Factors Responsible for Catastrophic Extinction of Marine Organisms at the Mesozoic–Cenozoic Boundary M

Total Page:16

File Type:pdf, Size:1020Kb

Factors Responsible for Catastrophic Extinction of Marine Organisms at the Mesozoic–Cenozoic Boundary M ISSN 00014370, Oceanology, 2011, Vol. 51, No. 4, pp. 640–651. © Pleiades Publishing, Inc., 2011. Original Russian Text © M.S. Barash, 2011, published in Okeanologiya, 2011, Vol. 51, No. 4, pp. 683–695. MARINE GEOLOGY Factors Responsible for Catastrophic Extinction of Marine Organisms at the Mesozoic–Cenozoic boundary M. S. Barash Shirshov Institute of Oceanology, Russian Academy of Sciences, Nakhimovskii pr. 36, Moscow, 117997 Russia email: [email protected] Received November 17, 2009; in final form February 17, 2010 Abstract—The mass death of organisms at the Cretaceous–Tertiary boundary (KT boundary) resulted in the extinction of approximately half of marine genera. Some taxa had degraded by the end of the Cretaceous to become eventually extinct either before or precisely at the KT boundary. Most of them became extinct imme diately at this boundary. The terminal Cretaceous was marked by changes in many environmental processes, which influenced the biota. These included tectonic events, powerful basalt eruptions, falls of large asteroids (impact events), anoxia, transgressions and regressions, cooling and warming episodes, and the chemistry of the atmosphere and seawater. All these factors, except for impact events, could stimulate degradation of some groups of organisms, not their extinction. The Cretaceous–Tertiary boundary was marked by major impact events, which are reflected in the occurrence of the Chicxulub, Shiva, Boltysh, Silverpit, and, probably some other impact craters. Some known craters were left by asteroids at that time or slightly earlier. At least as many asteroids undoubtedly fell into the ocean. The combination of many factors in the terminal Cretaceous harm ful for organisms and seemingly unrelated to each other may be likely explained only by a single supreme cause beyond the Solar System. DOI: 10.1134/S0001437011040047 At the boundary between the Mesozoic and Ceno years prior to the KT boundary and at the boundary zoic eras (Cretaceous and Tertiary periods, KT proper. Some universal species with simple morphol boundary), the Earth experienced perturbations that ogy survived the crisis and continued to exist in the ini involved all its external shells (lithosphere, hydro tial Cenozoic. The decline in the diversity of ammo sphere, atmosphere, and biosphere). In most sections, nites also commenced long before the KT boundary, the KT boundary is marked by a stratigraphic hiatus. and their last specimens are found a few centimeters In deepwater sediments, it is usually characterized by below this boundary. According to many investiga sharply reduced sedimentation rates. In outer shelf tions, the KT boundary is marked by mass cata areas and the upper part of the continental slope, strophic extinction of almost all the planktonic fora mostly carbonate sediments are replaced by black miniferal species. clays. All the sections exhibit reduction of CaCO3 con The El Kef stratotype section of the KT boundary tent at that boundary. (Tunisia) demonstrates lithological and geochemical This crisis resulted in the extinction of approxi features indicating drastic environmental changes at mately half of the thenexisting genera. During the that time: a drastic decrease of the CaCO3 contents in Cretaceous, some groups such as, for example, ichthy sediments; decline in δ13С (bioproductivity indicator); osaurs and plesiosaurs, were degrading, to the point of extreme concentration of iridium, Ni spinel, and becoming extinct by its end. Many groups widely organic carbon; and significant changes in the compo developed in the Cretaceous, such as inoceramids, sition of planktonic foraminiferal and nannofossil rudists, ammonites, and belemnites also became assemblages [34]. extinct at that time. The extinction of inoceramids in In recent decades researchers have intensely dis the initial late Maastrichtian is considered to be glo cussed the possible impact of the events at the KT bal, being related to the influx of oxygenrich Antarc boundary on different organisms and their gradual ver tic Bottom Water. The sections in Denmark show a sus stepwise decline (above and below the boundary) sudden disappearance of most brachiopod taxa at the or sudden extinction reflecting the catastrophic crisis. very end of the Maastrichtian simultaneously with All these models have their adherents even in situa mass extinction of plankton. tions in which the same organisms are considered in No distinct regularities in their behavior were char the same section. For example, when examining acteristic of other marine invertebrates such as, for planktonic foraminifers in the El Kef stratotype sec example, mollusks. Their diversity and abundance tion of the KT boundary (Tunisia), Smit [49] argues were decreasing for several hundreds of thousands of that almost all their Cretaceous species disappeared at 640 FACTORS RESPONSIBLE FOR CATASTROPHIC EXTINCTION OF MARINE 641 Site 527 Site 690 100 50% 0 100 50% 0 Zone Polarity Stage 276 247.08 Zone Polarity Stage m Tertiary m Tertiary NP2 29N 29N Survivors NP1 Survivors NP1 NP2 247.88 280 29R 29R Cretaceous Cretaceous Maastrichtian Danian P. s t o v e r i A c m e Maastrichtian Danian Micula prins. 283 248.88 Fig. 1. Reorganization of calcareous nannoplankton assemblages near the KT boundary inferred from deepsea holes drilled in the South Atlantic (DSDP Hole 527) and Weddell Sea (ODP Hole 690) (after [42], simplified). the KT boundary, except for Guembelitria cretacea, believe that mass extinction was a consequence of the while Keller [30[ arrived at the conclusion that at least combined influence of several factors: longterm envi 30% of Cretaceous species crossed the latter and con ronmental changes and strong brief impactrelated tinued to exist in the Paleocene. The issue is that the ones, for example, the large asteroid impact on the basal Paleocene layer almost in all the sections with the presentday shelf of the Yucatan Peninsula (Mexico). KT boundary contains some quantity of Cretaceous The quantitative analysis of nannoplankton assem foraminiferal tests. Did these specimens survive the blages, which represent an important element of pri crisis, or are they reworked? Did biodiversity decline mary production in sections enclosing the KT bound prior to the boundary? Was extinction of organisms ary, through the Tethys, Indian, and South Atlantic uniform at different latitudes? All these questions are oceans reveals that their extinction was a sudden and given ambiguous answers. For example, based on the synchronous event in all the latitudinal zones [42] analysis of microfossil assemblages, some researchers (Fig. 1). This extinction coincides with the δ13С shift at [45] believe that the event at the KT boundary was glo this level, sharp decline of carbonate sedimentation, bal. Others argue that extinction was most notable in and anomalous iridium concentration in sediments lowlatitude areas [21, 33, and others]. (Fig. 2). No substantial changes in the nannoplankton According to G. Keller and other researchers, composition happened in the terminal Maastrichtian approximately threequarters of planktonic foramin approximately 1 million years before its end, which indi iferal species became extinct at the KT boundary or cates stable environmental conditions, although, in the near the latter—tropical and subtropical species with early and middle Maastrichtian (~70–67 Ma ago), its large morphologically complex tests, which lived in assemblages experienced notable transformations. the Maastrichtian in wellstratified waters of the open Planktonic foraminifers dwelling in the surface sea at the thermocline depth or deeper. Among the layer of the ocean to depths of a few hundred meters survivors were only representatives of genera that were experienced a strong stress at the KT boundary as well. able to resist strong variations in ecological parame Analysis of their assemblages in many sections reveals ters, such as shallowwater species of wide ecological that over 90% of species became extinct at this bound tolerance that populated the upper photic layer of the ary or immediately above the latter, which is usually open ocean or stress biotopes of the coastal zone. explained by the impact event [20]. The latter authors These species became dominant elements of both note that mass extinction of planktonic foraminifers pelagic and coastal ecosystems. began near the impact level. The drastic decrease in Such a highly selective mass extinction reflects the productivity of calcareous nannoplankton and flux considerable changes in temperature, salinity, and of organic matter from the ocean surface to its bottom concentrations of dissolved oxygen and nutrients at coincided with destruction of the faunal provincial the KT boundary in the Tethys. Some researchers [31] ism. Judging from data on deepsea holes in the South OCEANOLOGY Vol. 51 No. 4 2011 642 BARASH Site 527 Cretaceous δ13 δ18 nannofossils, % Iridium, ppb Carbonates, % CPDB OPDB m 50 100 1 2 3 4 20 60 100 1 2 3 4 –0.5 0 0.5 Zone Stage 276 Low producti vity Cooling 280 Maastrichtian Danian Micula prins.283 NP1 NP2 Fig. 2. Correlation between abundance of Cretaceous microfossils and iridium and CaCO3 contents and isotopic composition of carbonates in sediments reflecting relative variations in productivity and temperature (after [42], simplified). Globigerinides сm 180 160 1 110 М 4 13C/12C 60 Ir 3 2 40 2 Т 20 1 К 0 0 3 –20 –1 –40 –2 4 –60 –3 –80 –4 0 –5 –130 –6 5 10–2 10–1 110–2 –1 0 1 2 1 m Globotruncanides ng g–1 Fig. 3. The Cretaceous (K)–Tertiary (T) boundary section outcropping near Bidart of southwestern France. Lithology: (1) white limestone, (2) red marly limestone, (3) black clay, (4) white marly limestone, and (5) gray marl. Curves show the distribution of foraminifers, iridium, and carbon isotopes (after [12] and [38], modified). Atlantic, the faunal turnover and reduction of nanno mately 10 cm thick. The latter is underlain by upper plankton production occurred during a very brief most Cretaceous marly limestones and overlain by period. The subsequent recovery of planktonic fora Tertiary strata represented at the base by red marly minifers was very dynamic following immediately the limestone a several tens centimeters thick replaced impact event.
Recommended publications
  • Monitoring Global Changes in Biodiversity and Climate Essential
    Ecological Informatics 55 (2020) 101033 Contents lists available at ScienceDirect Ecological Informatics journal homepage: www.elsevier.com/locate/ecolinf Monitoring global changes in biodiversity and climate essential as ecological T crisis intensifies ⁎ Brian O'Connora, , Stephan Bojinskib,c, Claudia Rööslid, Michael E. Schaepmand a UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), 219 Huntingdon Road, Cambridge CB3 0DL, UK b EUMETSAT (European Organisation for the Exploitation of Meteorological Satellites), EUMETSAT-Allee 1, 64295 Darmstadt, Germany c World Meteorological Organization, 7 bis Avenue de la Paix, 1211 Geneva, Switzerland (until 2018) d Remote Sensing Laboratories, Dept. of Geography, University of Zurich, Winterthurerstrasse 190, CH – 8057 Zurich, Switzerland ARTICLE INFO ABSTRACT Keywords: The Intergovernmental Panel on Climate Change and the Intergovernmental Science-Policy Platform on Essential climate variables Biodiversity and Ecosystem Services have presented unequivocal evidence for human induced climate change Essential biodiversity variables and biodiversity decline. Transformative societal change is required in response. However, while the Global Observing systems Observing System for Climate has coordinated climate observations for these assessments, there has been no Nature's contributions to people equivalent actor for the biodiversity assessment. Here we argue that a central agency for coordinated biodi- versity observations can lead to an improved assessment process for biodiversity status and coupled climate - biodiversity observations in areas of mutual interest such as monitoring indicators of Nature's Contributions to People. A global biodiversity observation system has already begun to evolve through bottom up development of the Essential Biodiversity Variables. We propose recommendations on how to build on this progress through definition of user requirements, observation principles, creation of a community data basis and regional actions through existing networks.
    [Show full text]
  • Exceptionally Well-Preserved Fossils in a Middle Ordovician Impact Crater
    Downloaded from http://jgs.lyellcollection.org/ by guest on September 29, 2021 Review focus Journal of the Geological Society Published Online First https://doi.org/10.1144/jgs2018-101 The Winneshiek biota: exceptionally well-preserved fossils in a Middle Ordovician impact crater Derek E.G. Briggs1,2*, Huaibao P. Liu3, Robert M. McKay3 & Brian J. Witzke4 1 Department of Geology and Geophysics, Yale University, New Haven, CT 06520, USA 2 Yale Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA 3 Iowa Geological Survey, IIHR – Hydroscience & Engineering, University of Iowa, 340 Trowbridge Hall, Iowa City, IA 52242, USA 4 Department of Earth and Environmental Sciences, University of Iowa, 115 Trowbridge Hall, Iowa City, IA 52242, USA D.E.G.B., 0000-0003-0649-6417 * Correspondence: [email protected] Abstract: The Winneshiek Shale (Middle Ordovician, Darriwilian) was deposited in a meteorite crater, the Decorah impact structure, in NE Iowa. This crater is 5.6 km in diameter and penetrates Cambrian and Ordovician cratonic strata. It was probably situated close to land in an embayment connected to the epicontinental sea; typical shelly marine taxa are absent. The Konservat-Lagerstätte within the Winneshiek Shale is important because it represents an interval when exceptional preservation is rare. The biota includes the earliest eurypterid, a giant form, as well as a new basal chelicerate and the earliest ceratiocarid phyllocarid. Conodonts, some of giant size, occur as bedding plane assemblages. Bromalites and rarer elements, including a linguloid brachiopod and a probable jawless fish, are also present. Similar fossils occur in the coeval Ames impact structure in Oklahoma, demonstrating that meteorite craters represent a novel and under-recognized setting for Konservat- Lagerstätten.
    [Show full text]
  • Magyar Királyi Földtani Intézet (2006.)
    ' Copyright Magyar `llami Fldtani IntØzet (Geological Institute of Hungary), 2005 Minden jog fenntartva! All rights reserved! Lektorok Reviewers: BALLA ZOLTÁN, CSÁSZÁRGZA, HAAS JÁNOS, HORVÁTH ISTVÁN, JÁMBOR Á RON, KOVÁCS SÁNDOR, KUBOVICS IMRE, LESS GYRGY, LIEBE PÁL,VICZIÁN ISTVÁN Sorozatszerkesztı Serial editor: BALLA ZOLTÁN Szakszerkesztı Scientific editor: PIROS OLGA Mßszaki szerkesztı Technical editor: SIMONYI DEZS SzÆmtgØpes nyomdai elıkØsztØs DTP: PIROS OLGA, SIMONYI DEZS Bortterv Cover design: SIMONYI DEZS Kiadja a Magyar `llami Fldtani IntØzet Published by the Geological Institute of Hungary Felelıs kiad Responsible editor: KORDOS L`SZL Igazgat Director HU ISSN 03689751 3 Tartalom — Contents Működési jelentés — Activity Report HÁMOR GÉZA (1934–2007) . 7 JÁMBOR ÁRON (összeállító): Dr. Hámor Géza szakirodalmi munkássága . 8 KORDOS LÁSZLÓ: A múlt a jövő kulcsa . 17 BREZSNYÁNSZKY KÁROLY: Igazgatói beszámoló a Magyar Állami Földtani Intézet 2006. évi tevékenységéről . 19 Szakcikkek — Scientific publications RIPSZNÉ JUDIK KATALIN: A Medvednica hegység (Horvátország) és Észak-Magyarország paleozoos és mezozoos kishőmérsékletű metamorf képződményeinek összevetése. — Comparison of Palaeozoic and Mesozoic very low- grade metamorphic formations in the Medvednica Mts (Croatia) and in North Hungary. 47 PELIKÁN PÁL, IVAN FILIPOVIĆ, DIVNA JOVANOVIĆ, MILAN SUDAR, †LJUBINKO PROTIĆ, HIPS KINGA, KOVÁCS SÁNDOR, LESS GYÖRGY: A Bükki-terrénum (É-Magyarország), a Jadari-terrénum (ÉNy-Szerbia) és a Sana-Unai-terrénum (ÉNy-Bosznia) karbon, perm és triász rétegsorainak összehasonlítása. — Correlation of the Carboniferous, Permian and Triassic sequences of the Bükk, Jadar, Sana-Una terrains. 59 BUDAI TAMÁS: Platformok és medencék kialakulása és fejlődése a Bakony középső-triász története során. — Middle Triassic platform and basin evolution of the Bakony Mts, Hungary. 77 HAAS JÁNOS: A bükki és a darnói jura képződmények ősföldrajzi helyzete és kapcsolatai.
    [Show full text]
  • The End-Permian Crisis, Aftermath and Subsequent Recovery
    Title The End-Permian Crisis, Aftermath and Subsequent Recovery Author(s) Wignall, Paul B. Edited by Hisatake Okada, Shunsuke F. Mawatari, Noriyuki Suzuki, Pitambar Gautam. ISBN: 978-4-9903990-0-9, 43- Citation 48 Issue Date 2008 Doc URL http://hdl.handle.net/2115/38434 Type proceedings Note International Symposium, "The Origin and Evolution of Natural Diversity". 1‒5 October 2007. Sapporo, Japan. File Information p43-48-origin08.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP The End-Permian Crisis, Aftermath and Subsequent Recovery Paul B. Wignall* School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK ABSTRACT Improvements in biostratigraphic and radiometric dating, combined with palynological and palaeo- ecological studies of the same sections, have allowed the relative timing of ecosystem destruction during the end-Permian crisis to be determined in the past few years. The extinction is revealed to be neither synchronous nor instantaneous but instead reveals a protracted crisis. This is especially the case for terrestrial floral communities that show the onset of floral changes prior to the marine mass extinction, but a final extinction after the marine event making a total duration for the terres- trial extinctions of a few hundred thousand years. In the oceans the radiolarians provide the only detailed record of the fate of planktonic communities and these undergo a phase of stress and final extinction before the marine benthos. The initial phase of the aftermath is characterized by a glob- ally-distributed, low diversity biota and, in shallow, equatorial settings, by the precipitation of Pre- cambrian-like anachronistic carbonates.
    [Show full text]
  • Palaeontologia Electronica RUDIST TAXONOMY USING X-RAY
    Palaeontologia Electronica http://palaeo-electronica.org RUDIST TAXONOMY USING X-RAY COMPUTED TOMOGRAPHY Ann Molineux, Robert W. Scott, Richard A. Ketcham, and Jessica A. Maisano Ann Molineux. Texas Natural Science Center, University of Texas, Austin, TX 78705, U.S.A. [email protected] Robert W. Scott. Precision Stratigraphy Associates and University of Tulsa, 600 South College Avenue, Tulsa, OK 74104, U.S.A. [email protected] Richard A. Ketcham. Jackson School of Geosciences, 1 University Station, C-1100, University of Texas at Austin, Austin, TX 78712-0254, U.S.A. [email protected] Jessica A. Maisano. Jackson School of Geosciences, 1 University Station, C-1100, University of Texas at Austin, Austin, TX 78712-0254, U.S.A. [email protected] ABSTRACT X-ray CT provides three-dimensional (3-D) representations of internal features of silicified caprinid bivalves from the Lower Cretaceous (Albian Stage) Edwards Forma- tion in Texas. This technique enables the specific identification of caprinid rudists that otherwise could only be identified by sectioning the specimen. The abundant Edwards species is Caprinuloidea perfecta because it has only two rows of polygonal canals on its ventral and anterior margins. Ontogeny of these unusual gregarious bivalves is also demonstrated by means of these images. KEY WORDS: Rudists; Caprinidae; Cretaceous, Lower; X-ray, CT INTRODUCTION tures, and by shooting stereoscopic pairs, a 3-D image can be obtained (Zangerl 1965). X-ray com- The examination of internal structures of puted tomography (CT) scans of limestone cores three-dimensional megafossils such as caprinid show the general outlines of rudists and succes- bivalves and brachiopods without destruction of sive slices can be stacked by computer to form 3-D specimens has been a challenge.
    [Show full text]
  • The End-Cretaceous Mass Extinction Event at the Impact Area: a Rapid Macrobenthic Diversification and Stabilization
    EPSC Abstracts Vol. 14, EPSC2020-65, 2020 https://doi.org/10.5194/epsc2020-65 Europlanet Science Congress 2020 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. The end-Cretaceous mass extinction event at the impact area: A rapid macrobenthic diversification and stabilization Francisco Javier Rodriguez Tovar1, Christopher M. Lowery2, Timothy J. Bralower3, Sean P.S. Gulick2,4,5, and Heather L. Jones3 1University of Granada, Stratigraphy and Palaeontology, Granada, Spain ([email protected]) 2Institute for Geophysics, Jackson School of Geosciences, University of Texas at Austin, Austin, Texas 78758, USA 3Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA 4Center for Planetary Systems Habitability, University of Texas at Austin, Austin, Texas 11 78712, USA 5Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin, Texas 78712, USA The Cretaceous-Paleogene (K-Pg) mass extinction, 66.0 Ma (Renne et al., 2013), was one of the most important events in the Phanerozoic, severely altering the evolutionary and ecological history of biotas (Schulte et al., 2010). This extinction was caused by paleoenvironmental changes associated with the impact of an asteroid (Alvarez et al., 1980) on the Yucatán carbonate-evaporite platform in the southern Gulf of Mexico, which formed the Chicxulub impact crater (Hildebrand et al., 1991). Prolonged impact winter resulting in global darkness and cessation of photosynthesis, and acid rain have been considered as major killing mechanisms on land and in the oceans. Major animal groups disappeared across the boundary (e.g., the nonavian dinosaurs, marine and flying reptiles, ammonites, and rudists), and other groups suffered severe species level (but not total) extinction, including planktic foraminifera, and calcareous nannofossils.
    [Show full text]
  • THE BIODIVERSITY LOSS CRISIS in SOUTHEAST ASIA a Literature Review on Current Research
    Louise Nilsson Kultur och Samhälle Urbana Studier MV109C Miljövetenskap: Kandidatkurs VT 2019 Handledare: Jonas Lundgren & Johanna Nygren Spanne Picture 1: Cacao pods at plantation in Pulau Samosir, Sumatera Utara, Indonesia, Louise Nilsson, 2018. THE BIODIVERSITY LOSS CRISIS IN SOUTHEAST ASIA A literature review on current research Louise Nilsson Kultur och samhälle Urbana studier MV109C Miljövetenskap: Kandidatkurs VT 2019 Abstract This bachelor thesis focuses on the biodiversity loss problematics in Southeast Asia, since it is one of the most species rich places on Earth, coupled with the highest rate of loss of species. Four biodiversity hotspots encompasses Southeast Asia which implies areas of high endemism coupled with high rates habitat loss. This thesis aim to understand what current research in the field focuses on and what ways of protecting biodiversity in the area that exists. The main driver of biodiversity loss in Southeast Asia as well as in the rest of the world, are land-use alterations; forests and natural habitat being converted to monoculture plantations, as well as agricultural- and urban expansions. Through a systematic literature review of scientific material from 2010- 2019, the biodiversity research in Southeast Asia is reviewed. What the literature review concluded was that an array of environmental- as well as socioeconomic problems intensifies each other in the area, such as poverty and biodiversity loss. International cooperation to halt biodiversity loss and the global demand for products produced in the area which greatly damages ecosystems needs to be addressed urgently. Actions to halt the mass-extinction of species and their connected ecosystem services needs to be taken by providing means to organizations and to scientists that work in the area and could possibly be addressed by moving from anthropocentrism towards a biocentric nature view.
    [Show full text]
  • Cretaceous - Tertiary Mass Extinction Meteoritic Versus Volcanic Causes
    GENERAL I ARTICLE Cretaceous - Tertiary Mass Extinction Meteoritic Versus Volcanic Causes P V Sukumaran The bolide impact theory for mass extinctions at the Cretaceous-tertiary (K-T) boundary was a revolutionary concept. This theory was contested by short duration global volcanism as a possible alternative cause for the K-T extinction. Though there is a converging evidence for an extra-terrestrial impact coinciding with the P V Sukumaran took his terminal Cretaceous, the causative link between the M Tech degree in impact and the K-T mass extinction is debatable. Thus, Applied Geology from the while the impact theory is re-emerging, available evidence University of Saugar and has been with the is still insufficient to rule out either of the two hypotheses. Geological Survey of India since 1974. His interests Introduction include geochemistry, petrology and palae­ oceanography. He is It is now widely believed that life on earth began very early in presently posted to the its geological history, probably about 4000 My (million years) Marine Wing of the ago (Mojzsis and others, 1996). Since then it underwent Department and has participated in many several evolutionary branchings to the complex diversity as scientific cruises both as we see today. Nevertheless, it was not a smooth voyage for life Chief Scientist and as a all along, the evolution was punctuated by geologically participating scientist. ins tan taneous events of mass mortality. New species emerged at the expense of their predecessors following each extinction event and life went on evolving ever more vibrantly. In the geologic record of rock strata, such mass extinction events are identifiable based on sudden absence and reduction in diversity of fossil assemblage across stratigraphic boundaries.
    [Show full text]
  • Earliest Aptian Caprinidae (Bivalvia, Hippuritida) from Lebanon Jean-Pierre Masse, Sibelle Maksoud, Mukerrem Fenerci-Masse, Bruno Granier, Dany Azar
    Earliest Aptian Caprinidae (Bivalvia, Hippuritida) from Lebanon Jean-Pierre Masse, Sibelle Maksoud, Mukerrem Fenerci-Masse, Bruno Granier, Dany Azar To cite this version: Jean-Pierre Masse, Sibelle Maksoud, Mukerrem Fenerci-Masse, Bruno Granier, Dany Azar. Earliest Aptian Caprinidae (Bivalvia, Hippuritida) from Lebanon. Carnets de Geologie, Carnets de Geologie, 2015, 15 (3), pp.21-30. <10.4267/2042/56397>. <hal-01133596> HAL Id: hal-01133596 https://hal-confremo.archives-ouvertes.fr/hal-01133596 Submitted on 23 Mar 2015 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. Carnets de Géologie [Notebooks on Geology] - vol. 15, n° 3 Earliest Aptian Caprinidae (Bivalvia, Hippuritida) from Lebanon Jean-Pierre MASSE 1, 2 Sibelle MAKSOUD 3 Mukerrem FENERCI-MASSE 1 Bruno GRANIER 4, 5 Dany AZAR 6 Abstract: The presence in Lebanon of Offneria murgensis and Offneria nicolinae, two characteristic components of the Early Aptian Arabo-African rudist faunas, fills a distributional gap of the cor- responding assemblage between the Arabic and African occurrences, on the one hand, and the Apulian occurrences, on the other hand. This fauna bears out the palaeogeographic placement of Lebanon on the southern Mediterranean Tethys margin established by palaeostructural reconstructions.
    [Show full text]
  • The Philosophical Roots of the Ecological Crisis
    The Philosophical Roots of the Ecological Crisis The Philosophical Roots of the Ecological Crisis: Descartes and the Modern Worldview By Joshtrom Isaac Kureethadam The Philosophical Roots of the Ecological Crisis: Descartes and the Modern Worldview By Joshtrom Isaac Kureethadam This book first published 2017 Cambridge Scholars Publishing Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Copyright © 2017 by Joshtrom Isaac Kureethadam All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner. ISBN (10): 1-5275-0343-7 ISBN (13): 978-1-5275-0343-4 The time is coming when the struggle for dominion over the earth will be carried on. It will be carried on in the name of fundamental philosophical doctrines. —Friedrich Nietzsche We cannot solve a problem with the same mind-set that created it in the first place. —Albert Einstein CONTENTS Preface ......................................................................................................... x Abbreviations ............................................................................................ xii Acknowledgements .................................................................................. xiii Introduction ................................................................................................
    [Show full text]
  • "Ringing" from an Asteroid Collision Event Which Triggered the Flood?
    The Proceedings of the International Conference on Creationism Volume 6 Print Reference: Pages 255-261 Article 23 2008 Is the Moon's Orbit "Ringing" from an Asteroid Collision Event which Triggered the Flood? Ronald G. Samec Bob Jones University Follow this and additional works at: https://digitalcommons.cedarville.edu/icc_proceedings DigitalCommons@Cedarville provides a publication platform for fully open access journals, which means that all articles are available on the Internet to all users immediately upon publication. However, the opinions and sentiments expressed by the authors of articles published in our journals do not necessarily indicate the endorsement or reflect the views of DigitalCommons@Cedarville, the Centennial Library, or Cedarville University and its employees. The authors are solely responsible for the content of their work. Please address questions to [email protected]. Browse the contents of this volume of The Proceedings of the International Conference on Creationism. Recommended Citation Samec, Ronald G. (2008) "Is the Moon's Orbit "Ringing" from an Asteroid Collision Event which Triggered the Flood?," The Proceedings of the International Conference on Creationism: Vol. 6 , Article 23. Available at: https://digitalcommons.cedarville.edu/icc_proceedings/vol6/iss1/23 In A. A. Snelling (Ed.) (2008). Proceedings of the Sixth International Conference on Creationism (pp. 255–261). Pittsburgh, PA: Creation Science Fellowship and Dallas, TX: Institute for Creation Research. Is the Moon’s Orbit “Ringing” from an Asteroid Collision Event which Triggered the Flood? Ronald G. Samec, Ph. D., M. A., B. A., Physics Department, Bob Jones University, Greenville, SC 29614 Abstract We use ordinary Newtonian orbital mechanics to explore the possibility that near side lunar maria are giant impact basins left over from a catastrophic impact event that caused the present orbital configuration of the moon.
    [Show full text]
  • First North American Occurrence of the Rudist Durania Sp
    TRANSACTIONS OF THE KANSAS Vol. 115, no. 3-4 ACADEMY OF SCIENCE p. 117-124 (2012) Bombers and Bivalves: First North American occurrence of the rudist Durania sp. (Bivalvia: Radiolitidae) in the Upper Cretaceous (Cenomanian) Greenhorn Limestone of southeastern Colorado Bruce A. Schumacher USDA Forest Service, 1420 E. 3rd St., La Junta, CO 81050 [email protected] A colonial monospecific cluster of rudist bivalves from the lowermost Bridge Creek Limestone Member, Greenhorn Limestone (Upper Cenomanian) are attributable to Durania cf. D. cornupastoris. This discovery marks only the eighth recorded pre- Coniacian occurrence of rudist bivalves in the Cretaceous Western Interior and the only Cenomanian record of rudist Durania in North America. Discovered in 2011, the specimen was unearthed by aerial bombing at a training facility utilized during World War II. The appearance of rudist bivalves at mid-latitudes coincident with marked change in marine sediments likely represents the onset of mid-Cretaceous global warming. Keywords: Cenomanian, climate, Durania, Greenhorn, rudist Introduction The Greenhorn Limestone in southeastern Colorado (Fig. 3) is divided into the three Some seventy years ago southeastern Colorado subunits (Cobban and Scott 1972; Hattin 1975; was utilized during World War II (1943 – 1945) Kauffman 1986). Roughly the lower two-thirds as a training area for precision bombing practice of the unit is comprised of the basal Lincoln and air-to-ground gunnery. The La Junta Limestone Member (5 m) and the Hartland Municipal Airport was created in April 1940 as Shale Member (19 m). The dominant lithology La Junta Army Air Field (Thole 1999) and was of the lower members is calcareous shale with used by the United States Army Air Forces for minor amounts of thin calcarenite beds.
    [Show full text]