0957+561, 107, 109, 110, 114, 115, 117, 118, 132, 206 3C 279, 40, 41 Aaronson, Marc, 220 Abell 1689, 141, 143, 147 Abell 2218, 1

Total Page:16

File Type:pdf, Size:1020Kb

0957+561, 107, 109, 110, 114, 115, 117, 118, 132, 206 3C 279, 40, 41 Aaronson, Marc, 220 Abell 1689, 141, 143, 147 Abell 2218, 1 Index 0957+561, 107, 109, 110, 114, 115, 117, Cerenkov radiation, 50 118, 132, 206 Chandra X-ray Observatory, 35, 49, 64, 3C 279, 40, 41 66, 187, 188, 202 Chandrasekhar limit, 75, 76, 232 Aaronson, Marc, 220 Chandrasekhar, Subrahmanyan, 75, 76, Abell 1689, 141, 143, 147 181 Abell 2218, 138, 141, 144 Cl 0024+1654, 140, 142 aberration, 13, 67, 68, 124 clusters of galaxies, 137, 140–145, 147, Adams, Walter S., 73, 76, 77 149, 159, 185 adaptive optics, 194, 195 Compton Gamma-Ray Observatory, Alvan Clark and Sons, 73 44–47, 49, 62 Anglo-Australian Telescope (AAT), 53, Cosmic Background Explorer (COBE), 59 230, 231 Arp, Halton, 153, 154, 156, 222 cosmic rays, 90–93, 95 cosmological constant, 205, 211, 235 B1359+154, 124, 126 Couderc, Paul, 15 Baade, Walter, 79, 80, 82 Crab Nebula, 64–66, 82, 84, 85, 94, 96 Barnard, F.A.P., 72, 74 Curtis, H.D., 35, 118, 208 Barnothy Forro, Madeleine, 106, 121 Cygnus X-1, 186, 187 Barnothy, Jeno, 106, 111, 121, 155 Bell, Jocelyn, 81 dark matter, 148, 149, 152, 153, 230, 235 BeppoSAX, 46 de Sitter, Willem, 206 Berks, Robert, 1 de Vaucouleurs, Gerard, 112, 219, 221 Bethe, Hans, 6, 168 degeneracy, 75, 82 black holes, 48, 57, 85, 112, 179, 181–187, Doppler boosting, 31, 40, 48, 51, 63 189, 191–193, 195, 196, 198–203, Doppler shift, 59, 63, 67, 68, 151, 202, 232 206, 212, 220 blackbody radiation, 22, 78, 85, 229 DuBois, W.E.B., 241 blazars, 49, 51 dust, 17, 122, 159, 217, 219, 221 Bohr, Niels, 23 Bradley, James, 13 Eddington, Arthur Stanley, 6, 76, 100, Burbidge, Geoffrey, 111, 175 104, 165, 167 Burbidge, Margaret, 175 Einstein Cross, 129–132 Einstein ring, 130, 133, 134, 156, 160 Canada–France–Hawaii Telescope, 138, Einstein, Albert, 1, 3, 7, 14, 58, 97–99, 140, 142, 200 102, 104–106, 134, 148, 149, 152, Carswell, R.F., 108, 110, 111 155, 180, 181, 205, 211, 213, 235, Cepheids, 165, 210, 216, 217, 219, 223, 237, 241 225, 228, 229 Ellis, Richard, 146 244 Index European Southern Observatory, 139, 133, 140–146, 148, 158–162, 175, 140, 145, 154, 195 200–202, 217, 222, 225 Hubble’s Variable Nebula, 20, 21 Fath, E.A., 165, 196 Hubble, Edwin, 7, 206, 208, 209, 211–214, Fermi, Enrico, 92 225, 234 Fisher, Rick, 220 Huchra, John, 220 Fishman, Jerry, 45 Humason, Milton, 211, 212 Fowler, Willy, 175, 176 frame dragging, 238 Infrared Astronomical Satellite (IRAS), Freedman, Wendy, 223 125–127, 192 Freundlich, Erwin, 100 infrared astronomy, 189, 193, 220 International Ultraviolet Explorer (IUE), Friedmann, Alexander, 206 27, 29–32 Frost, E.B., 105 FSC 10214+4724, 125, 129, 130 jets, 31, 35–37, 41, 42, 48, 51, 52, 57, fusion, 7, 168, 174, 176 59–61, 63, 65, 95, 198, 199 Jodrell Bank, 107–109 Galactic Center, 158, 189–193, 195, 197 Galileo, 12 Keck Observatory, 146, 195–197, 227 gamma rays, 42, 48–50 Kennicutt, Rob, 222, 223 gamma-ray bursts, 42, 43, 45–48 Kirchhoff, Gustav, 24 general relativity, 1, 71, 78, 97, 104, Kitt Peak, 84, 85, 108, 110, 111, 114, 137, 179–181, 205, 218, 235, 238–240 139, 151, 175, 214, 221, 223, 224, Giacconi, Riccardo, 184, 202 226, 233 globular clusters, 224, 226, 227 Kuiper Airborne Observatory, 192, 193 gold, 71, 72, 177 Large Magellanic Cloud, 15, 43, 44, 83, Granat, 62, 63 157, 187, 209, 210, 219, 232 gravitational deflection, 97–99, 101, 102 Leavitt, Henrietta, 209, 210 gravitational lens, 8, 105, 115, 131, 132 Lemaˆıtre, Georges, 206 gravitational lensing, 102–104, 106, 107, Lick Observatory, 35, 54, 56–58, 73, 84, 110, 111, 113, 118, 121, 124, 133, 111, 114, 117, 140, 154, 174, 206, 135, 147–149, 153, 156, 159, 162, 208, 214, 234 182 light echo, 14–20 gravitational radiation, 238–240 Lorentz factor, 32, 33, 37, 58, 88, 93, 96 gravitational redshift, 76–78, 80 Lorentz, Hendrik, 32, 33 Gravity Probe-B (GP-B), 238, 239 Lowell Observatory, 151, 206, 207 Green Bank, 107–109, 122, 220 Lynds, Roger, 138, 139 Hardie, Robert, 73 M33, 210 Hawking, Stephen, 181–183 M81, 200 Herschel, John, 14, 165 M87, 35–37, 40, 96, 199, 200 Hertzsprung–Russell diagram, 172 MACHOs, 152, 153, 155, 157, 158 Hess, Victor, 90 Mandl, R.W., 103, 104 Hewish, Anthony, 81 Margon, Bruce, 54–57 Hoag, Arthur, 137, 139 Mauna Kea, 111–113, 130, 140, 147, 195, Hoyle, Fred, 175–177 196, 200 Hubble constant, 131, 132, 215–217, 219, Maxwell, James Clerk, 23 221, 222, 226, 231, 234 microlensing, 148, 153, 155, 156, 158–162 Hubble Space Telescope, 30, 35, 36, microquasars, 60–63, 95 44, 59, 64, 78, 79, 85, 91, 93, 95, microwave background, 227, 229, 232 115, 117, 118, 122–126, 129–131, Milgrom, Mordehai, 57, 152 Index 245 Milky Way, 6, 149, 155, 176, 187, 189, Rubin, Vera, 151, 152 195, 206–208, 210, 217, 219, 232 Russell, Henry Norris, 165, 166, 172 Mould, Jeremy, 220, 223 Ryle, Martin, 38 MS1512-cB58, 141, 145, 146 Mt. Wilson Observatory, 73, 76, 153, 175, Sandage, Allan, 211, 214–217, 219, 221, 194, 208, 209, 211, 213, 214, 216, 222, 225, 231 222, 223 Schwarzschild, Karl, 180 SETI, 162 National Academy of Sciences, 1, 208 Seyfert galaxies, 26, 32, 123, 153, 196, neutrinos, 172, 173 198 neutron stars, 43, 48, 71, 78, 80, 82, 83, Shklovsky, Iosif, 94 85, 187, 192, 232 Sirius B, 72–74, 76–79 Newton, Isaac, 1, 6, 97, 152, 182, 205, Slipher, V.M., 206, 207 237 Sloan Digital Sky Survey, 122, 123, 148, NGC 1068, 196 155, 202 NGC 2261, 20, 21 solar eclipse, 99–101 NGC 3079, 107, 109, 118 Soucail, Genevi`eve, 138, 140 NGC 3115, 200 special relativity, 31, 40, 67, 79, 83 NGC 3314, 159–162 spectroscopy, 21–26 NGC 4151, 27, 28 Spitzer Space Telescope, 94, 146 NGC 4321, 228 SS 433, 55–61, 152 NGC 5548, 30, 32 starbow, 67, 68 NGC 5746, 151 strong nuclear force, 169 NGC 6822, 210 superluminal motion, 41, 51 nuclear tests, 91, 92, 170, 176 superluminal motions, 40 Supernova 1987A, 15–18, 83, 232 Palomar Observatory, 108, 112, 113, 118, supernovae, 15, 16, 44, 48, 49, 53, 59, 79, 122, 153, 199, 214, 216 80, 82, 85, 95, 105, 177, 185, 189, Payne-Gaposchkin, Cecilia, 6 209, 223, 225, 231, 232, 234 Penrose–Terrell rotation, 34, 36 surface-brightness fluctuations, 225 PG 1115+080, 119 synchrotron radiation, 86–89, 93–96 photoelectric effect, 1, 7, 21 time dilation, 63, 93 Planck, Max, 22 Tinsley, Beatrice, 221 planetary nebulae, 223, 224 Tolman, Richard, 211, 218 polarization, 94, 96 pulsars, 80–82, 84, 85, 239 Uhuru, 184, 186, 188 quantum theory, 23 V838 Monocerotis, 17, 19 quasars, 26, 28, 35, 39–41, 49, 95, Van Allen belts, 91 109–111, 114, 115, 117, 121, 123, Very Large Array, 39, 60, 62, 88, 113, 131, 148, 153, 154, 156, 179, 198 116, 122 very-long-baseline interferometry (VLBI), radio astronomy, 37, 85 40, 42 radio galaxies, 40, 87, 88, 95, 123, 198, Virgo cluster, 199, 220, 221, 223, 225, 229 199 von Weizs¨acker, Carl, 6, 168 radioactivity, 6, 166 redshift, 14, 47, 77, 153, 179, 211, 212, W50, 53, 59, 60 215, 218, 220, 229, 230 Walsh, Dennis, 107, 108, 110, 111, 118 Rees, Martin, 57, 199 weak nuclear force, 169, 172 Refsdal, Sjur, 105, 116, 131, 149 Wells, H.G., 241 246 Index Weymann, Ray, 110, 111, 115, 119 X-ray astronomy, 8, 184 white dwarfs, 71–78, 82, 177 XMM/Newton, 187 Wilkinson Microwave Anisotropy Probe (WMAP), 231, 232 Yerkes Observatory, 73, 105, 106 William Herschel Telescope, 127, 128, Young, Peter, 112, 133, 199, 200 132 WIMPs, 152 Zwicky, Fritz, 79, 80, 82, 102–105, 119, Wright, Thomas, 207 121, 141, 149 Colour Tables Chapter 2 3C 279 Superluminal Motion 1992.0 1993.0 1994.0 1995.0 5 milliarcseconds Fig. 2.13. The quasar 3C 279, showing superluminal motion in its jet. Pseudocolor intensity coding has been used to make subtle features more apparent. The prominent outer knots to the right are moving outward with a projected speed of 4c.Atthis quasar’s distance of 5 billion light-years, the scale bar of 5 milliarcseconds corresponds to a length of 100 light-years. The bright knot to the right moves almost 20 light-years in 4.5 years, as viewed in our reference frame. These observations, at a radio wavelength of 1.3 cm, were carried out initially with an ad hoc network of radio telescope, and starting in 1994, with the Very Long Baseline Array of the National Radio Astronomy Observatory, a dedicated network of telescopes stretching from the Virgin Islands to Hawaii. (Images courtesy Ann Wehrle and Steve Unwin.) This figure also appears in color as Plate 1. ^ VLA HST UIT EUVE ROSAT EGRET Cerenkov Optical UV X−rays γ rays + + +++ Infrared ++ + ++++ −10 Radio + + 10 − + + + + + +− second + + flaring + + 2 +++++++ + +++++++ + + +++++ ++ +++ + + faint ), erg/cm ), ν + F ν 10−12 − + − +++ + ++ Markarian 421 − broad−band spectrum Flux per decade ( decade per Flux ++ 10−14 10 15 20 25 log frequency (Hertz) Fig. 2.17. The blazar Markarian 421 as seen across the electromagnetic spectrum. This montage shows the relative energy received from this blazar in various spectral regions, both when it is quiet and when it is in a bright flare such as may accompany the appearance of new jet material. The inset images show its appearance to various instruments used for these observations. The distinct gamma-ray peak is evidence that its lower-energy radiation is being scattered and Doppler-boosted in a jet directed nearly toward us.
Recommended publications
  • AAS Worldwide Telescope: Seamless, Cross-Platform Data Visualization Engine for Astronomy Research, Education, and Democratizing Data
    AAS WorldWide Telescope: Seamless, Cross-Platform Data Visualization Engine for Astronomy Research, Education, and Democratizing Data The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Rosenfield, Philip, Jonathan Fay, Ronald K Gilchrist, Chenzhou Cui, A. David Weigel, Thomas Robitaille, Oderah Justin Otor, and Alyssa Goodman. 2018. AAS WorldWide Telescope: Seamless, Cross-Platform Data Visualization Engine for Astronomy Research, Education, and Democratizing Data. The Astrophysical Journal: Supplement Series 236, no. 1. Published Version https://iopscience-iop-org.ezp-prod1.hul.harvard.edu/ article/10.3847/1538-4365/aab776 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:41504669 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP Draft version January 30, 2018 Typeset using LATEX twocolumn style in AASTeX62 AAS WorldWide Telescope: Seamless, Cross-Platform Data Visualization Engine for Astronomy Research, Education, and Democratizing Data Philip Rosenfield,1 Jonathan Fay,1 Ronald K Gilchrist,1 Chenzhou Cui,2 A. David Weigel,3 Thomas Robitaille,4 Oderah Justin Otor,1 and Alyssa Goodman5 1American Astronomical Society 1667 K St NW Suite 800 Washington, DC 20006, USA 2National Astronomical Observatories, Chinese Academy of Sciences 20A Datun Road, Chaoyang District Beijing, 100012, China 3Christenberry Planetarium, Samford University 800 Lakeshore Drive Birmingham, AL 35229, USA 4Aperio Software Ltd. Headingley Enterprise and Arts Centre, Bennett Road Leeds, LS6 3HN, United Kingdom 5Harvard Smithsonian Center for Astrophysics 60 Garden St.
    [Show full text]
  • CO Multi-Line Imaging of Nearby Galaxies (COMING) IV. Overview Of
    Publ. Astron. Soc. Japan (2018) 00(0), 1–33 1 doi: 10.1093/pasj/xxx000 CO Multi-line Imaging of Nearby Galaxies (COMING) IV. Overview of the Project Kazuo SORAI1, 2, 3, 4, 5, Nario KUNO4, 5, Kazuyuki MURAOKA6, Yusuke MIYAMOTO7, 8, Hiroyuki KANEKO7, Hiroyuki NAKANISHI9 , Naomasa NAKAI4, 5, 10, Kazuki YANAGITANI6 , Takahiro TANAKA4, Yuya SATO4, Dragan SALAK10, Michiko UMEI2 , Kana MOROKUMA-MATSUI7, 8, 11, 12, Naoko MATSUMOTO13, 14, Saeko UENO9, Hsi-An PAN15, Yuto NOMA10, Tsutomu, T. TAKEUCHI16 , Moe YODA16, Mayu KURODA6, Atsushi YASUDA4 , Yoshiyuki YAJIMA2 , Nagisa OI17, Shugo SHIBATA2, Masumichi SETA10, Yoshimasa WATANABE4, 5, 18, Shoichiro KITA4, Ryusei KOMATSUZAKI4 , Ayumi KAJIKAWA2, 3, Yu YASHIMA2, 3, Suchetha COORAY16 , Hiroyuki BAJI6 , Yoko SEGAWA2 , Takami TASHIRO2 , Miho TAKEDA6, Nozomi KISHIDA2 , Takuya HATAKEYAMA4 , Yuto TOMIYASU4 and Chey SAITA9 1Department of Physics, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 2Department of Cosmosciences, Graduate School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 3Department of Physics, School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 4Division of Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan 5Tomonaga Center for the History of the Universe (TCHoU), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan 6Department of Physical Science, Osaka Prefecture University, Gakuen 1-1,
    [Show full text]
  • Space Astronomy in the 90S
    Space Astronomy in the 90s Jonathan McDowell April 26, 1995 1 Why Space Astronomy? • SHARPER PICTURES (Spatial Resolution) The Earth’s atmosphere messes up the light coming in (stars twinkle, etc). • TECHNICOLOR (X-ray, infrared, etc) The atmosphere also absorbs light of different wavelengths (col- ors) outside the visible range. X-ray astronomy is impossible from the Earth’s surface. 2 What are the differences between satellite instruments? • Focussing optics or bare detectors • Wavelength or energy range - IR, UV, etc. Different technology used for different wavebands. • Spatial Resolution (how sharp a picture?) • Spatial Field of View (how large a piece of sky?) • Spectral Resolution (can it tell photons of different energies apart?) • Spectral Field of View (bandwidth) • Sensitivity • Pointing Accuracy • Lifetime • Orbit (hence operating efficiency, background, etc.) • Scan or Point What are the differences between satellites? • Spinning or 3-axis pointing (older satellites spun around a fixed axis, precession let them eventually see different parts of the sky) • Fixed or movable solar arrays (fixed arrays mean the spacecraft has to point near the plane perpendicular to the solar-satellite vector) 3 • Low or high orbit (low orbit has higher radiation, atmospheric drag, and more Earth occultation; high orbit has slower preces- sion and no refurbishment opportunity) • Propulsion to raise orbit? • Other consumables (proportional counter gas, attitude control gas, liquid helium coolant) 4 What are the differences in operation? • PI mission vs. GO mission PI = Principal Investigator. One of the people responsible for building the satellite. Nowadays often referred to as IPIs (In- strument PIs). GO = Guest Observer. Someone who just want to use the satel- lite.
    [Show full text]
  • PMAS-PPAK Integral-Field Spectroscopy of Nearby Seyfert And
    PMAS-PPAK integral-field spectroscopy of nearby Seyfert and normal spiral galaxies I. The central kiloparsecs of NGC 4138 Bartakov´ a´ T.1, Jungwiert B.2,3,Sanchez´ S. F.4,5, Stoklasova´ I.2, Emsellem E.6, Ferruit P.7, Jahnke K.8, Mundell C.9, Tacconi-Garman L. E.6, Vergani D.10, Wisotzki L.11 1 Department of Theoretical Physics and Astrophysics, Faculty of Science, Masaryk University, Brno, Czech Republic; 2 Astronomical Institute, Academy of Science of the Czech Republic, Prague, Czech Republic; 3 Astronomical Institute of the Charles University in Prague, Czech Republic; 4 Centro de Estudios de F´ısica del Cosmos de Aragon´ (CEFCA), Teruel, Spain; 5 Centro Astronomico´ Hispano-Aleman,´ Calar Alto, Almer´ıa, Spain; 6 European Southern Observatory, Garching, Germany; 7 CRAL-Observatoire de Lyon, Saint-Genis-Laval, France; 8 Max-Planck-Institut fur Astronomie, Heidelberg, Germany; 9 Astrophysics Research Institute, Liverpool John Moores University, United Kingdom; 10 INAF-Osservatorio Astronomico di Bologna, Italy; 11 Astrophysical Institute Potsdam, Germany. email: [email protected] Project overview These peculiarities are suspected to be related to a minor merger, however they could also be related to a destroyed Ratio Ha/Hb |2.5/*| Ratio [SII]6717/[SII]6731 |1.15/2.0| We study properties of ionized gas, gas/stellar kinematics bar, or a combination of both. New studies are necessary 30 6 30 2 5.5 1.9 and stellar populations in central regions (a few inner 20 20 to understand the galaxy history and mass transfer within 1.8 5 kiloparsecs) of four pairs of nearby Seyfert (NGC 5194, 10 10 1.7 the inner kiloparsecs.
    [Show full text]
  • Arxiv:1705.04776V1 [Astro-Ph.HE] 13 May 2017 Aaua M
    White Paper on East Asian Vision for mm/submm VLBI: Toward Black Hole Astrophysics down to Angular Resolution of 1 RS Editors Asada, K.1, Kino, M.2,3, Honma, M.3, Hirota, T.3, Lu, R.-S.4,5, Inoue, M.1, Sohn, B.-W.2,6, Shen, Z.-Q.4, and Ho, P. T. P.1,7 Authors Akiyama, K.3,8, Algaba, J-C.2, An, T.4, Bower, G.1, Byun, D-Y.2, Dodson, R.9, Doi, A.10, Edwards, P.G.11, Fujisawa, K.12, Gu, M-F.4, Hada, K.3, Hagiwara, Y.13, Jaroenjittichai, P.15, Jung, T.2,6, Kawashima, T.3, Koyama, S.1,5, Lee, S-S.2, Matsushita, S.1, Nagai, H.3, Nakamura, M.1, Niinuma, K.12, Phillips, C.11, Park, J-H.15, Pu, H-Y.1, Ro, H-W.2,6, Stevens, J.11, Trippe, S.15, Wajima, K.2, Zhao, G-Y.2 1 Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan 2 Korea Astronomy and Space Science Institute, Daedukudae-ro 776, Yuseong-gu, Daejeon 34055, Republic of Korea 3 National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo, 181-8588, Japan 4 Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030, China 5 Max-Planck-Institut f¨ur Radioastronomie, Auf dem H¨ugel 69, D-53121 Bonn, Germany 6 University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea 7 East Asian Observatory, 660 N.
    [Show full text]
  • Particle Acceleration in Solar Flares What Is the Link Between Heating and Particle Acceleration?
    Energetic Particles in the Solar Atmosphere (X- ray diagnostics) Nicole Vilmer LESIA, Observatoire de Paris, CNRS, UPMC, Université Paris-Diderot The Sun as a Particle Accelerator: First detection of energetic protons from the Sun(1942) (related to a solar flare) First X-ray observations of solar flares (1970) Chupp et al., 1974 First observations of -ray lines from solar flares (OSO7/Prognoz 1972) Since then many more observations With e.g. RHESSI (2002-2018) And also INTEGRAL, FERMI >120000 X-ray flares observed by RHESSI (NASA/SMEX; 2002-2018) But still a limited number of gamma- ray line flares ~30 Solar flare: Sudden release of magnetic energy Heating Particle acceleration X-rays 6-8 keV 25-80 keV 195 Å 304 Å 21 aug 2002 (extreme ultraviolet) 335 Å 15 fev 2011 HXR/GR diagnostics of energetic electrons and ions SXR emission Hot Plasma (7to 8 MK ) HXR emission Bremsstrahlung from non-thermal electrons Prompt -ray lines : Deexcitation lines(C and 0) (60%) Signature of energetic ions (>2 MeV/nuc) Neutron capture line: p –p ; p-α and p-ions interactions Production of neutrons Collisional slowing down of neutrons Radiative capture on ambient H deuterium + 2.2 MeV. line RHESSI Observations X/ spectrum Thermal components T= 2 10 7 K T= 4 10 7 K Electron bremsstrahlung Ultrarelativistic -ray lines Electron (ions > 3 MeV/nuc) Bremsstrahlung (INTEGRAL) SMM/GRS PHEBUS/GRANAT FERMI/LAT observations RHESSI Pion decay radiation(ions > ~300MeV/nuc) Particle acceleration in solar flares What is the link between heating and particle acceleration? Where are the acceleration sites? What is the transport of particles from acceleration sites to X/ γ ray emission sites? What are the characteristic acceleration times? RHESSI How many energetic particles? Energy spectra? Relative abundances of energetic ions? RHESSI Which acceleration mechanisms in solar flares? Shock acceleration? Stochastic acceleration? (wave-particle interaction) Direct Electric field acceleration.
    [Show full text]
  • Centaurus a at Hard X-Rays and Gamma Rays
    Centaurus A at Hard X-Rays and Soft Gamma-Rays Chandra 1-10 keV CGRO-COMPTEL 1 ± 30 MeV Fermi 100 MeV ± 100 GeV Helmut Steinle Max-Planck-Institut für extraterrestrische Physik Garching, Germany ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- The Many Faces of Centaurus A ± Sydney, 28 June ± 3 July 2009; H. Steinle, MPE 1 / 35 Centaurus A at Hard X-Rays and Soft Gamma-Rays Contents · Introduction · The Spectral Energy Distribution · Properties of the existing measurements in the hard X-ray / soft Gamma-ray regime · Important satellites for this energy / frequency range · Variability of the X-ray / Gamma-ray emission · Two examples of models for the Cen A Spectral Energy Distribution · Problems (features) to be considered when using the hard X-ray / soft Gamma-ray data ± the ªsoft X-ray transient problemº ± the ªSED problemº · Outlook ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- The Many Faces of Centaurus A ± Sydney, 28 June ± 3 July 2009; H. Steinle, MPE 2 / 35 Centaurus A at Hard X-Rays and Soft Gamma-Rays ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Introduction In the introductory (ªsetting the stageº) section of the
    [Show full text]
  • Astronomy Magazine Special Issue
    γ ι ζ γ δ α κ β κ ε γ β ρ ε ζ υ α φ ψ ω χ α π χ φ γ ω ο ι δ κ α ξ υ λ τ μ β α σ θ ε β σ δ γ ψ λ ω σ η ν θ Aι must-have for all stargazers η δ μ NEW EDITION! ζ λ β ε η κ NGC 6664 NGC 6539 ε τ μ NGC 6712 α υ δ ζ M26 ν NGC 6649 ψ Struve 2325 ζ ξ ATLAS χ α NGC 6604 ξ ο ν ν SCUTUM M16 of the γ SERP β NGC 6605 γ V450 ξ η υ η NGC 6645 M17 φ θ M18 ζ ρ ρ1 π Barnard 92 ο χ σ M25 M24 STARS M23 ν β κ All-in-one introduction ALL NEW MAPS WITH: to the night sky 42,000 more stars (87,000 plotted down to magnitude 8.5) AND 150+ more deep-sky objects (more than 1,200 total) The Eagle Nebula (M16) combines a dark nebula and a star cluster. In 100+ this intense region of star formation, “pillars” form at the boundaries spectacular between hot and cold gas. You’ll find this object on Map 14, a celestial portion of which lies above. photos PLUS: How to observe star clusters, nebulae, and galaxies AS2-CV0610.indd 1 6/10/10 4:17 PM NEW EDITION! AtlAs Tour the night sky of the The staff of Astronomy magazine decided to This atlas presents produce its first star atlas in 2006.
    [Show full text]
  • The Third Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope M
    The Astrophysical Journal, 810:14 (34pp), 2015 September 1 doi:10.1088/0004-637X/810/1/14 © 2015. The American Astronomical Society. All rights reserved. THE THIRD CATALOG OF ACTIVE GALACTIC NUCLEI DETECTED BY THE FERMI LARGE AREA TELESCOPE M. Ackermann1, M. Ajello2, W. B. Atwood3, L. Baldini4, J. Ballet5, G. Barbiellini6,7, D. Bastieri8,9, J. Becerra Gonzalez10,11, R. Bellazzini12, E. Bissaldi13, R. D. Blandford14, E. D. Bloom14, R. Bonino15,16, E. Bottacini14, T. J. Brandt10, J. Bregeon17, R. J. Britto18, P. Bruel19, R. Buehler1, S. Buson8,9, G. A. Caliandro14,20, R. A. Cameron14, M. Caragiulo13, P. A. Caraveo21, B. Carpenter10,22, J. M. Casandjian5, E. Cavazzuti23, C. Cecchi24,25, E. Charles14, A. Chekhtman26, C. C. Cheung27, J. Chiang14, G. Chiaro9, S. Ciprini23,24,28, R. Claus14, J. Cohen-Tanugi17, L. R. Cominsky29, J. Conrad30,31,32,70, S. Cutini23,24,28,R.D’Abrusco33,F.D’Ammando34,35, A. de Angelis36, R. Desiante6,37, S. W. Digel14, L. Di Venere38, P. S. Drell14, C. Favuzzi13,38, S. J. Fegan19, E. C. Ferrara10, J. Finke27, W. B. Focke14, A. Franckowiak14, L. Fuhrmann39, Y. Fukazawa40, A. K. Furniss14, P. Fusco13,38, F. Gargano13, D. Gasparrini23,24,28, N. Giglietto13,38, P. Giommi23, F. Giordano13,38, M. Giroletti34, T. Glanzman14, G. Godfrey14, I. A. Grenier5, J. E. Grove27, S. Guiriec10,2,71, J. W. Hewitt41,42, A. B. Hill14,43,68, D. Horan19, R. Itoh40, G. Jóhannesson44, A. S. Johnson14, W. N. Johnson27, J. Kataoka45,T.Kawano40, F. Krauss46, M. Kuss12, G. La Mura9,47, S. Larsson30,31,48, L.
    [Show full text]
  • Counting Gamma Rays in the Directions of Galaxy Clusters
    A&A 567, A93 (2014) Astronomy DOI: 10.1051/0004-6361/201322454 & c ESO 2014 Astrophysics Counting gamma rays in the directions of galaxy clusters D. A. Prokhorov1 and E. M. Churazov1,2 1 Max Planck Institute for Astrophysics, Karl-Schwarzschild-Strasse 1, 85741 Garching, Germany e-mail: [email protected] 2 Space Research Institute (IKI), Profsouznaya 84/32, 117997 Moscow, Russia Received 6 August 2013 / Accepted 19 May 2014 ABSTRACT Emission from active galactic nuclei (AGNs) and from neutral pion decay are the two most natural mechanisms that could establish a galaxy cluster as a source of gamma rays in the GeV regime. We revisit this problem by using 52.5 months of Fermi-LAT data above 10 GeV and stacking 55 clusters from the HIFLUCGS sample of the X-ray brightest clusters. The choice of >10 GeV photons is optimal from the point of view of angular resolution, while the sample selection optimizes the chances of detecting signatures of neutral pion decay, arising from hadronic interactions of relativistic protons with an intracluster medium, which scale with the X-ray flux. In the stacked data we detected a signal for the central 0.25 deg circle at the level of 4.3σ. Evidence for a spatial extent of the signal is marginal. A subsample of cool-core clusters has a higher count rate of 1.9 ± 0.3 per cluster compared to the subsample of non-cool core clusters at 1.3 ± 0.2. Several independent arguments suggest that the contribution of AGNs to the observed signal is substantial, if not dominant.
    [Show full text]
  • Do Normal Galaxies Host a Black Hole? the High Energy Perspective
    DO NORMAL GALAXIES HOST A BLACK HOLE? THE HIGH ENERGY PERSPECTIVE 1 Y. Terashima2 Nagoya University ABSTRACT We review ASCA results on a search for low luminosity active nuclei at the center of nearby normal galaxies. More than a dozen low-luminosity AGN have been discovered with 2–10 keV − − luminosity in the range 1040 41 ergs s 1. Their X-ray properties are in some respects similar to those of luminous Seyfert galaxies, but differ in other respects. We also present estimated black hole masses in low luminosity AGNs and a drastic activity decline in the nucleus of the radio galaxy Fornax A. These results altogether suggest that relics of the past luminous AGNs lurk in nearby normal galaxies. KEYWORDS: Galaxies; Low luminosity AGNs; LINERs; Black holes 1. Introduction The number density of quasars is peaked at a redshift of z ∼ 2 and rapidly de- creases toward smaller redshifts. In the local universe, there is no AGN emitting at huge luminosity like quasars. These facts infer that quasars evolve to supermassive black holes in nearby apparently normal galaxies (e.g. Rees 1990). The growing evidence for supermassive black holes in nearby galaxies are ob- tained from recent optical and radio observations of gas/stellar kinematics around the center of galaxies (e.g. Ho 1998a; Magorrian et al. 1998; Kormendy & Rich- stone 1995). If fueling to the supermassive black hole takes place with a small arXiv:astro-ph/9905218v1 17 May 1999 mass accretion rate, they are expected to be observed as very low luminosity AGNs compared to quasars. Recent optical spectroscopic surveys have shown that low level activity is fairly common in nearby galaxies.
    [Show full text]
  • The Applicability of Far-Infrared Fine-Structure Lines As Star Formation
    A&A 568, A62 (2014) Astronomy DOI: 10.1051/0004-6361/201322489 & c ESO 2014 Astrophysics The applicability of far-infrared fine-structure lines as star formation rate tracers over wide ranges of metallicities and galaxy types? Ilse De Looze1, Diane Cormier2, Vianney Lebouteiller3, Suzanne Madden3, Maarten Baes1, George J. Bendo4, Médéric Boquien5, Alessandro Boselli6, David L. Clements7, Luca Cortese8;9, Asantha Cooray10;11, Maud Galametz8, Frédéric Galliano3, Javier Graciá-Carpio12, Kate Isaak13, Oskar Ł. Karczewski14, Tara J. Parkin15, Eric W. Pellegrini16, Aurélie Rémy-Ruyer3, Luigi Spinoglio17, Matthew W. L. Smith18, and Eckhard Sturm12 1 Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, 9000 Gent, Belgium e-mail: [email protected] 2 Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle Str. 2, 69120 Heidelberg, Germany 3 Laboratoire AIM, CEA, Université Paris VII, IRFU/Service d0Astrophysique, Bat. 709, 91191 Gif-sur-Yvette, France 4 UK ALMA Regional Centre Node, Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK 5 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 6 Laboratoire d0Astrophysique de Marseille − LAM, Université Aix-Marseille & CNRS, UMR7326, 38 rue F. Joliot-Curie, 13388 Marseille CEDEX 13, France 7 Astrophysics Group, Imperial College, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, UK 8 European Southern Observatory, Karl
    [Show full text]