Astronomical Distance Determination in the Space Age Secondary Distance Indicators
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pos(BASH 2013)009 † ∗ [email protected] Speaker
The Progenitor Systems and Explosion Mechanisms of Supernovae PoS(BASH 2013)009 Dan Milisavljevic∗ † Harvard University E-mail: [email protected] Supernovae are among the most powerful explosions in the universe. They affect the energy balance, global structure, and chemical make-up of galaxies, they produce neutron stars, black holes, and some gamma-ray bursts, and they have been used as cosmological yardsticks to detect the accelerating expansion of the universe. Fundamental properties of these cosmic engines, however, remain uncertain. In this review we discuss the progress made over the last two decades in understanding supernova progenitor systems and explosion mechanisms. We also comment on anticipated future directions of research and highlight alternative methods of investigation using young supernova remnants. Frank N. Bash Symposium 2013: New Horizons in Astronomy October 6-8, 2013 Austin, Texas ∗Speaker. †Many thanks to R. Fesen, A. Soderberg, R. Margutti, J. Parrent, and L. Mason for helpful discussions and support during the preparation of this manuscript. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/ Supernova Progenitor Systems and Explosion Mechanisms Dan Milisavljevic PoS(BASH 2013)009 Figure 1: Left: Hubble Space Telescope image of the Crab Nebula as observed in the optical. This is the remnant of the original explosion of SN 1054. Credit: NASA/ESA/J.Hester/A.Loll. Right: Multi- wavelength composite image of Tycho’s supernova remnant. This is associated with the explosion of SN 1572. Credit NASA/CXC/SAO (X-ray); NASA/JPL-Caltech (Infrared); MPIA/Calar Alto/Krause et al. -
Arxiv:1108.0403V1 [Astro-Ph.CO] 1 Aug 2011 Esitps Hleg Oglx Omto Oesadthe and Models Formation Galaxy at to Tion
Noname manuscript No. (will be inserted by the editor) Production of dust by massive stars at high redshift C. Gall · J. Hjorth · A. C. Andersen To be published in A&A Review Abstract The large amounts of dust detected in sub-millimeter galaxies and quasars at high redshift pose a challenge to galaxy formation models and theories of cosmic dust forma- tion. At z > 6 only stars of relatively high mass (> 3 M⊙) are sufficiently short-lived to be potential stellar sources of dust. This review is devoted to identifying and quantifying the most important stellar channels of rapid dust formation. We ascertain the dust production ef- ficiency of stars in the mass range 3–40 M⊙ using both observed and theoretical dust yields of evolved massive stars and supernovae (SNe) and provide analytical expressions for the dust production efficiencies in various scenarios. We also address the strong sensitivity of the total dust productivity to the initial mass function. From simple considerations, we find that, in the early Universe, high-mass (> 3 M⊙) asymptotic giant branch stars can only be −3 dominant dust producers if SNe generate . 3 × 10 M⊙ of dust whereas SNe prevail if they are more efficient. We address the challenges in inferring dust masses and star-formation rates from observations of high-redshift galaxies. We conclude that significant SN dust pro- duction at high redshift is likely required to reproduce current dust mass estimates, possibly coupled with rapid dust grain growth in the interstellar medium. C. Gall Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark Tel.: +45 353 20 519 Fax: +45 353 20 573 E-mail: [email protected] J. -
Astrometry and Optics During the Past 2000 Years
1 Astrometry and optics during the past 2000 years Erik Høg Niels Bohr Institute, Copenhagen, Denmark 2011.05.03: Collection of reports from November 2008 ABSTRACT: The satellite missions Hipparcos and Gaia by the European Space Agency will together bring a decrease of astrometric errors by a factor 10000, four orders of magnitude, more than was achieved during the preceding 500 years. This modern development of astrometry was at first obtained by photoelectric astrometry. An experiment with this technique in 1925 led to the Hipparcos satellite mission in the years 1989-93 as described in the following reports Nos. 1 and 10. The report No. 11 is about the subsequent period of space astrometry with CCDs in a scanning satellite. This period began in 1992 with my proposal of a mission called Roemer, which led to the Gaia mission due for launch in 2013. My contributions to the history of astrometry and optics are based on 50 years of work in the field of astrometry but the reports cover spans of time within the past 2000 years, e.g., 400 years of astrometry, 650 years of optics, and the “miraculous” approval of the Hipparcos satellite mission during a few months of 1980. 2011.05.03: Collection of reports from November 2008. The following contains overview with summary and link to the reports Nos. 1-9 from 2008 and Nos. 10-13 from 2011. The reports are collected in two big file, see details on p.8. CONTENTS of Nos. 1-9 from 2008 No. Title Overview with links to all reports 2 1 Bengt Strömgren and modern astrometry: 5 Development of photoelectric astrometry including the Hipparcos mission 1A Bengt Strömgren and modern astrometry .. -
Columbiaieinstein Observations of Extragalactic X-Ray Sources
COLUMBIAIEINSTEIN OBSERVATIONS OF EXTRAGALACTIC X-RAY SOURCES William H. -M. Ku Columbia Astrophysics Laboratory I would like to report on the preliminary results of our analysis of data from the first 3 months of the Columbia Astrophysics Laboratory's (CAL) observations of extragalactic objects with the imaging proportional counter (IPC) on board the Einstein Observatory. CAL has an extensive program of extragalactic astronomy planned with the Einstein Observatory including surveys of normal galaxies, radio galaxies, active galaxies, quasars and BL Lacs, and cluste~sof galaxies. Early results from each one of these surveys have been received and analyzed at CAL. These observations have already allowed us to look as far out to the edge of the Universe as any observer in history, and they have improved our understanding of how our own Galaxy may have evolved through time. NORMAL GALAXIES X-ray observations of normal galaxies should aid us in the under- standing of our own Galaxy. Observations of the galaxies in the Local Group, such as the Large Magellanic Cloud discussed by Dr. Long, allow us to study the population of discrete X-ray sources in detail, as well as to examine diffuse emission associated with large-scale structures. Galaxies just outside the Local Group may also be studied in this way. For example, a 13 000 sec IPC image of M101, a normal spiral Sc galaxy, reveals the presence of three or four discrete sources associated with the beautiful spiral arm structure of the galaxy (Fig. 1). Possible diffuse or unresolved emission is also noticeable in the IPC image. -
Astronomy (ASTR) 1
Astronomy (ASTR) 1 ASTR 5073. Cosmology. 3 Hours. Astronomy (ASTR) An introduction to modern physical cosmology covering the origin, evolution, and structure of the Universe, based on the Theory of Relativity. (Typically offered: Courses Spring Odd Years) ASTR 2001L. Survey of the Universe Laboratory (ACTS Equivalency = PHSC ASTR 5083. Data Analysis and Computing in Astronomy. 3 Hours. 1204 Lab). 1 Hour. Study of the statistical analysis of large data sets that are prevalent in the Daytime and nighttime observing with telescopes and indoor exercises on selected physical sciences with an emphasis on astronomical data and problems. Includes topics. Pre- or Corequisite: ASTR 2003. (Typically offered: Fall, Spring and Summer) computational lab 1 hour per week. Corequisite: Lab component. (Typically offered: Fall Even Years) ASTR 2001M. Honors Survey of the Universe Laboratory. 1 Hour. An introduction to the content and fundamental properties of the cosmos. Topics ASTR 5523. Theory of Relativity. 3 Hours. include planets and other objects of the solar system, the sun, normal stars and Conceptual and mathematical structure of the special and general theories of interstellar medium, birth and death of stars, neutron stars, and black holes. Pre- or relativity with selected applications. Critical analysis of Newtonian mechanics; Corequisite: ASTR 2003 or ASTR 2003H. (Typically offered: Fall) relativistic mechanics and electrodynamics; tensor analysis; continuous media; and This course is equivalent to ASTR 2001L. gravitational theory. (Typically offered: Fall Even Years) ASTR 2003. Survey of the Universe (ACTS Equivalency = PHSC 1204 Lecture). 3 Hours. An introduction to the content and fundamental properties of the cosmos. Topics include planets and other objects of the solar system, the Sun, normal stars and interstellar medium, birth and death of stars, neutron stars, pulsars, black holes, the Galaxy, clusters of galaxies, and cosmology. -
Planning the VLT Interferometer
No. 60 - -.June 1990 --, Planning the VLTVLT Interferometer J. M. BECKERS, ESO 1. The VlVLTT Interferometer: VLTVLT Reports 44 and 49), the interferointerfero- approved YLTVLT implementation. P. LemaLena One of the Operating Modes metric mode of the VLVLTT was indudedincluded in described the concept and planning torfor ofoftheVLT the VLT the VLTVLT proposal, and accepted inin theIhe the inlerferometricinterferometric mode of the VLTVLT at 1.1.11 Itsfts Context Adaptive Optics at the ESO 3.6-m Telescope The Very Large Telescope has three differenldifferent modes of being used. As four separate 8-metre telescopes it provides theIhe capabililycapability of carrying out in parallel tourfour different observing programmes, each with a sensitivitysensilivity which matches that of the other most powerful groundground- based telescopes available. In the secsec- ond mode the light of the four tele-lele scopes is combined in a single imageimage making ilit inin sensitivity the most powerful telescope on earth, almost 16t6 metres in diameter if the light losses in the beam eombinationcombination canean be kept low. In the third mode Ihethe light of the four tele-tele scopes is combined coherenlly,coherently, allowallow- This faise-colourfalse-colour photo illustrates the dramatiedramatic improvement in image sharpness whiehwhich is ing interferomelrlcinterferometric observations with the obtained with adaptive optiesoptics at the ESO 3.6·m3.6-m telescope. seeSee also the artielearticle on page 9. unparalleled sensitivity resulting fromtrom I1It shows the 5.5 magnitudemagnilude star HR 6658 in the galacticga/aeUe eluslercluster Messier 7 (NGC 6475), as the 8-metre apertures. In this mode theIhe observed in the infrared L·bandL-band (wavelength 3.5pm),3.Sllm), without ("ullcorrecled",("uncorrected", left) alldand with angular resolulionresolution is determined by the "corrected","corrected, right) the "VL"VLTT adaptive optics prototype" switched on. -
How Supernovae Became the Basis of Observational Cosmology
Journal of Astronomical History and Heritage, 19(2), 203–215 (2016). HOW SUPERNOVAE BECAME THE BASIS OF OBSERVATIONAL COSMOLOGY Maria Victorovna Pruzhinskaya Laboratoire de Physique Corpusculaire, Université Clermont Auvergne, Université Blaise Pascal, CNRS/IN2P3, Clermont-Ferrand, France; and Sternberg Astronomical Institute of Lomonosov Moscow State University, 119991, Moscow, Universitetsky prospect 13, Russia. Email: [email protected] and Sergey Mikhailovich Lisakov Laboratoire Lagrange, UMR7293, Université Nice Sophia-Antipolis, Observatoire de la Côte d’Azur, Boulevard de l'Observatoire, CS 34229, Nice, France. Email: [email protected] Abstract: This paper is dedicated to the discovery of one of the most important relationships in supernova cosmology—the relation between the peak luminosity of Type Ia supernovae and their luminosity decline rate after maximum light. The history of this relationship is quite long and interesting. The relationship was independently discovered by the American statistician and astronomer Bert Woodard Rust and the Soviet astronomer Yury Pavlovich Pskovskii in the 1970s. Using a limited sample of Type I supernovae they were able to show that the brighter the supernova is, the slower its luminosity declines after maximum. Only with the appearance of CCD cameras could Mark Phillips re-inspect this relationship on a new level of accuracy using a better sample of supernovae. His investigations confirmed the idea proposed earlier by Rust and Pskovskii. Keywords: supernovae, Pskovskii, Rust 1 INTRODUCTION However, from the moment that Albert Einstein (1879–1955; Whittaker, 1955) introduced into the In 1998–1999 astronomers discovered the accel- equations of the General Theory of Relativity a erating expansion of the Universe through the cosmological constant until the discovery of the observations of very far standard candles (for accelerating expansion of the Universe, nearly a review see Lipunov and Chernin, 2012). -
Sky & Telescope
Eclipse from the See Sirius B: The Nearest Spot the Other EDGE OF SPACE p. 66 WHITE DWARF p. 30 BLUE PLANETS p. 50 THE ESSENTIAL GUIDE TO ASTRONOMY What Put the Bang in the Big Bang p. 22 Telescope Alignment Made Easy p. 64 Explore the Nearby Milky Way p. 32 How to Draw the Moon p. 54 OCTOBER 2013 Cosmic Gold Rush Racing to fi nd exploding stars p. 16 Visit SkyandTelescope.com Download Our Free SkyWeek App FC Oct2013_J.indd 1 8/2/13 2:47 PM “I can’t say when I’ve ever enjoyed owning anything more than my Tele Vue products.” — R.C, TX Tele Vue-76 Why Are Tele Vue Products So Good? Because We Aim to Please! For over 30-years we’ve created eyepieces and telescopes focusing on a singular target; deliver a cus- tomer experience “...even better than you imagined.” Eyepieces with wider, sharper fields of view so you see more at any power, Rich-field refractors with APO performance so you can enjoy Andromeda as well as Jupiter in all their splendor. Tele Vue products complement each other to pro- vide an observing experience as exquisite in performance as it is enjoyable and effortless. And how do we score with our valued customers? Judging by superlatives like: “in- credible, truly amazing, awesome, fantastic, beautiful, work of art, exceeded expectations by a mile, best quality available, WOW, outstanding, uncom- NP101 f/5.4 APO refractor promised, perfect, gorgeous” etc., BULLSEYE! See these superlatives in with 110° Ethos-SX eye- piece shown on their original warranty card context at TeleVue.com/comments. -
Glossary of Terms Absorption Line a Dark Line at a Particular Wavelength Superimposed Upon a Bright, Continuous Spectrum
Glossary of terms absorption line A dark line at a particular wavelength superimposed upon a bright, continuous spectrum. Such a spectral line can be formed when electromag- netic radiation, while travelling on its way to an observer, meets a substance; if that substance can absorb energy at that particular wavelength then the observer sees an absorption line. Compare with emission line. accretion disk A disk of gas or dust orbiting a massive object such as a star, a stellar-mass black hole or an active galactic nucleus. An accretion disk plays an important role in the formation of a planetary system around a young star. An accretion disk around a supermassive black hole is thought to be the key mecha- nism powering an active galactic nucleus. active galactic nucleus (agn) A compact region at the center of a galaxy that emits vast amounts of electromagnetic radiation and fast-moving jets of particles; an agn can outshine the rest of the galaxy despite being hardly larger in volume than the Solar System. Various classes of agn exist, including quasars and Seyfert galaxies, but in each case the energy is believed to be generated as matter accretes onto a supermassive black hole. adaptive optics A technique used by large ground-based optical telescopes to remove the blurring affects caused by Earth’s atmosphere. Light from a guide star is used as a calibration source; a complicated system of software and hardware then deforms a small mirror to correct for atmospheric distortions. The mirror shape changes more quickly than the atmosphere itself fluctuates. -
Extragalactic Astronomy: the U Nivcre Bey Nd Our Galaxy
U1IJT RESUPE EU 1J3 199 021 775 dacon Eenneth Char TITLE Extragalactic Astronomy: The U nivcre Bey nd Our Galaxy. American Astronomical Society, Princeton, N.J. SFONS AGENCY National Aeronautics and Space Administra ashingtonl D.C.; National Science Foundation, Washington, D.C. REPOBT NO NASA-i:T-129 PUB DATE Sep 76 NOTE 44p.; FOF ltEd aocunents, _e SE 021 773-776 AVAII,AULE Superintendent of Documents, U.S. G-vernment Prin ing Office, Washington, D.C. 20402(5 ock Number 033-000-00657-8, $1.30) E.-RS PE10E 1F-$0.03 HC-$2.06 Plus Postige. DESCilIPTORS *Astronomy; Curriculum; *Instructional Materials; Science Education; *Scientific iesearch; Secondary Education; *Secondary School Science; *Space Sciences TIF NASA; National Aeronautics and Space Administration BSTRACT This booklet is part of an American Astronomical Society curriculum project designed to provide teaching materials to teachers or secondary school chemistry, physics, and earth science. The material is presented in three parts: one section provides the fundamental content of extragalactic astronomy, another section discusses modern discoveries in detail, and the last section summarizes the earlier discussions within the structure of the Big Bang Theory of Evolution. Each of the three sections is followed by student exercises and activities, laboratory projects, and questions and answers. The glossary contains unfamiliar terms used in the text and a collection of teacher aids such as literature references and audiovisual materials. (111) ***** *** * ** ** ***************** ********** Document., acquired by IC include many informal unpublished aterials not available from other sources. ERIC makes every effort * * to obtain the best copy available. Nevertheless, items of marginal * * reproducibility are often encountered and tbis affects the quality * * of the microfiche and hardcopy reproductions ERIC makes available * * via the ERIC Document Reproduction Service (EDRS). -
Astronomy (ASTR) 1
Astronomy (ASTR) 1 ASTR 203 Introduction to Observational Astronomy ASTRONOMY (ASTR) Prerequisites: ASTR 103/ASTR 103H or equivalent Notes: The course consists of 2 lecture hours and three evening ASTR 103 Descriptive Astronomy laboratory hours per week. Description: Approach is essentially nonmathematical. Survey of the Description: Exploration of equipment and techniques needed to observe nature and motions of the planets, the sun, the stars, and their lives, and investigate the motions and objects in the night sky. galaxies, and the structure of the universe. Black holes, pulsars, quasars, Credit Hours: 4 and other objects of special interest included. Max credits per semester: 4 Credit Hours: 3 Max credits per degree: 4 Max credits per semester: 3 Grading Option: Graded with Option Max credits per degree: 3 ASTR 204 Introduction to Astronomy and Astrophysics Grading Option: Graded with Option Prerequisites: PHYS 211/211H; MATH 107/107H; parallel ASTR 224 Prerequisite for: ASTR 113; ASTR 203 Notes: Survey of the sun, the solar system, stellar properties, stellar ACE: ACE 4 Science systems, interstellar matter, galaxies, and cosmology. ASTR 103H Honors: Descriptive Astronomy Description: Survey of the sun, the solar system, stellar properties, stellar Prerequisites: Good standing in the University Honors Program or by systems, interstellar matter, galaxies, and cosmology. invitation Credit Hours: 3 Notes: Broad look at astronomy for non-science majors. Max credits per semester: 3 Description: Approach is essentially non-mathematical, but simple Max credits per degree: 3 algebra is employed where appropriate. Sun and solar system, the stars, Grading Option: Graded with Option galaxies, and cosmology. Black holes, pulsars, quasars, and other objects Prerequisite for: ASTR 224 of special interest included. -
Constraining the Progenitor and Central Engine of Gamma-Ray Bursts with Observational Data
UNLV Theses, Dissertations, Professional Papers, and Capstones 5-1-2015 Constraining the Progenitor and Central Engine of Gamma-ray Bursts with Observational Data Lu Houjun University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations Part of the Stars, Interstellar Medium and the Galaxy Commons Repository Citation Houjun, Lu, "Constraining the Progenitor and Central Engine of Gamma-ray Bursts with Observational Data" (2015). UNLV Theses, Dissertations, Professional Papers, and Capstones. 2366. http://dx.doi.org/10.34917/7645921 This Dissertation is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Dissertation has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. CONSTRAINING THE PROGENITOR AND CENTRAL ENGINE OF GAMMA-RAY BURSTS WITH OBSERVATIONAL DATA by HOUJUN L¨u Bachelor of Science Neijiang Normal University, China 2007 Master of Science Guangxi University, China 2010 A dissertation