Emission Factors and Light Absorption Properties of Brown Carbon from Household Coal Combustion in China

Total Page:16

File Type:pdf, Size:1020Kb

Emission Factors and Light Absorption Properties of Brown Carbon from Household Coal Combustion in China Atmos. Chem. Phys., 17, 4769–4780, 2017 www.atmos-chem-phys.net/17/4769/2017/ doi:10.5194/acp-17-4769-2017 © Author(s) 2017. CC Attribution 3.0 License. Emission factors and light absorption properties of brown carbon from household coal combustion in China Jianzhong Sun1,2,5, Guorui Zhi2, Regina Hitzenberger4, Yingjun Chen1,3, Chongguo Tian1, Yayun Zhang2,6, Yanli Feng7, Miaomiao Cheng2, Yuzhe Zhang2,6, Jing Cai8, Feng Chen7, Yiqin Qiu7, Zhiming Jiang7, Jun Li8, Gan Zhang8, and Yangzhi Mo8 1Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China 2State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China 3State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Cities’ Mitigation and Adaptation to Climate Change, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China 4University of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Vienna, Austria 5University of Chinese Academy of Sciences, Beijing, 100049, China 6College of Chemical Engineering, China University of Petroleum, Beijing 102249, China 7Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China 8State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China Correspondence to: Guorui Zhi ([email protected]) and Yingjun Chen ([email protected]) Received: 13 December 2016 – Discussion started: 13 January 2017 Revised: 14 March 2017 – Accepted: 21 March 2017 – Published: 12 April 2017 Abstract. Brown carbon (BrC) draws increasing attention nificant decline in BrC EFs for bituminous coals than for an- due to its effects on climate and other environmental fac- thracites due to briquetting. (ii) The BrC EF peaks at the mid- tors. In China, household coal burned for heating and cook- dle of coal’s geological maturity, displaying a bell-shaped ing purposes releases huge amounts of carbonaceous parti- curve between EF and volatile matter (Vdaf/. (iii) The cal- cles every year; however, BrC emissions have rarely been es- culated BrC emissions from China’s residential coal burn- timated in a persuasive manner due to the unavailable emis- ing amounted to 592 Gg (1 Gg D 109 g) in 2013, which is sion characteristics. Here, seven coals jointly covering geo- nearly half of China’s total BC emissions. (iv) The absorp- logical maturity from low to high were burned in four typ- tion Ångström exponents (AAEs) of all coal briquettes are ical stoves as both chunk and briquette styles. The optical higher than those of coal chunks, indicating that the measure integrating sphere (IS) method was applied to measure the of coal briquetting increases the BrC = BC emission ratio and emission factors (EFs) of BrC and black carbon (BC) via thus offsets some of the climate cooling effect of briquet- an iterative process using the different spectral dependence ting. (v) In the scenario of current household coal burning of light absorption for BrC and BC and using humic acid in China, solar light absorption by BrC (350–850 nm in this sodium salt (HASS) and carbon black (CarB) as reference study) accounts for more than a quarter (0.265) of the total materials. The following results have been found: (i) the aver- absorption. This implies the significance of BrC to climate age EFs of BrC for anthracite coal chunks and briquettes are modeling. 1.08 ± 0.80 and 1.52 ± 0.16 g kg−1, respectively, and those for bituminous coal chunks and briquettes are 8.59 ± 2.70 and 4.01 ± 2.19 g kg−1, respectively, reflecting a more sig- Published by Copernicus Publications on behalf of the European Geosciences Union. 4770 J. Sun et al.: Emission factors and light absorption properties of brown carbon 1 Introduction the two BrC source categories are relatively rare, which is un- favorable for the accurate understanding of BrC in terms of The past decade saw increased interest in brown carbon sources and effects (Laskin et al., 2015; Zhi et al., 2015). In (BrC) due to its effects on atmospheric chemistry, air qual- addition, there is a more pressing need to characterize BrC ity, health, and particularly climate (Andreae and Gelenc- emissions from sources related to human activities so as to sér, 2006; Saleh et al., 2014; Forrister et al., 2015; Laskin et gain direct insight into the influence of anthropogenic emis- al., 2015). BrC refers to the fraction of organic carbon (OC) sions on global change. that can absorb light (Yan et al., 2014; Zhi et al., 2015; Jo In China, coal plays a dominant role in the energy et al., 2016; Wang et al., 2016). Compared with black car- structure. In 2013, coal consumption reached 4300 Tg bon (BC), which has usually been considered the strongest (1 Tg D 1012 g), accounting for approximately 70 % of light-absorbing aerosol carbon, with an absorption Ångström China’s total primary energy, 93 Tg of which was burned for exponent (AAE) of around 1.0, light absorption by BrC is household heating and cooking purposes (NBSC, 2014). Be- weaker, but more strongly wavelength dependent (Kirchstet- cause burning raw coal in residential cooking and heating ter and Novakov, 2004; Hoffer et al., 2006; Cai et al., 2014). stoves has the potential to release pollutants that consist of In other words, the light absorption efficiency of BrC in- up to 10 % of the fuel mass due to poor combustion condi- creases more than that of BC toward short wavelengths. Re- tions and control facilities (Zhang and Smith, 2007), huge cent advances in BrC research revealed its abundances and emissions of carbonaceous particles including OC, BrC, and properties in a number of regions and highlighted the impor- BC are expected in this sector. Our previous studies have tance of including BrC in the accurate modeling of aerosol shown that the emission factors (EFs) of BC for residen- radiative forcing (RF) (Mohr et al., 2013; X. Zhang et al., tial coal burning are closely related to coal rank (bitumi- 2013; Chakrabarty et al., 2014; Du et al., 2014; Kirillova et nous or anthracite) and processing style (raw coal chunk al., 2014; Forrister et al., 2015; Liu et al., 2015; Washen- or coal briquette), but they never addressed BrC that is re- felder et al., 2015; Cheng et al., 2016). For example, Feng leased concurrently with BC (Chen et al., 2006, 2009a; Zhi et al. (2013) used a global chemical transport model and a et al., 2008, 2009). Meanwhile, the optical properties of BrC radiative transfer model, finding that the strongly absorbing from coal combustion have almost never been addressed by BrC contributes up to C0.25 W m−2 or 19 % of the absorp- researchers, possibly because studies regarding BrC emis- tion by anthropogenic aerosols; meanwhile, the RF at the top sions have focused preferentially on the observed physical of the troposphere may change from −0.08 W m−2 (cooling) or chemical properties, particularly optical absorption (e.g., to 0.025 W m−2 (warming) in some areas when BrC data are AAE) of ambient aerosols for an overall characterization of considered in the RF model. Park et al. (2010) combined a 3- radiative impacts of BrC in the atmosphere, in a certain re- D global chemical transport model (GEOS-Chem) with air- gion, or from specific burning activities (Chakrabarty et al., craft and ground-based observations, finding that the aver- 2013; Feng et al., 2013; Lack and Langridge, 2013; Wu et aged RFs of BrC aerosol were 0.43 W m−2 at the surface and al., 2013; X. Zhang et al., 2013; Zheng et al., 2013; Du et 0.05 W m−2 at the top of the atmosphere (TOA), respectively, al., 2014; Washenfelder et al., 2015; Yan et al., 2015; Zhao et both of which accounted for more than 15 % of their respec- al., 2015; Cheng et al., 2016). This is not conducive to the un- tive total RFs (2.2 and 0.33 W m−2/ for absorbing aerosols. derstanding of China’s primary BrC emission characteristics, The sources of BrC can be defined in two categories: pri- especially BrC from the residential sector, the largest con- mary emission and secondary formation. The former relates tributor of primary carbonaceous particles in China (Streets to the incomplete (even smoldering) combustion of either et al., 2013; Cai et al., 2014; Zhi et al., 2015). fossil fuels (coal, petroleum, natural gas, etc.) or biomass– The general motivation of this study is to investigate biofuels (wood, agricultural residues, bioethanol, etc.), dur- the emissions and optical characteristics of BrC emitted by ing which BrC is generated and released into the atmo- China’s household coal burning. A group of coals jointly sphere as pollutants (Liu et al., 2014; Oris et al., 2014; covering geological maturity from low to high were burned Washenfelder et al., 2015; Zhi et al., 2015). The latter in- in various stoves as both chunk and briquette styles, accom- volves complex chemical reactions taking place in the atmo- panied by collecting particulate emissions on quartz fiber fil- sphere between various precursors, forming secondary or- ters (QFFs). The optical integrating sphere (IS) approach was ganic aerosols (SOAs), some of which are light-absorbing used to distinguish BrC from BC on the filters (Hitzenberger (Laskin et al., 2014; Lee et al., 2014; Smith et al., 2014; et al., 1996; Wonaschütz et al., 2009; Montilla et al., 2011), Tóth et al., 2014; Martinsson et al., 2015; Yan et al., 2015; followed by the calculation of EFs of BrC and other partic- Zhao et al., 2015).
Recommended publications
  • Effect of Heterogeneous Oxidative Aging on Light Absorption by Biomass Burning Organic Aerosol
    Aerosol Science and Technology ISSN: 0278-6826 (Print) 1521-7388 (Online) Journal homepage: https://www.tandfonline.com/loi/uast20 Effect of heterogeneous oxidative aging on light absorption by biomass burning organic aerosol Eleanor C. Browne, Xiaolu Zhang, Jonathan P. Franklin, Kelsey J. Ridley, Thomas W. Kirchstetter, Kevin R. Wilson, Christopher D. Cappa & Jesse H. Kroll To cite this article: Eleanor C. Browne, Xiaolu Zhang, Jonathan P. Franklin, Kelsey J. Ridley, Thomas W. Kirchstetter, Kevin R. Wilson, Christopher D. Cappa & Jesse H. Kroll (2019) Effect of heterogeneous oxidative aging on light absorption by biomass burning organic aerosol, Aerosol Science and Technology, 53:6, 663-674, DOI: 10.1080/02786826.2019.1599321 To link to this article: https://doi.org/10.1080/02786826.2019.1599321 View supplementary material Accepted author version posted online: 26 Mar 2019. Published online: 15 Apr 2019. Submit your article to this journal Article views: 321 View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=uast20 AEROSOL SCIENCE AND TECHNOLOGY 2019, VOL. 53, NO. 6, 663–674 https://doi.org/10.1080/02786826.2019.1599321 Effect of heterogeneous oxidative aging on light absorption by biomass burning organic aerosol Eleanor C. Brownea , Xiaolu Zhangb , Jonathan P. Franklinc, Kelsey J. Ridleyc, Thomas W. Kirchstetterd,e, Kevin R. Wilsonf , Christopher D. Cappag , and Jesse H. Krollc aDepartment of Chemistry and Cooperative Institute for Research
    [Show full text]
  • Are Black Carbon and Soot the Same? Title Page
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Atmos. Chem. Phys. Discuss., 12, 24821–24846, 2012 Atmospheric www.atmos-chem-phys-discuss.net/12/24821/2012/ Chemistry ACPD doi:10.5194/acpd-12-24821-2012 and Physics © Author(s) 2012. CC Attribution 3.0 License. Discussions 12, 24821–24846, 2012 This discussion paper is/has been under review for the journal Atmospheric Chemistry Are black carbon and Physics (ACP). Please refer to the corresponding final paper in ACP if available. and soot the same? P. R. Buseck et al. Are black carbon and soot the same? Title Page P. R. Buseck1,2, K. Adachi1,2,3, A. Gelencser´ 4, E.´ Tompa4, and M. Posfai´ 4 Abstract Introduction 1School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85282, USA Conclusions References 2 Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85282, USA Tables Figures 3Atmospheric Environment and Applied Meteorology Research Department, Meteorological Research Institute, Tsukuba, Ibaraki, Japan 4Department of Earth and Environmental Sciences, University of Pannonia, Veszprem,´ J I Hungary J I Received: 1 September 2012 – Accepted: 3 September 2012 – Published: 21 September 2012 Back Close Correspondence to: P. R. Buseck ([email protected]) Full Screen / Esc Published by Copernicus Publications on behalf of the European Geosciences Union. Printer-friendly Version Interactive Discussion 24821 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract ACPD The climate change and environmental literature, including that on aerosols, is replete with mention of black carbon (BC), but neither reliable samples nor standards exist. 12, 24821–24846, 2012 Thus, there is uncertainty about its exact nature.
    [Show full text]
  • Black Carbon Or Brown Carbon
    Atmos. Chem. Phys. Discuss., 6, 3419–3463, 2006 Atmospheric www.atmos-chem-phys-discuss.net/6/3419/2006/ Chemistry ACPD © Author(s) 2006. This work is licensed and Physics 6, 3419–3463, 2006 under a Creative Commons License. Discussions Black carbon or brown carbon M. O. Andreae and A. Gelencser´ Black carbon or brown carbon? The nature of light-absorbing carbonaceous Title Page aerosols Abstract Introduction Conclusions References M. O. Andreae1 and A. Gelencser´ 2 Tables Figures 1Max Planck Institute for Chemistry, Biogeochemistry Department, P.O. Box 3060, 55020 Mainz, Germany J I 2Air Chemistry Group of the Hungarian Academy of Sciences, University of Veszprem,´ P.O. Box 158, 8201 Veszprem,´ Hungary J I Received: 13 January 2006 – Accepted: 22 February 2006 – Published: 4 May 2006 Back Close Correspondence to: M. O. Andreae ([email protected]) Full Screen / Esc Printer-friendly Version Interactive Discussion EGU 3419 Abstract ACPD Although the definition and measurement methods of atmospheric “black carbon” (“BC”) have long been subjects of scientific controversy, the recent discovery of light- 6, 3419–3463, 2006 absorbing carbon that is not black (“brown carbon, Cbrown”) makes it imperative to re- 5 assess and redefine the components that make up light-absorbing carbonaceous mat- Black carbon or ter (LAC) in the atmosphere. Evidence for the atmospheric presence of Cbrown comes brown carbon directly from aerosol absorption measurements near specific combustion sources, from observations of spectral properties of water extracts of continental aerosol, from lab- M. O. Andreae and oratory studies indicating the formation of light-absorbing organic matter in the atmo- A.
    [Show full text]
  • Sampling, Filtering, and Analysis Protocols to Detect Black Carbon
    atmosphere Article Sampling, Filtering, and Analysis Protocols to Detect Black Carbon, Organic Carbon, and Total Carbon in Seasonal Surface Snow in an Urban Background and Arctic Finland (>60◦ N) Outi Meinander *, Enna Heikkinen, Minna Aurela and Antti Hyvärinen Finnish Meteorological Institute, Erik Palmeninaukio 1, 00560 Helsinki, Finland; enna.heikkinen@fmi.fi (E.H.); minna.aurela@fmi.fi (M.A.); antti.hyvarinen@fmi.fi (A.H.) * Correspondence: outi.meinander@fmi.fi Received: 7 August 2020; Accepted: 26 August 2020; Published: 29 August 2020 Abstract: Black carbon (BC), organic carbon (OC), and total carbon (TC) in snow are important for their climatic and cryospheric effects. They are also part of the global carbon cycle. Atmospheric black and organic carbon (including brown carbon) may deposit and darken snow surfaces. Currently, there are no standardized methods for sampling, filtering, and analysis protocols to detect carbon in snow. Here, we describe our current methods and protocols to detect carbon in seasonal snow using the OCEC thermal optical method, a European standard for atmospheric elemental carbon (EC). We analyzed snow collected within and around the urban background SMEARIII (Station for Measuring Ecosystem-Atmosphere Relations) at Kumpula (60◦ N) and the Arctic GAW (Global Atmospheric Watch) station at Sodankylä (67◦ N). The median BC, OC, and TC in snow samples (ntot = 30) in Kumpula were 1118, 5279, and 6396 ppb, and in Sodankylä, they were 19, 1751, and 629 ppb. Laboratory experiments showed that error due to carbon attached to a sampling bag (n = 11) was <0.01%. Sonication slightly increased the measured EC, while wetting the filter or filtering the wrong side up indicated a possible sample loss.
    [Show full text]
  • Designing Global Climate and Atmospheric Chemistry Simulations for 1 and 10 Km Diameter Asteroid Impacts Using the Properties of Ejecta from the K-Pg Impact
    Atmos. Chem. Phys., 16, 13185–13212, 2016 www.atmos-chem-phys.net/16/13185/2016/ doi:10.5194/acp-16-13185-2016 © Author(s) 2016. CC Attribution 3.0 License. Designing global climate and atmospheric chemistry simulations for 1 and 10 km diameter asteroid impacts using the properties of ejecta from the K-Pg impact Owen B. Toon1, Charles Bardeen2, and Rolando Garcia2 1Department of Atmospheric and Oceanic Science, Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, USA 2National Center for Atmospheric Research, Boulder, CO, USA Correspondence to: Owen B. Toon ([email protected]) Received: 15 April 2016 – Published in Atmos. Chem. Phys. Discuss.: 17 May 2016 Revised: 28 August 2016 – Accepted: 29 September 2016 – Published: 27 October 2016 Abstract. About 66 million years ago, an asteroid about surface. Nanometer-sized iron particles are also present glob- 10 km in diameter struck the Yucatan Peninsula creating the ally. Theory suggests these particles might be remnants of the Chicxulub crater. The crater has been dated and found to be vaporized asteroid and target that initially remained as va- coincident with the Cretaceous–Paleogene (K-Pg) mass ex- por rather than condensing on the hundred-micron spherules tinction event, one of six great mass extinctions in the last when they entered the atmosphere. If present in the great- 600 million years. This event precipitated one of the largest est abundance allowed by theory, their optical depth would episodes of rapid climate change in Earth’s history, yet no have exceeded 1000. Clastics may be present globally, but modern three-dimensional climate calculations have simu- only the quartz fraction can be quantified since shock fea- lated the event.
    [Show full text]
  • Black Carbon
    BLACK CARBON METHODOLOGY FOR THE LOGISTICS SECTOR Trade in goods and materials drives global economic growth and development, linking nations and markets through an increasingly interdependent supply chain. The Global Green Freight Project was created by the Climate and Clean Air Coalition (CCAC) as part of a large-scale effort to reduce the climate and health impacts and improve the energy and economic efficiency of transporting those goods and materials. The CCAC funded the development of this methodology to better track black carbon emissions from freight movement as part of its mission to raise awareness of these short-term climate pollutants. Author Suzanne Greene, Smart Freight Centre Adviser Advisors Eastern Research Group: Rick Baker, John Koupal; International Council on Clean Transportation: Cristiano Façanha, Ray Minjares, Ben Sharpe; Smart Freight Centre: Alan Lewis, Sophie Punte; US Environmental Protection Agency SmartWay: Buddy Polovick, Joshua Silverblatt; and the UN Climate and Clean Air Coalition: Denise Sioson. Acknowledgments Benjamin Brown-Steiner (Massachusetts Institute of Technology), Roger Chang, (US Environmental Protection Agency) James Corbett (University of Delaware), Brittany Kelly (Natural Resources Canada), Zbigniew Klimont (International Institute for Applied Systems Analysis), Britney McCoy (US Environmental Protection Agency), Philippe Payen (TK’Blue), Veerabhadran Ramanathan (University of California, San Diego), Stephan Schablinski (Green Freight Asia), Colin Smith (Energy Savings Trust), Darrell Sonntag (US Environmental Protection Agency), and David Yen (US Environmental Protection Agency). Suggested citation Smart Freight Centre. Black Carbon Methodology for the Logistics Sector. Global Green Freight Project, 2017. Disclaimer The contents of the Black Carbon Methodology for Logistics are subject to future change as common practice and scientific knowledge evolves and, in such circumstances, will be reflected in periodic updates.
    [Show full text]
  • The Evolutionary Behavior of Chromophoric Brown Carbon During Ozone
    https://doi.org/10.5194/acp-2019-805 Preprint. Discussion started: 14 November 2019 c Author(s) 2019. CC BY 4.0 License. The evolutionary behavior of chromophoric brown carbon during ozone aging of fine particles from biomass burning Xingjun Fan1,3, Tao Cao2,4, Xufang Yu1, Yan Wang1, Xin Xiao1, Feiyue Li1,3, Yue Xie1, Wenchao Ji1, Jianzhong Song2, Ping’an Peng2 1College of Resource and Environment, Anhui Science and Technology University, Fengyang 233100, P. R. China 2State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, P. R. China 3Anhui Province Key Laboratory of Biochar and Cropland Pollution Prevention, Bengbu 233400, P. R. China 4University of Chinese Academy of Sciences, Beijing 100049, P. R. China Correspondences: Jianzhong Song ([email protected]), Xingjun Fan ([email protected]) 1 https://doi.org/10.5194/acp-2019-805 Preprint. Discussion started: 14 November 2019 c Author(s) 2019. CC BY 4.0 License. Abstract Biomass burning (BB) emits large amounts of brown carbon (BrC), however, little is known about the evolutionary behavior of BrC produced by BB (BB-BrC) in atmospheric processes. In this study, the transformation of levels and the chromophoric characteristics of BrC in 5 smoke particles emitted by the burning of rice straw (RS), corn straw (CS) and pine wood (PW) under O3 aging are investigated. The O3 aging induced the reduction of light absorption and fluorescence for the BB-BrC, suggesting the decomposition of chromophores and fluorophores. These changes were accompanied by a decrease of aromaticity, average molecular weight and the light absorption capacity for the chromophores, and an increase of 10 humification for the fluorophores.
    [Show full text]
  • Background Information on Black Carbon Emissions from Large Marine and Stationary Diesel Engines
    CIMAC was founded in Paris in 1951 where the first Congress took place. Originally CIMAC was organized as an industry event to discuss new ideas and developments within the engine and components industry together with institutes and universities. It is supported by engine manufacturers, engine users, technical universitites, research institutes, component suppliers, fuel and lubricating oil suppliers and several other interested parties. The National Member Associations (NMAs), National Member Groups (NMGs) and Corporate Members (CMs) as well as previous CIMAC Recommendations are listed at the end of this publication. This document has been elaborated by the CIMAC Working Group ‘Exhaust Emissions Control ‘ in January 2012. CIMAC Central Secretariat Phone: +49 69 6603-1355 c/o VDMA e.V. Fax: +49 69 5503-2355 Lyoner Str. 18 E-mail: [email protected] 60528 Frankfurt/Main Web: http://www.cimac.com Germany Black Carbon – Background Information, 2012 2 CIMAC FOREWORD Reports published by the Intergovernmental Panel on Climate Change (IPCC) have summarized the CO2 being the most important greenhouse gas and therefore this component has been most in focus so far with regard to reduction efforts. In addition to CO2, aerosols are also affecting the climate. Unlike CO2 and other warming gases, aerosols (e.g. sulphates) tend to cool the climate by reflecting light back to space before reaching the surface of earth. Black carbon (BC), however, absorbs light effectively, thus having an opposite and warming contribution. The heating power absorbed by black carbon particles in the atmosphere reduces the radiation that reaches the earth surface. Depending on the underlying surface, e.g.
    [Show full text]
  • Solar Absorption by Elemental and Brown Carbon Determined from Spectral Observations
    Solar absorption by elemental and brown carbon determined from spectral observations Ranjit Bahadur, Puppala S. Praveen, Yangyang Xu, and V. Ramanathan1 Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093-0221 Edited by Mark H. Thiemens, University of California at San Diego, La Jolla, CA, and approved September 11, 2012 (received for review April 9, 2012) Black carbon (BC) is functionally defined as the absorbing com- also contribute to the warming potential of aerosols. In addition ponent of atmospheric total carbonaceous aerosols (TC) and is to their differing spectral dependence, the wide range of optical typically dominated by soot-like elemental carbon (EC). However, properties reported for EC, OC, and mineral dust in the litera- organic carbon (OC) has also been shown to absorb strongly at ture (18–22) leads to uncertainties in estimating the absorption visible to UV wavelengths and the absorbing organics are referred attributable to these species. Whereas the attribution of ambient to as brown carbon (BrC), which is typically not represented in aerosol absorption to EC may be a reasonable approximation climate models. We propose an observationally based analytical in areas dominated by fresh soot emissions, it may lead to mis- method for rigorously partitioning measured absorption aerosol leading estimates of the aerosol forcing when other light-ab- optical depths (AAOD) and single scattering albedo (SSA) among sorbing particles are present. EC and BrC, using multiwavelength measurements of total (EC, OC, In more complex environments, a separation of the total ab- and dust) absorption. EC is found to be strongly absorbing (SSA of sorption into different chemical species is therefore essential, 0.38) whereas the BrC SSA varies globally between 0.77 and 0.85.
    [Show full text]
  • On Transient Climate Change at the Cretaceous−Paleogene Boundary
    On transient climate change at the Cretaceous− PNAS PLUS Paleogene boundary due to atmospheric soot injections Charles G. Bardeena,1, Rolando R. Garciaa, Owen B. Toonb, and Andrew J. Conleya aAtmospheric Chemistry Observations & Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO 80307; and bLaboratory for Atmospheric and Space Physics, Department of Atmospheric and Ocean Sciences, University of Colorado at Boulder, Boulder, CO 80303 Edited by John H. Seinfeld, California Institute of Technology, Pasadena, CA, and approved July 17, 2017 (received for review May 30, 2017) Climate simulations that consider injection into the atmosphere of In this study, we present simulations of the short-term climate 15,000 Tg of soot, the amount estimated to be present at the effects of massive injections of soot into the atmosphere fol- Cretaceous−Paleogene boundary, produce what might have been lowing the impact of a 10-km-diameter asteroid. We assume one of the largest episodes of transient climate change in Earth that the soot originated from global or near-global fires (8). history. The observed soot is believed to originate from global wild- The short-term climate effects of the soot would augment and fires ignited after the impact of a 10-km-diameter asteroid on the probably dominate those of other materials injected by the Yucatán Peninsula 66 million y ago. Following injection into the at- impact, which are not considered here except for water vapor. mosphere, the soot is heated by sunlight and lofted to great heights, Given the range of estimates for the fine soot produced by the resulting in a worldwide soot aerosol layer that lasts several years.
    [Show full text]
  • The Characteristics of Atmospheric Brown Carbon in Xi'an, Inland China
    https://doi.org/10.5194/acp-2019-640 Preprint. Discussion started: 26 August 2019 c Author(s) 2019. CC BY 4.0 License. 1 The characteristics of atmospheric brown carbon in Xi’an, 2 inland China: sources, size distributions and optical properties 3 4 5 6 7 Can Wu1,2, Gehui Wang1,2,3,4*, Jin Li2, Jianjun Li2, Cong Cao2, Shuangshuang Ge1, Yuning 8 Xie1, Jianmin Chen3,5, Xingru Li1, 6, Guoyan Xue1, Xinpei Wang1, Zhuyu Zhao7, Fang Cao7 9 10 11 12 13 14 15 1Key Lab of Geographic Information Science of the Ministry of Education, School of 16 Geographic Sciences, East China Normal University, Shanghai 210062, China 17 2Key Lab of Aerosol Physics and Chemistry, State Key Laboratory of Loess and Quaternary 18 Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, 19 China 20 3Institute of Eco-Chongming, 3663 North Zhongshan Road, Shanghai 200062, China 21 4CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban 22 Environment, Chinese Academy of Sciences, Xiamen 361021, China 23 5Department of Environmental Science and Technology, Fudan University, Shanghai 200433, 24 China 25 6Department of Chemistry, Analytical and Testing Center, Capital Normal University, Beijing 26 100048, China 27 7Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information 28 Science & Technology, Nanjing 210044, China 29 30 31 32 33 34 35 *Corresponding author. Prof. Gehui Wang 36 E-mail address: [email protected], or [email protected] (Gehui Wang) 37 38 39 1 https://doi.org/10.5194/acp-2019-640 Preprint. Discussion started: 26 August 2019 c Author(s) 2019.
    [Show full text]
  • Black Carbon Or Brown Carbon? the Nature of Light-Absorbing Carbonaceous Aerosols
    Atmos. Chem. Phys., 6, 3131–3148, 2006 www.atmos-chem-phys.net/6/3131/2006/ Atmospheric © Author(s) 2006. This work is licensed Chemistry under a Creative Commons License. and Physics Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols M. O. Andreae1 and A. Gelencser´ 2 1Max Planck Institute for Chemistry, Biogeochemistry Department, P.O. Box 3060, 55020 Mainz, Germany 2Air Chemistry Group of the Hungarian Academy of Sciences, University of Veszprem,´ P.O. Box 158, H-8201 Veszprem,´ Hungary Received: 13 January 2006 – Published in Atmos. Chem. Phys. Discuss.: 4 May 2006 Revised: 24 July 2006 – Accepted: 24 July 2006 – Published: 28 July 2006 Abstract. Although the definition and measurement tech- sorption of solar radiation in the troposphere. We discuss the niques for atmospheric “black carbon” (“BC”) or “elemental possible consequences of these effects for our understanding carbon” (“EC”) have long been subjects of scientific contro- of tropospheric processes, including their influence on UV- versy, the recent discovery of light-absorbing carbon that is irradiance, atmospheric photochemistry and radiative trans- not black (“brown carbon, Cbrown”) makes it imperative to fer in clouds. reassess and redefine the components that make up light- absorbing carbonaceous matter (LAC) in the atmosphere. Evidence for the atmospheric presence of Cbrown comes from (1) spectral aerosol light absorption measurements near spe- 1 Background cific combustion sources, (2) observations of spectral prop- erties of water extracts of continental aerosol, (3) laboratory Soot, the black material in smoke from wood and coal fires, studies indicating the formation of light-absorbing organic has been seen as the archetypical air pollutant throughout his- matter in the atmosphere, and (4) indirectly from the chemi- tory (Brimblecombe, 1987).
    [Show full text]