0957+561, 107, 109, 110, 114, 115, 117, 118, 132, 206 3C 279, 40, 41 Aaronson, Marc, 220 Abell 1689, 141, 143, 147 Abell 2218, 1
Total Page:16
File Type:pdf, Size:1020Kb
Index 0957+561, 107, 109, 110, 114, 115, 117, Cerenkov radiation, 50 118, 132, 206 Chandra X-ray Observatory, 35, 49, 64, 3C 279, 40, 41 66, 187, 188, 202 Chandrasekhar limit, 75, 76, 232 Aaronson, Marc, 220 Chandrasekhar, Subrahmanyan, 75, 76, Abell 1689, 141, 143, 147 181 Abell 2218, 138, 141, 144 Cl 0024+1654, 140, 142 aberration, 13, 67, 68, 124 clusters of galaxies, 137, 140–145, 147, Adams, Walter S., 73, 76, 77 149, 159, 185 adaptive optics, 194, 195 Compton Gamma-Ray Observatory, Alvan Clark and Sons, 73 44–47, 49, 62 Anglo-Australian Telescope (AAT), 53, Cosmic Background Explorer (COBE), 59 230, 231 Arp, Halton, 153, 154, 156, 222 cosmic rays, 90–93, 95 cosmological constant, 205, 211, 235 B1359+154, 124, 126 Couderc, Paul, 15 Baade, Walter, 79, 80, 82 Crab Nebula, 64–66, 82, 84, 85, 94, 96 Barnard, F.A.P., 72, 74 Curtis, H.D., 35, 118, 208 Barnothy Forro, Madeleine, 106, 121 Cygnus X-1, 186, 187 Barnothy, Jeno, 106, 111, 121, 155 Bell, Jocelyn, 81 dark matter, 148, 149, 152, 153, 230, 235 BeppoSAX, 46 de Sitter, Willem, 206 Berks, Robert, 1 de Vaucouleurs, Gerard, 112, 219, 221 Bethe, Hans, 6, 168 degeneracy, 75, 82 black holes, 48, 57, 85, 112, 179, 181–187, Doppler boosting, 31, 40, 48, 51, 63 189, 191–193, 195, 196, 198–203, Doppler shift, 59, 63, 67, 68, 151, 202, 232 206, 212, 220 blackbody radiation, 22, 78, 85, 229 DuBois, W.E.B., 241 blazars, 49, 51 dust, 17, 122, 159, 217, 219, 221 Bohr, Niels, 23 Bradley, James, 13 Eddington, Arthur Stanley, 6, 76, 100, Burbidge, Geoffrey, 111, 175 104, 165, 167 Burbidge, Margaret, 175 Einstein Cross, 129–132 Einstein ring, 130, 133, 134, 156, 160 Canada–France–Hawaii Telescope, 138, Einstein, Albert, 1, 3, 7, 14, 58, 97–99, 140, 142, 200 102, 104–106, 134, 148, 149, 152, Carswell, R.F., 108, 110, 111 155, 180, 181, 205, 211, 213, 235, Cepheids, 165, 210, 216, 217, 219, 223, 237, 241 225, 228, 229 Ellis, Richard, 146 244 Index European Southern Observatory, 139, 133, 140–146, 148, 158–162, 175, 140, 145, 154, 195 200–202, 217, 222, 225 Hubble’s Variable Nebula, 20, 21 Fath, E.A., 165, 196 Hubble, Edwin, 7, 206, 208, 209, 211–214, Fermi, Enrico, 92 225, 234 Fisher, Rick, 220 Huchra, John, 220 Fishman, Jerry, 45 Humason, Milton, 211, 212 Fowler, Willy, 175, 176 frame dragging, 238 Infrared Astronomical Satellite (IRAS), Freedman, Wendy, 223 125–127, 192 Freundlich, Erwin, 100 infrared astronomy, 189, 193, 220 International Ultraviolet Explorer (IUE), Friedmann, Alexander, 206 27, 29–32 Frost, E.B., 105 FSC 10214+4724, 125, 129, 130 jets, 31, 35–37, 41, 42, 48, 51, 52, 57, fusion, 7, 168, 174, 176 59–61, 63, 65, 95, 198, 199 Jodrell Bank, 107–109 Galactic Center, 158, 189–193, 195, 197 Galileo, 12 Keck Observatory, 146, 195–197, 227 gamma rays, 42, 48–50 Kennicutt, Rob, 222, 223 gamma-ray bursts, 42, 43, 45–48 Kirchhoff, Gustav, 24 general relativity, 1, 71, 78, 97, 104, Kitt Peak, 84, 85, 108, 110, 111, 114, 137, 179–181, 205, 218, 235, 238–240 139, 151, 175, 214, 221, 223, 224, Giacconi, Riccardo, 184, 202 226, 233 globular clusters, 224, 226, 227 Kuiper Airborne Observatory, 192, 193 gold, 71, 72, 177 Large Magellanic Cloud, 15, 43, 44, 83, Granat, 62, 63 157, 187, 209, 210, 219, 232 gravitational deflection, 97–99, 101, 102 Leavitt, Henrietta, 209, 210 gravitational lens, 8, 105, 115, 131, 132 Lemaˆıtre, Georges, 206 gravitational lensing, 102–104, 106, 107, Lick Observatory, 35, 54, 56–58, 73, 84, 110, 111, 113, 118, 121, 124, 133, 111, 114, 117, 140, 154, 174, 206, 135, 147–149, 153, 156, 159, 162, 208, 214, 234 182 light echo, 14–20 gravitational radiation, 238–240 Lorentz factor, 32, 33, 37, 58, 88, 93, 96 gravitational redshift, 76–78, 80 Lorentz, Hendrik, 32, 33 Gravity Probe-B (GP-B), 238, 239 Lowell Observatory, 151, 206, 207 Green Bank, 107–109, 122, 220 Lynds, Roger, 138, 139 Hardie, Robert, 73 M33, 210 Hawking, Stephen, 181–183 M81, 200 Herschel, John, 14, 165 M87, 35–37, 40, 96, 199, 200 Hertzsprung–Russell diagram, 172 MACHOs, 152, 153, 155, 157, 158 Hess, Victor, 90 Mandl, R.W., 103, 104 Hewish, Anthony, 81 Margon, Bruce, 54–57 Hoag, Arthur, 137, 139 Mauna Kea, 111–113, 130, 140, 147, 195, Hoyle, Fred, 175–177 196, 200 Hubble constant, 131, 132, 215–217, 219, Maxwell, James Clerk, 23 221, 222, 226, 231, 234 microlensing, 148, 153, 155, 156, 158–162 Hubble Space Telescope, 30, 35, 36, microquasars, 60–63, 95 44, 59, 64, 78, 79, 85, 91, 93, 95, microwave background, 227, 229, 232 115, 117, 118, 122–126, 129–131, Milgrom, Mordehai, 57, 152 Index 245 Milky Way, 6, 149, 155, 176, 187, 189, Rubin, Vera, 151, 152 195, 206–208, 210, 217, 219, 232 Russell, Henry Norris, 165, 166, 172 Mould, Jeremy, 220, 223 Ryle, Martin, 38 MS1512-cB58, 141, 145, 146 Mt. Wilson Observatory, 73, 76, 153, 175, Sandage, Allan, 211, 214–217, 219, 221, 194, 208, 209, 211, 213, 214, 216, 222, 225, 231 222, 223 Schwarzschild, Karl, 180 SETI, 162 National Academy of Sciences, 1, 208 Seyfert galaxies, 26, 32, 123, 153, 196, neutrinos, 172, 173 198 neutron stars, 43, 48, 71, 78, 80, 82, 83, Shklovsky, Iosif, 94 85, 187, 192, 232 Sirius B, 72–74, 76–79 Newton, Isaac, 1, 6, 97, 152, 182, 205, Slipher, V.M., 206, 207 237 Sloan Digital Sky Survey, 122, 123, 148, NGC 1068, 196 155, 202 NGC 2261, 20, 21 solar eclipse, 99–101 NGC 3079, 107, 109, 118 Soucail, Genevi`eve, 138, 140 NGC 3115, 200 special relativity, 31, 40, 67, 79, 83 NGC 3314, 159–162 spectroscopy, 21–26 NGC 4151, 27, 28 Spitzer Space Telescope, 94, 146 NGC 4321, 228 SS 433, 55–61, 152 NGC 5548, 30, 32 starbow, 67, 68 NGC 5746, 151 strong nuclear force, 169 NGC 6822, 210 superluminal motion, 41, 51 nuclear tests, 91, 92, 170, 176 superluminal motions, 40 Supernova 1987A, 15–18, 83, 232 Palomar Observatory, 108, 112, 113, 118, supernovae, 15, 16, 44, 48, 49, 53, 59, 79, 122, 153, 199, 214, 216 80, 82, 85, 95, 105, 177, 185, 189, Payne-Gaposchkin, Cecilia, 6 209, 223, 225, 231, 232, 234 Penrose–Terrell rotation, 34, 36 surface-brightness fluctuations, 225 PG 1115+080, 119 synchrotron radiation, 86–89, 93–96 photoelectric effect, 1, 7, 21 time dilation, 63, 93 Planck, Max, 22 Tinsley, Beatrice, 221 planetary nebulae, 223, 224 Tolman, Richard, 211, 218 polarization, 94, 96 pulsars, 80–82, 84, 85, 239 Uhuru, 184, 186, 188 quantum theory, 23 V838 Monocerotis, 17, 19 quasars, 26, 28, 35, 39–41, 49, 95, Van Allen belts, 91 109–111, 114, 115, 117, 121, 123, Very Large Array, 39, 60, 62, 88, 113, 131, 148, 153, 154, 156, 179, 198 116, 122 very-long-baseline interferometry (VLBI), radio astronomy, 37, 85 40, 42 radio galaxies, 40, 87, 88, 95, 123, 198, Virgo cluster, 199, 220, 221, 223, 225, 229 199 von Weizs¨acker, Carl, 6, 168 radioactivity, 6, 166 redshift, 14, 47, 77, 153, 179, 211, 212, W50, 53, 59, 60 215, 218, 220, 229, 230 Walsh, Dennis, 107, 108, 110, 111, 118 Rees, Martin, 57, 199 weak nuclear force, 169, 172 Refsdal, Sjur, 105, 116, 131, 149 Wells, H.G., 241 246 Index Weymann, Ray, 110, 111, 115, 119 X-ray astronomy, 8, 184 white dwarfs, 71–78, 82, 177 XMM/Newton, 187 Wilkinson Microwave Anisotropy Probe (WMAP), 231, 232 Yerkes Observatory, 73, 105, 106 William Herschel Telescope, 127, 128, Young, Peter, 112, 133, 199, 200 132 WIMPs, 152 Zwicky, Fritz, 79, 80, 82, 102–105, 119, Wright, Thomas, 207 121, 141, 149 Colour Tables Chapter 2 3C 279 Superluminal Motion 1992.0 1993.0 1994.0 1995.0 5 milliarcseconds Fig. 2.13. The quasar 3C 279, showing superluminal motion in its jet. Pseudocolor intensity coding has been used to make subtle features more apparent. The prominent outer knots to the right are moving outward with a projected speed of 4c.Atthis quasar’s distance of 5 billion light-years, the scale bar of 5 milliarcseconds corresponds to a length of 100 light-years. The bright knot to the right moves almost 20 light-years in 4.5 years, as viewed in our reference frame. These observations, at a radio wavelength of 1.3 cm, were carried out initially with an ad hoc network of radio telescope, and starting in 1994, with the Very Long Baseline Array of the National Radio Astronomy Observatory, a dedicated network of telescopes stretching from the Virgin Islands to Hawaii. (Images courtesy Ann Wehrle and Steve Unwin.) This figure also appears in color as Plate 1. ^ VLA HST UIT EUVE ROSAT EGRET Cerenkov Optical UV X−rays γ rays + + +++ Infrared ++ + ++++ −10 Radio + + 10 − + + + + + +− second + + flaring + + 2 +++++++ + +++++++ + + +++++ ++ +++ + + faint ), erg/cm ), ν + F ν 10−12 − + − +++ + ++ Markarian 421 − broad−band spectrum Flux per decade ( decade per Flux ++ 10−14 10 15 20 25 log frequency (Hertz) Fig. 2.17. The blazar Markarian 421 as seen across the electromagnetic spectrum. This montage shows the relative energy received from this blazar in various spectral regions, both when it is quiet and when it is in a bright flare such as may accompany the appearance of new jet material. The inset images show its appearance to various instruments used for these observations. The distinct gamma-ray peak is evidence that its lower-energy radiation is being scattered and Doppler-boosted in a jet directed nearly toward us.