Atmos. Chem. Phys., 17, 4769–4780, 2017 www.atmos-chem-phys.net/17/4769/2017/ doi:10.5194/acp-17-4769-2017 © Author(s) 2017. CC Attribution 3.0 License. Emission factors and light absorption properties of brown carbon from household coal combustion in China Jianzhong Sun1,2,5, Guorui Zhi2, Regina Hitzenberger4, Yingjun Chen1,3, Chongguo Tian1, Yayun Zhang2,6, Yanli Feng7, Miaomiao Cheng2, Yuzhe Zhang2,6, Jing Cai8, Feng Chen7, Yiqin Qiu7, Zhiming Jiang7, Jun Li8, Gan Zhang8, and Yangzhi Mo8 1Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China 2State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China 3State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Cities’ Mitigation and Adaptation to Climate Change, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China 4University of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Vienna, Austria 5University of Chinese Academy of Sciences, Beijing, 100049, China 6College of Chemical Engineering, China University of Petroleum, Beijing 102249, China 7Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China 8State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China Correspondence to: Guorui Zhi (
[email protected]) and Yingjun Chen (
[email protected]) Received: 13 December 2016 – Discussion started: 13 January 2017 Revised: 14 March 2017 – Accepted: 21 March 2017 – Published: 12 April 2017 Abstract. Brown carbon (BrC) draws increasing attention nificant decline in BrC EFs for bituminous coals than for an- due to its effects on climate and other environmental fac- thracites due to briquetting.