2-6 Azeotropic/Zeotropic Refrigerants
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Use of Organic Zeotropic Mixture with High Temperature Glide As a Working Fluid in Medium-Temperature Vapor Power Plant
Borsukiewicz, A.: The Use of Organic Zeotropic Mixture with … THERMAL SCIENCE, Year 2017, Vol. 21, No. 2, pp. 1153-1160 1153 THE USE OF ORGANIC ZEOTROPIC MIXTURE WITH HIGH TEMPERATURE GLIDE AS A WORKING FLUID IN MEDIUM-TEMPERATURE VAPOR POWER PLANT by Aleksandra BORSUKIEWICZ* ORC Power Plants Research and Development Centre, West Pomeranian University of Technology, Szczecin, Poland Original scientific paper https://doi.org/10.2298/TSCI141120088B The paper presents the idea of using organic substances as working fluids in va- por power plants, in order to convert the low and medium temperature thermal energy sources into electrical energy. The calculation results of the power plant efficiency for butane-ethane zeotropic mixtures of different mass compositions, for the power plant supplied with hot water having a temperature of 120 °C. Based on the results of thermal-flow calculations it was found that the use of zeo- tropic mixture does not allow to increase the efficiency and output of the power plant (these values appeared as slightly lower ones). However, it was found that, through the selection of a mixture of sufficiently large temperature glide, the heat exchange surface of the condenser can be reduced or a co-generation system can be implemented. Key words: organic Rankine cycle, zeotropic mixture, high temperature glide Introduction Energy, except at food production and medicine, is the most important aspect of hu- man development, having a direct impact on quality of life. The search for new sources of ener- gy, especially from renewables and waste, and more efficient ways of energy conversion into usable forms are all currently under intensive development. -
In-Tube Condensation of Zeotropic Refrigerant R454C from Superheated Vapor to Subcooled Liquid Tabeel A
In-Tube Condensation of Zeotropic Refrigerant R454C from Superheated Vapor to Subcooled Liquid Tabeel A. Jacoba and Brian M. Fronka* a School of Mechanical, Industrial and Manufacturing Engineering Oregon State University Corvallis, OR 97331, USA, * Corresponding Author: Email: [email protected] Tabeel A. Jacob (Student Member ASHRAE) is a graduate research assistant in the School of Mechanical, Manufacturing and Mechanical Engineering (MIME), Oregon State University, Corvallis, OR. Brian M. Fronk (Associate Member ASHRAE) is an assistant professor in the School of MIME, Oregon State University, Corvallis, OR In-Tube Condensation of Zeotropic Refrigerant R454C from Superheated Vapor to Subcooled Liquid ABSTRACT This paper investigates the in-tube, superheated, saturated and subcooled condensation of zeotropic refrigerant mixture R454C. R454C is proposed to replace R404A for commercial refrigeration applications. Quasi-local heat transfer coefficients were measured in a 4.7 mm horizontal tube at mass fluxes ranging from 100 – 500 kg m-2 s-1 at three different saturation conditions (40, 50 and 50 °C). The resulting data was compared with the non- equilibrium condensation models of Agarwal & Hrnjak (2014), Kondou & Hrnjak (2012) and Xiao & Hrnjak (2017), as well as the equilibrium model of Cavallini et al. (2006) with the Gnielinski (1976) correlation for predictions in subcooled and saturated regions. The additional mass transfer effects were accounted for by applying the Silver (1947), Bell & Ghaly (1973) mixture correction. The non-equilibrium Kondou & Hrnjak (2012) model, with the predictions in the subcooled region from Gnielinski (1976) correlation, agrees best with the data (mean average percent error = 9%). An air-cooled condenser for a 1055 kW refrigeration system is designed by following both the non-equilibrium and equilibrium approaches. -
Quiz 11 Properties 2016.Pdf
Chemical Engineering Thermodynamics Quiz 11 April 7, 2016 An azeotrope of isopropanol (1) and toluene (2) forms at atmospheric pressure (760 mmHg), 80.6°C, and at 42 weight percent toluene (2). (You will need to convert to mole fraction by considering one gram of the solution has 0.42 grams of toluene and 0.58 grams of isopropanol and that the molecular weights are 60 g/mole for (1) and 92 g/mole for (2). The boiling point at atmospheric pressure for isopropanol is 82.5°C and for toluene is 111°C. The saturated pressures for isopropanol (1) and toluene (2) at 80.6°C are 716 and 300 mmHg from the Antoine equation. The saturated pressures at 25°C are 44.6 and 28.7 mmHg also from the Antoine equation. a) Use the azeotrope conditions to calculate the one-parameter Margules constant. (Use the isopropanol activity coefficient for the rest of the calculations, but compare with the toluene value.) b) Why do you think the two values are different? Would it be better to use a two- parameter Margules model? (Remember that the one-parameter model is symmetric in composition.) c) Make a rough sketch of the P versus composition plot for 80.6°C. -Note if it is a positive or negative deviation from Raoult’s Law, -the two vapor pressures and -the azeotrope conditions. -Indicate the bubble point and dew point lines and -one tie line below the azeotrope and one above the azeotrope in composition indicating the y and x that are in equilibrium. -
Postprint Zeotropic
Downloaded from orbit.dtu.dk on: Oct 05, 2021 A review of recent research on the use of zeotropic mixtures in power generation systems Modi, Anish; Haglind, Fredrik Published in: Energy Conversion and Management Link to article, DOI: 10.1016/j.enconman.2017.02.032 Publication date: 2017 Document Version Peer reviewed version Link back to DTU Orbit Citation (APA): Modi, A., & Haglind, F. (2017). A review of recent research on the use of zeotropic mixtures in power generation systems. Energy Conversion and Management, 138, 603–626. https://doi.org/10.1016/j.enconman.2017.02.032 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. A review of recent research on the use of zeotropic mixtures in power generation systems Anish Modia,∗, Fredrik Haglindb aDepartment of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India bDepartment of Mechanical Engineering, Technical University of Denmark, Nils Koppels All´e,Building 403, DK-2800 Kgs. -
THE SYSTEM ACETONE—N-PENTANE the Ohio State Unive
This dissertation has been microfilmed exactly as received bo—15,075 CHERRY, Jr., Robert Homer, 1931- AZEOTROPIC BEHAVIOR IN THE CRITICAL REGION: THE SYSTEM ACETONE—n-PENTANE The Ohio State University, Ph.D., 1966 Engineering, chemical University Microfilms, Inc., Ann Arbor, Michigan AZEOTROPIG BEHAVIOR IN THE CRITICAL REGION: THE SYSTEM ACETONE— n-PENTANE DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By ROBERT HOMER CHERRY, JR., B.S., M.S.E, The Ohio State University 1966 Approved by; Adviser Department of Chemical Engineering ACKNOWLEDGMENTS The author takes this opportunity to express his sincere thanks to Professor Webster B. Kay for his guidance, patience, and understanding. To the Department of Chemical Engineering, and to Professor Joseph H. Koffolt, in particular, are due thanks for providing the Linde Postgraduate Fellowship in Chemical Engineering (1958-59 and 1960-61); and the DuPont Postgraduate Teaching Assistantship (1959-80). The National Science Foundation is thanked for grants covering the period of this research, and for the National Science Foundation Summer Teaching Fellowship, i960. ii CONTENTS Page ABSTRACT ..................................... 1 INTRODUCTION . ................................... 3 RELATED LITERATURE ................................. 7 EQUIPMENT AND PROCEDURE ........................... 10 RESULTS 17 Phase Behavior . ........................... 17 Volumetric Behavior ........................... 17 PRECISION AND ACCURACY............................. 26 Temperature................................... 26 Volume ..... ............................. 27 P r e s s u r e ..................................... 28 Composition................................... 29 DISCUSSION OP THE R E S U L T S ............ 32 Phase B e h a v i o r ............................... 32 Reproducibility of Dew and Bubble Points . 32 Dew Line for Sample 2 5 .................. 32 Correlation of Critical Properties ... -
Experimental Study and Optimization of the Organic Rankine Cycle with Pure Novectm649 and Zeotropic Mixture Novectm649/HFE7000 As Working Fluid
applied sciences Article Experimental Study and Optimization of the Organic Rankine Cycle with Pure NovecTM649 and Zeotropic Mixture NovecTM649/HFE7000 as Working Fluid Quentin Blondel 1,2,*, Nicolas Tauveron 1, Nadia Caney 2 and Nicolas Voeltzel 1 1 Department LITEN, University Grenoble Alpes, CEA, LITEN, L2ST, 38054 Grenoble, France; [email protected] (N.T.); [email protected] (N.V.) 2 Department LEGI, University Grenoble Alpes, CNRS, LEGI, 38000 Grenoble, France; [email protected] * Correspondence: [email protected] Received: 18 April 2019; Accepted: 5 May 2019; Published: 7 May 2019 Featured Application: This work shows the interest in new low Global Warming Potential replacement fluids for Organic Rankine Cycles and suggests the use of zeotropic mixtures to improve Organic Rankine Cycle systems. Abstract: The Organic Rankine Cycle (ORC) is widely used in industry to recover low-grade heat. Recently, some research on the ORC has focused on micro power production with new low global warming potential (GWP) replacement working fluids. However, few experimental tests have investigated the real performance level of this system in comparison with the ORC using classical fluids. This study concerns the experimental analysis and comparison of a compact (0.25 m3) Organic Rankine Cycle installation using as working fluids the NovecTM649 pure fluid and a zeotropic mixture composed of 80% NovecTM649 and 20% HFE7000 (mass composition) for low-grade waste heat conversion to produce low power. The purpose of this experimental test bench is to study replacement fluids and characterize them as possible replacement fluid candidates for an existing ORC system. The ORC performance with the pure fluid, which is the media specifically designed for this conversion system, shows good results as a replacement fluid in comparison with the ORC literature. -
Analysis of Zeotropic Mixture in a Geothermal Organic Rankine Cycle Power Plant with an Air-Cooled Condenser H
ANALYSIS OF ZEOTROPIC MIXTURE IN A GEOTHERMAL ORGANIC RANKINE CYCLE POWER PLANT WITH AN AIR-COOLED CONDENSER H. C. Jung1 and Susan Krumdieck2 1,2Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand [email protected] [email protected] Keywords: Working fluid, Zeotropic mixture, Air-cooled The working fluid plays a vital role in the energy conversion Condenser, Geothermal, Organic Rankine cycle. efficiency of ORC machine. Numerous studies have been focused on the proper selection of pure fluids, including ABSTRACT refrigerants such as R-134°, R-123 and R-245fa and volatile The purpose of this research is to investigate a zeotropic hydrocarbons such as butane and pentane (Saleh et. al., working fluid mixture in terms of its performance in an 2007, Wang et. al., 2011). General selection criteria for a organic Rankine cycle (ORC) and the heat transfer potential fluid were proposed by Chen et. al. (2010). characteristics in an air-cooled condenser (ACC). The motivation of this study is that it is well known that the use The suggestion of using a working fluid mixture in vapour of a mixture improves the efficiency of an ORC system. compression systems was first made in 1888 by Pictet However, the behaviour of the mixture in the condensers is (Radermacher 1989). The benefits of using organic fluid not well understood. A standard ORC unit utilising hot mixtures as the working fluid in ORC systems were spring water to generate electricity is considered for the investigated by Angelino and Paliano (1998). By using a analysis. -
Fluid Phase Equilibria 281 (2009) 49–59
Fluid Phase Equilibria 281 (2009) 49–59 Contents lists available at ScienceDirect Fluid Phase Equilibria journal homepage: www.elsevier.com/locate/fluid Study of azeotropic mixtures with the advanced distillation curve approachଝ Amelia B. Hadler, Lisa S. Ott, Thomas J. Bruno ∗ Physical and Chemical Properties Division, National Institute of Standards and Technology, Boulder, CO, United States article info abstract Article history: Classical methods for the study of complex fluid phase behavior include static and dynamic equilibrium Received 27 January 2009 cells that usually require vapor and liquid recirculation. These are sophisticated, costly apparatus that Received in revised form 30 March 2009 require highly trained operators, usually months of labor-intensive work per mixture, and the data analy- Accepted 3 April 2009 sis is also rather complex. Simpler approaches to the fundamental study of azeotropes are highly desirable, Available online 11 April 2009 even if they provide only selected cuts through the phase diagram. Recently, we introduced an advanced distillation curve measurement method featuring: (1) a composition explicit data channel for each distil- Keywords: late fraction (for both qualitative and quantitative analysis), (2) temperature measurements that are true Acetone + chloroform Advanced distillation curve thermodynamic state points that can be modeled with an equation of state, (3) temperature, volume and Azeotrope pressure measurements of low uncertainty suitable for equation of state development, (4) consistency Ethanol + benzene with a century of historical data, (5) an assessment of the energy content of each distillate fraction, (6) 2-propanol + benzene trace chemical analysis of each distillate fraction, and (7) corrosivity assessment of each distillate frac- Phase equilibrium tion. -
Impact of Refrigerants R1234yf, R455A, R454C on the Behaviour of Direct Expansion Refrigeration Circuits
Impact of refrigerants R1234yf, R455A, R454C on the behaviour of direct expansion refrigeration circuits Table of contents 1. Context: ........................................................................................................................................... 3 2. Refrigerants environmental data: ................................................................................................... 4 2.1. ISO 817 rating .......................................................................................................................... 4 2.2. Definition – Refrigerants composition .................................................................................... 4 2.3. Environmental data ................................................................................................................. 4 2.4. Some safety data ..................................................................................................................... 5 3. Thermodynamic data ...................................................................................................................... 5 3.1. Refrigerant R1234yf ................................................................................................................ 5 3.1.1. Mollier diagram ................................................................................................................... 6 3.1.2. Temperatures-Pressures curves .......................................................................................... 7 3.2. Refrigerants R455A - R454C ................................................................................................... -
Experimental Study of Zeotropic Refrigerant Mixture HFC-407C As a Replacement for HCFC-22 in Refrigeration and Air Conditioning Systems
Experimental study of Zeotropic refrigerant mixture HFC-407C as a replacement for HCFC-22 in Refrigeration and air conditioning systems By Changiz M. Tolouee B. Sc. (Mech. Eng.) and M. Sc. (Mech. Eng.) A thesis submitted for the degree of DOCTOR OF PHILOSOPHY School of Engineering and Science Swinburne University of Technology 2006 1 DECLARATION This thesis contains no material which has been accepted for the award of any other degree or diploma, except where due reference is made in the text of the thesis. To the best of my knowledge, this thesis contains no material previously published or written by another person except where due reference is made in the text of the thesis. Signed ……………………………. 2 ABSTRACT HCFC-22 is the world’s most widely used refrigerant. It serves in both residential and commercial applications, from small window units to large water chillers, and everything in between. Its particular combination of efficiency, capacity and pressure has made it a popular choice for equipment designers. Nevertheless, it does have some ODP, so international law set forth in the Montreal Protocol and its Copenhagen and Vienna amendments have put HCFC-22 on a phase out schedule. In developed countries, production of HCFC-22 will end no later than the year 2030. Zeotropic blend HFC-407C has been established as a drop-in alternative for HCFC-22 in the industry due to their zero Ozone Depletion Potential (ODP) and similarities in thermodynamic properties and performance. However, when a system is charged with a zeotropic mixture, it raises concerns about temperature glide at two-phase state, differential oil solubility and internal composition shift. -
7.4 Introduction to Vapor/Liquid Equilibrium
ENTROPY AND EQUILIBRIUM 179 % H, S, G and K for reaction N2 + 3 H2 = 2 NH3 dhrT = 2*hfT_nh3 - hfT_n2 - 3*hfT_h2 dsrT = 2*sfT_nh3 - sfT_n2 - 3*sfT_h2 dgrT = dhrT - T*dsrT K = exp(-dgrT/(8.3145*T)) ∗ o Exercise 7.3 NOx equilibrium. A gas mixture at 940 C and 2.5 bar consists of 5% O2, 11% NO, 16% H2O and the rest N2. The formation of NO2 is neglected, and you need to check whether this is reasonable by calculating the ratio (maximum) between NO2 and NO that one would get if the reaction NO + 0.5O2 = NO2 was in equilibrium at 940 oC. Data. Assume constant heat capacity and use data for ideal gas from page 416. Exercise 7.4 Consider the gas phase reaction 4NH3 + 5O2 = 4NO + 6H2O (a) Calculate standard enthalpy, entropy, Gibbs energy and the equilibrium constant for the reaction at 298 K and 1200 K. (b) Calculate the equilibrium composition at 1200 K and 8 bar when the feed consists of 10 mol-% ammonia, 18 mol-% oxygen and 72 mol-% nitrogen. (c) What is the feed temperature if the reactor operates adiabatically? Data. Assume constant heat capacity and use data for ideal gas from page 416. 7.4 Introduction to vapor/liquid equilibrium Phase equilibrium, and in particular vapor/liquid-equilibrium (VLE), is important for many process engineering applications. The thermodynamic basis for phase equilibrium is the same as for chemical equilibrium, namely that the Gibbs energy G is minimized at a given T and p (see page 174). 7.4.1 General VLE condition for mixtures Vapor/liquid-equilibrium (VLE) for mixtures is a large subject, and we will here state the general equilibrium condition, and then give some applications. -
Temperature Glide Matching in a Zeotropic Mixture Heat Pump
PROCEEDINGS OF ECOS 2017 - THE 30TH INTERNATIONAL CONFERENCE ON EFFICIENCY, COST, OPTIMIZATION, SIMULATION AND ENVIRONMENTAL IMPACT OF ENERGY SYSTEMS JULY 2-JULY 6, 2017, SAN DIEGO, CALIFORNIA, USA Temperature glide matching in a zeotropic mixture heat pump V. Venzika and B. Atakanb a University of Duisburg-Essen, Thermodynamics, Duisburg, Germany, [email protected] b University of Duisburg-Essen, Thermodynamics, Duisburg, Germany, [email protected] Abstract: The use of zeotropic mixtures in heat pumps should lead to a reduction of the exergy losses within the heat exchangers due to the temperature glide (TG) and thus to an improvement of the entire process. In a previous publication (ECOS 2016), the coefficient of performance (COP) as a function of evaporation / condensation temperature, compressor rotation speed and composition of a zeotropic mixture (isobutane / propene) was investigated. Contrary to theoretical analysis, it was shown that the COPs of the mixtures increase only slightly compared to the better performing pure fluid. The temperature change of the secondary fluid in the heat exchangers was relatively small. In the present work, it is experimentally investigated whether a better matching of the temperature glide in the evaporator raises the COP of a zeotropic mixture compared to the better performing pure fluid. The targeted utilization of the TG is achieved by matching the temperature variation of the mixture and the temperature variation of the heat source; this was adjusted by varying the heat capacity flowrate of the source. An isobutane/propene mixture (42:58) with a TG of 8.03 K is investigated as the working fluid, together with investigations of the pure fluids isobutane and propene, all for equal boundary conditions.