli. Given the detailed knowledge of T7 small chambers or vials (Carpenter, 1996). Consequently, genetics, it should be possible to introduce a specific ecology lacks any generally accepted model system genetic lesion and then predict what compensatory to facilitate the cumulative growth of understanding of mutations will be fixed so as to restore the lost function. how communities work. Evolutionary biologists have In many cases, these mutations were correctly identified been less skeptical, and at least three major schools and for very simple genomes, at least, a nearly complete have adopted microcosm methods. Perhaps the best understanding of adaptation seems to be within grasp. known is the extensive exploration of the effects of artificial selection in Drosophila (and to a lesser extent in At the same time, both Ferenci and Bull and Molineux other organisms, such as mice). -
Detecting the Form of Selection from DNA Sequence Data
Outlook COMMENT Male:female mutation ratio muscular dystrophy, neurofibromatosis and retinoblast- outcome of further investigation, this unique transposition oma), there is a large male excess. So, I believe the evidence event and perhaps others like it are sure to provide impor- is convincing that the male base-substitution rate greatly tant cytogenetic and evolutionary insights. exceeds the female rate. There are a number of reasons why the historical Acknowledgements male:female mutation ratio is likely to be less than the I have profited greatly from discussions with my colleagues current one, the most important being the lower age of B. Dove, B. Engels, C. Denniston and M. Susman. My reproduction in the earliest humans and their ape-like greatest debt is to D. Page for a continuing and very fruitful ancestors. More studies are needed. But whatever the dialog and for providing me with unpublished data. References Nature 406, 622–625 6 Engels, W.R. et al. (1994) Long-range cis preference in DNA 1 Vogel, F. and Motulsky, A. G. (1997) Human Genetics: 4 Shimmin, L.C. et al. (1993) Potential problems in estimating homology search over the length of a Drosophila chromosome. Problems and Approaches. Springer-Verlag the male-to-female mutation rate ratio from DNA sequence Science 263, 1623–1625 2 Crow, J. F. (1997) The high spontaneous mutation rate: is it a data. J. Mol. Evol. 37, 160–166 7 Crow, J.F. (2000) The origins, patterns and implications of health risk? Proc. Natl. Acad. Sci. U. S. A. 94, 8380–8386 5 Richardson, C. et al. -
Long-Term Experimental Evolution in Escherichia Coli. V. Effects of Recombination with Immigrant Genotypes on the Rate of Bacterial Evolution
© Birkhliuser Verlag, Basel, 1997 J. evol. bioi. 10 (1997) 743-769 1010-061X/97/050743-27 $ 1.50 + 0.20/0 I Journal of Evolutionary Biology Long-term experimental evolution in Escherichia coli. V. Effects of recombination with immigrant genotypes on the rate of bacterial evolution 1 2 3 V. Souza, P. E. Turner • and R. E. LenskF·* 1Centro de Ecologia, Universidad Nacional Aut6noma de Mexico, Coyoacim, Ciudad de Mexico, 04510, Mexico 2 Center for Microbial Ecology, Michigan State University, East Lansing MI 48824, USA 3 Current address: Department of Zoology, University of Maryland, College Park MD 20742, USA Key words: Complex selection; conjugation; Escherichia coli; experimental evolu tion; hitchhiking; migration; plasmids; recombination. Abstract This study builds upon an earlier experiment that examined the dynamics of mean fitness in evolving populations of Escherichia coli in which mutations were the sole source of genetic variation. During thousands of generations in a constant environment, the rate of improvement in mean fitness of these asexual populations slowed considerably from an initially rapid pace. In this study, we sought to determine whether sexual recombination with novel genotypes would reaccelerate the rate of adaption in these populations. To that end, treatment populations were propagated for an additional 1000 generations in the same environment as their ancestors, but they were periodically allowed to mate with an immigrant pool of genetically distinct Hfr (high frequency recombination) donors. These donors could transfer genes to the resident populations by conjugation, but the donors them selves could not grow in the experimental environment. Control populations were propagated under identical conditions, but in the absence of sexual recombination with the donors. -
Selection Experiments and Experimental Evolution of Performance and Physiology
Garland_ch12.qxd 8/3/09 2:03 PM Page 301 12 SELECTION EXPERIMENTS AND EXPERIMENTAL EVOLUTION OF PERFORMANCE AND PHYSIOLOGY John G. Swallow, Jack P. Hayes, Pawel Koteja, and Theodore Garland, Jr. THE IMPORTANCE OF REPLICATION Selection on VO2max and the Correlation between BMR and VO2max EXPERIMENTAL EVOLUTION OF MICE IN DIFFERENT THERMAL ENVIRONMENTS SEXUAL SELECTION: EFFECTS OF ORNAMENTS ON PERFORMANCE WIND TUNNEL FLIGHT IN DROSOPHILA Guppies ENDURANCE RUNNING AND STRESS-INDUCED ANALGESIA IN MICE Stalk-Eyed Flies ENDURANCE RUNNING IN RATS AND VOLUNTARY WHEEL “EXPERIMENTS” WITHOUT PRECISELY DEFINED SELECTION RUNNING IN MICE CRITERIA EVOLUTION OF THE RATE OF ENERGY METABOLISM Horse Racing IN RODENTS Greyhound Racing Selection on Basal Metabolic Rate PHYSIOLOGICAL DIFFERENCES AMONG STRAINS Selection on Heat Loss OF MICE AND BREEDS OF DOG Rate of Metabolism as a Hypothetical CONCLUSION Correlated Response Experimental Evolution: Concepts, Methods, and Applications of Selection Experiments, edited by Theodore Garland, Jr., and Michael R. Rose. Copyright © by the Regents of the University of California. All rights of reproduction in any form reserved. 301 Garland_ch12.qxd 8/3/09 2:03 PM Page 302 Since a seminal paper by Arnold (1983), direct measurement of whole-organism perfor- mance has become central to functional evolutionary biology (e.g., Arnold 2003; Ghalambor et al. 2003; Kingsolver and Huey 2003). In this context, “performance” can be most easily defined by example. Assuming that individuals can be fully motivated (e.g., see Swallow et al. 1998a; Harris and Steudel 2002; Losos et al. 2002; Tobalske et al. 2004), it is relatively easy to measure maximal sprint running speed of small mammals and lizards on photocell-timed racetracks or high-speed treadmills (e.g., Calsbeek and Irschick 2007; Chappell et al. -
Darwinian Evolution in a Translation-Coupled RNA Replication System Within a Cell-Like Compartment
ARTICLE Received 28 Mar 2013 | Accepted 22 Aug 2013 | Published 3 Oct 2013 DOI: 10.1038/ncomms3494 Darwinian evolution in a translation-coupled RNA replication system within a cell-like compartment Norikazu Ichihashi1,2, Kimihito Usui1, Yasuaki Kazuta1, Takeshi Sunami1,2, Tomoaki Matsuura1,2,3 & Tetsuya Yomo1,2,4 The ability to evolve is a key characteristic that distinguishes living things from non-living chemical compounds. The construction of an evolvable cell-like system entirely from non-living molecules has been a major challenge. Here we construct an evolvable artificial cell model from an assembly of biochemical molecules. The artificial cell model contains artificial genomic RNA that replicates through the translation of its encoded RNA replicase. We perform a long-term (600-generation) replication experiment using this system, in which mutations are spontaneously introduced into the RNA by replication error, and highly replicable mutants dominate the population according to Darwinian principles. During evolution, the genomic RNA gradually reinforces its interaction with the translated replicase, thereby acquiring competitiveness against selfish (parasitic) RNAs. This study provides the first experimental evidence that replicating systems can be developed through Darwinian evolution in a cell-like compartment, even in the presence of parasitic replicators. 1 Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Osaka University, Suita, Osaka 565-0871, Japan. 2 Graduate School of Information Science and Technology, Osaka University, Suita, Osaka 565-0871, Japan. 3 Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan. 4 Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan. Correspondence and requests for materials should be addressed to T.Y. -
1 1 Title: Background Selection and the Statistics of Population Differentiation: 2 Consequences for Detecting Local
bioRxiv preprint doi: https://doi.org/10.1101/326256; this version posted May 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 2 Title: Background selection and the statistics of population differentiation: 3 consequences for detecting local adaptation 4 5 Authors: Remi Matthey-Doret1 and Michael C. Whitlock 6 7 Affiliation: Department of Zoology and Biodiversity Research Centre, University of 8 British Columbia, Vancouver, British Columbia V6T 1Z4, Canada 9 10 1 Corresponding author: [email protected] 11 12 1 bioRxiv preprint doi: https://doi.org/10.1101/326256; this version posted May 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 13 Abstract 14 Background selection is a process whereby recurrent deleterious mutations cause a 15 decrease in the effective population size and genetic diversity at linked loci. Several 16 authors have suggested that variation in the intensity of background selection could 17 cause variation in FST across the genome, which could confound signals of local 18 adaptation in genome scans. We performed realistic simulations of DNA sequences, 19 using parameter estimates from humans and sticklebacks, to investigate how 20 variation in the intensity of background selection affects different statistics of 21 population differentiation. -
Arxiv:1302.1148V1 [Q-Bio.PE] 5 Feb 2013 I
Genetic draft, selective interference, and population genetics of rapid adaptation Richard A. Neher Max Planck Institute for Developmental Biology, T¨ubingen, 72070, Germany. [email protected] (Dated: January 8, 2018) To learn about the past from a sample of genomic sequences, one needs to understand how evolutionary processes shape genetic diversity. Most population genetic inference is based on frameworks assuming adaptive evolution is rare. But if positive selection operates on many loci simultaneously, as has recently been suggested for many species including animals such as flies, a different approach is necessary. In this review, I discuss recent progress in characterizing and understanding evolution in rapidly adapting populations where random associations of mutations with genetic backgrounds of different fitness, i.e., genetic draft, dominate over genetic drift. As a result, neutral genetic diversity depends weakly on population size, but strongly on the rate of adaptation or more generally the variance in fitness. Coalescent processes with multiple merg- ers, rather than Kingman's coalescent, are appropriate genealogical models for rapidly adapting populations with important implications for population genetic inference. Contents I. Introduction 1 II. Adaptation of large and diverse asexual populations 2 A. Clonal Interference 3 B. Genetic background and multiple mutations 5 III. Evolution of facultatively sexual populations 6 IV. Selective interference in obligately sexual organisms 8 V. Genetic diversity, draft, and coalescence 9 A. Genetic draft in obligately sexual populations 9 B. Soft sweeps 10 C. The Bolthausen-Sznitman coalescent and rapidly adapting populations 11 D. Background selection and genetic diversity 11 VI. Conclusions and future directions 12 Acknowledgments 13 References 13 A. -
Genomic Insights Into Positive Selection
Review TRENDS in Genetics Vol.22 No.8 August 2006 Genomic insights into positive selection Shameek Biswas and Joshua M. Akey Department of Genome Sciences, University of Washington, 1705 NE Pacific, Seattle, WA 98195, USA The traditional way of identifying targets of adaptive more utilitarian benefits, each target of positive selection evolution has been to study a few loci that one has a story to tell about the historical forces and events hypothesizes a priori to have been under selection. that have shaped the history of a population. This approach is complicated because of the confound- Several genome-wide analyses for positive selection ing effects that population demographic history and have been performed in a variety of species. In this review, selection have on patterns of DNA sequence variation. In we summarize some of the recent studies, primarily principle, multilocus analyses can facilitate robust focusing on humans, critically evaluate what genome- inferences of selection at individual loci. The deluge of wide scans for selection are and are not likely to find and large-scale catalogs of genetic variation has stimulated suggest future avenues of research. A brief overview of many genome-wide scans for positive selection in statistical methods used to detect deviations from several species. Here, we review some of the salient neutrality is summarized in Box 1. For more detailed observations of these studies, identify important chal- discussions, see Refs [6,7]. lenges ahead, consider the limitations of genome-wide scans for selection and discuss the potential significance Thinking genomically of a comprehensive understanding of genomic patterns Positive selection perturbs patterns of genetic variation of selection for disease-related research. -
Experimental Evolution in Vivo to Identify Selective Pressures During Pneumococcal Colonization
bioRxiv preprint doi: https://doi.org/10.1101/2020.01.15.908590; this version posted January 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Experimental Evolution in vivo to Identify Selective Pressures During Pneumococcal Colonization Vaughn S. Cooper1, Erin Honsa2,3, Hannah Rowe2, Christopher Deitrick1, Amy R. Iverson2, Jonathan J. Whittall4, Stephanie L. Neville5, Christopher A. McDevitt5 Colin Kietzman2,6, Jason W. Rosch2* 1 Department of Microbiology and Molecular Genetics, and Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine 2 St Jude Children’s Research Hospital, Department of Infectious Diseases 3 Current affiliation: A.T. Still University, School of Osteopathic Medicine in Arizona, 5850 E. Still Circle, Mesa, AZ, 85206 4 Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia 5 Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia 6 Current affiliation: St Jude Children’s Research Hospital, Department of Developmental Neurobiology *Corresponding Author Jason Rosch, PhD. Department of Infectious Diseases St Jude Children’s Research Hospital 262 Danny Thomas Place Memphis, TN 38105 901-595-3408 [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.01.15.908590; this version posted January 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract (224 words) Experimental evolution is a powerful technique to understand how populations evolve from selective pressures imparted by the surrounding environment. -
Experimental Evolution Heals the Scars of Genome-Scale Recoding COMMENTARY Olivier Tenaillona,1
COMMENTARY Experimental evolution heals the scars of genome-scale recoding COMMENTARY Olivier Tenaillona,1 Much of the dramatic plot of Mary Shelley’s Frankenstein uncharged tRNA is subsequently released and the ri- resulted from the apparent scars and imperfections of bosome moves forward to expose the next codon. the creature her hero brought to life. Similarly, organisms Incorporating a nsAA therefore requires a combina- highly modified by synthetic biologists suffer from scars tion of codon, tRNA, and aaRS that act specifically and and imperfect functioning that their creators had not exclusively among themselves and the nsAA. Al- intended. However, as presented in PNAS by Wannier though every step is challenging, the use of tRNA- et al. (1), synthetic biologists can use experimental evo- aaRS from a diverged organism and the use of positive lution to rapidly heal some of these scars, as they have and negative selections to improve specificity and performed on a highly recoded Escherichia coli strain exclude interactions with other tRNA, aaRS, or amino modified to incorporate efficiently nonstandard amino acids has been quite successful (4). As a result, the acids (nsAA). machinery for the introduction of the nsAA can be One of the aims of synthetic biology is to expand carried on plasmids and easily introduced in new the range of functions natural organisms can perform. genotypes. While chemists have created myriads of new mole- Reserving exclusively a codon for the nsAA is yet cules over the last centuries, their ability to create another challenge, as it requires multiple modifica- complex molecules is surpassed by the biochemistry tions of the genome.