EMBRYO BIOLOGY Patrick M. Mccue DVM, Phd, Diplomate American College of Theriogenologists

Total Page:16

File Type:pdf, Size:1020Kb

EMBRYO BIOLOGY Patrick M. Mccue DVM, Phd, Diplomate American College of Theriogenologists EMBRYO BIOLOGY Patrick M. McCue DVM, PhD, Diplomate American College of Theriogenologists Fertilization and early embryonic through the zona pellucida. The plasma development are regulated by a complex membranes of the sperm and egg series of events. In addition, embryo subsequently fuse and the sperm is biology of the horse has several unique eventually engulfed into the egg. The egg features not found in other domestic animals. then undergoes a series of changes to The goal of this column is to review the prevent additional sperm from penetrating. normal course of equine embryology. Fusion of the pronuclei of the sperm and egg, which contain chromosomes or DNA from The events of pregnancy begin with the stallion and mare, respectively, results in ovulation. Mares usually ovulate a single formation of the genetic blueprint of the new large follicle near the end of estrus. One embryo. oocyte or egg is released from the follicle at ovulation and is ‘collected’ by the large The embryo next begins a series of cleavage funnel-shaped infundibulum of the oviduct divisions in which the single-celled zygote and transported toward the uterus. divides into 2 cells, then 4 cells, etc. The embryo continues to develop as it travels If the mare has been bred or inseminated, down the oviduct. Horses are unique among sperm work their way up the oviduct toward domestic animals in that only fertilized eggs the newly ovulated egg. Although mares are or embryos are transported into the uterus. usually bred with 500 million to several Equine embryos produce a hormone called billion spermatozoa, only a few thousand prostaglandin E2 which relaxes the circular sperm actually make it into the oviduct. smooth muscle of the oviductal wall and allows an embryo to continue movement Sperm must undergo a series of changes in toward and eventually into the uterus. the mare reproductive tract, a process called Unfertilized eggs do not product capacitation, in order to gain the ability to prostaglandin E2 and are retained in the fertilize an egg. Capacitated sperm bind to oviduct and eventually degenerate. specific proteins in the outer coat (zona Occasionally an unfertilized oocyte will be pellucida) of the egg. Binding to the egg recovered from the uterus during an embryo triggers an event in the sperm termed the flush if it ‘followed’ an embryo through the acrosome reaction, in which enzymes oviduct. present in a specialized compartment located on the head of the sperm are released. These Equine embryos enter the uterus through a enzymes enable the sperm to penetrate narrow passage called the uterotubular 1 junction (UTJ) approximately 6 days after ovulation. At this time most equine Oocyte embryos are in either the morula or early blastocyst stage of development. Contractions of the uterine musculature cause the equine embryo to be transported throughout the entire uterus multiple times Sperm per day. During this mobility phase, the embryo secretes a factor that signals the Oviduct endometrium or uterine lining that a pregnancy is present. The pregnancy recognition factor has been identified in cattle, sheep, pigs and other species, but has yet to be identified in the horse. This embryo-uterus interaction is called maternal recognition of pregnancy and is a key component of pregnancy maintenance in the mare. Failure of the embryo to produce a sufficient signal or failure of the uterus to recognize Success of assisted reproduction techniques the signal will result in the release of such as embryo transfer and oocyte transfer prostaglandins produced by the are based on understanding of these normal endometrium. Prostaglandins will travel physiologic events in the mare. through the blood stream and cause regression of the ovarian corpus luteum (CL) of the mare. The CL produces progesterone, which is critical for support of pregnancy in all animals. Regression of the CL will result in a cessation of progesterone production and loss of any pregnancy that may be present. The window for maternal recognition of pregnancy in the mare is 10 to 16 days after ovulation. Embryo migration ceases at approximately 16 to 17 days after ovulation and the embryo is then ‘fixed’ in position at the base of one uterine horn. 2.
Recommended publications
  • Oogenesis and Mode of Reproduction in the Soybean Cyst Nematode, Heterodera Glycines1)
    OOGENESIS AND MODE OF REPRODUCTION IN THE SOYBEAN CYST NEMATODE, HETERODERA GLYCINES1) BY A. C. TRIANTAPHYLLOU and HEDWIG HIRSCHMANN Departments of Genetics and Plant Pathology, North Carolina State College, Raleigh, North Carolina, U.S.A. Oögenesis and mode of reproduction were studied in four populations of the soybean cyst nematode, Heterodera glycines. Oögonial divisions occurred before and during the fourth molt. Maturation of oöcytes proceeded only in inseminated females and was normal, consisting of two meiotic divisions and the formation of two polar nuclei. Nine bivalents were present at metaphase I in all populations. Sperm entered the oöcytes at late prophase or early metaphase I. Following the second maturation division, sperm and egg pronuclei fused to form the zygote nucleus. Six females obtained from 200 larval inoculations of soybean seedlings failed to produce embryonated eggs and showed marked retardation in growth. In conclusion, H. glycines has a normal meiotic cycle and reproduces by cross fertilization. "Prior to 1940, there was a strong tendency to refer all of the cyst-forming nematodes to a single species, Heterodera schachtii Schmidt ..." (Taylor, 1957 ) . Infraspecific categories identified on the basis of host preferences were later distinguished by slight morphological differences and were described as separate species. Although as many as fifteen or sixteen species have been recognized, the taxonomic situation is far from satisfactory. The specific rank of some species is questionable, whereas other species contain forms which may well deserve specific rank. Cytological and, furthermore, cytogenetical studies may elucidate the evolutionary relationships among the various Heterodera species. Information on various aspects of oogenesis of six Heterodera species is already available (Mulvey, 1957, 1958, 1960; Riley & Chapman, 1957; Cotten, 1960).
    [Show full text]
  • In Hardening of the Zona Pellucida K
    Disulfide formation in bovine zona pellucida glycoproteins during fertilization: evidence for the involvement of cystine cross-linkages in hardening of the zona pellucida K. Kwamoto, K. Ikeda, N. Yonezawa, S. Noguchi, K. Kudo, S. Hamano, M. Kuwayama and M. Nakano department ofChemistry, Faculty ofScience and 2Graduate School ofScience and Technology, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan; and3Animal Bio-Technology Center, Livestock Improvement Association, Tokyo, Japan The time for solubilization of the bovine zona pellucida in a hypotonic buffer containing 5% (v/v) \g=b\-mercaptoethanoland 7 mol urea l\m=-\1 increased by 10% after fertilization. Coupling with a specific fluorescent thiol probe, monobromobimane (mBBr), was markedly greater in the zona pellucida of ovarian eggs compared with fertilized eggs, indicating that the cysteine residues in the zona pellucida of unfertilized eggs are oxidized to cystines during fertilization. After endo-\g=b\-galactosidasedigestion to remove N-acetyllactosamine repeats of the carbohydrate chains, three zona pellucida glycoproteins (ZPA, ZPB and ZPC) coupled with the fluorescent bimane groups were fractionated efficiently by reverse-phase HPLC. Estimation of bimane groups in the three components and SDS-PAGE revealed that intramolecular disulfide bonds in ZPA and intra- and intermolecular disulfide bonds in ZPB were formed during fertilization, but oxidation of cysteine residues in ZPC was low. Specific proteolysis of ZPA during fertilization was also observed. These results indicate that the formation of disulfide linkages together with specific proteolysis result in the construction of a rigid zona pellucida structure, which is responsible for hardening of the zona pellucida. Introduction cross-linkages between tyrosine residues of the zona pellucida proteins formed by ovoperoxidase caused the The zona is one of the two sites at which pellucida In contrast to sea urchins (Foerder and is blocked and hardening.
    [Show full text]
  • Chapter 28 *Lecture Powepoint
    Chapter 28 *Lecture PowePoint The Female Reproductive System *See separate FlexArt PowerPoint slides for all figures and tables preinserted into PowerPoint without notes. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Introduction • The female reproductive system is more complex than the male system because it serves more purposes – Produces and delivers gametes – Provides nutrition and safe harbor for fetal development – Gives birth – Nourishes infant • Female system is more cyclic, and the hormones are secreted in a more complex sequence than the relatively steady secretion in the male 28-2 Sexual Differentiation • The two sexes indistinguishable for first 8 to 10 weeks of development • Female reproductive tract develops from the paramesonephric ducts – Not because of the positive action of any hormone – Because of the absence of testosterone and müllerian-inhibiting factor (MIF) 28-3 Reproductive Anatomy • Expected Learning Outcomes – Describe the structure of the ovary – Trace the female reproductive tract and describe the gross anatomy and histology of each organ – Identify the ligaments that support the female reproductive organs – Describe the blood supply to the female reproductive tract – Identify the external genitalia of the female – Describe the structure of the nonlactating breast 28-4 Sexual Differentiation • Without testosterone: – Causes mesonephric ducts to degenerate – Genital tubercle becomes the glans clitoris – Urogenital folds become the labia minora – Labioscrotal folds
    [Show full text]
  • Evaluating and Treating the Reproductive System
    18_Reproductive.qxd 8/23/2005 11:44 AM Page 519 CHAPTER 18 Evaluating and Treating the Reproductive System HEATHER L. BOWLES, DVM, D ipl ABVP-A vian , Certified in Veterinary Acupuncture (C hi Institute ) Reproductive Embryology, Anatomy and Physiology FORMATION OF THE AVIAN GONADS AND REPRODUCTIVE ANATOMY The avian gonads arise from more than one embryonic source. The medulla or core arises from the meso- nephric ducts. The outer cortex arises from a thickening of peritoneum along the root of the dorsal mesentery within the primitive gonadal ridge. Mesodermal germ cells that arise from yolk-sac endoderm migrate into this gonadal ridge, forming the ovary. The cells are initially distributed equally to both sides. In the hen, these germ cells are then preferentially distributed to the left side, and migrate from the right to the left side as well.58 Some avian species do in fact have 2 ovaries, including the brown kiwi and several raptor species. Sexual differ- entiation begins by day 5 in passerines and domestic fowl and by day 11 in raptor species. Differentiation of the ovary is characterized by development of the cortex, while the medulla develops into the testis.30,58 As the embryo develops, the germ cells undergo three phases of oogenesis. During the first phase, the oogonia actively divide for a defined time period and then stop at the first prophase of the first maturation division. During the second phase, the germ cells grow in size to become primary oocytes. This occurs approximately at the time of hatch in domestic fowl. During the third phase, oocytes complete the first maturation division to 18_Reproductive.qxd 8/23/2005 11:44 AM Page 520 520 Clinical Avian Medicine - Volume II become secondary oocytes.
    [Show full text]
  • Spawning & Larviculture of Bivalve Mollusks
    Spawning & Larviculture of Bivalve Mollusks Grade Level: Subject Area: Time: 9-12 Aquaculture, Biology, Preparation: 30 minutes to prepare Reproduction, Anatomy Activity: 50 minute lecture (may require 1 ½ class periods) Clean-up: NA SPS (SSS): 06.04 Employ correct terminologies for animal species and conditions (e.g. sex, age, etc.) (LA.A.1.4.1-4; LA.A.2.4.4; LA.B.1.4.1-3; LA.B.2.4.1-3; LA.C.1.4.1; LA.C.2.4.1). 11.09 Develop an information file in aquaculture species (LA.A.1.4, 2.4; LA.B.1.4, 2.4; LA.C.1.4, 2.4, 3.4; LA.D.2.4; SC.D.1.4; SC.F.1.4, 2.4; SC.G.1.4, 2.4). 11.10 List and describe the major factors in the growth of aquatic fauna and flora (LA.A.1.4, 2.4; LA.B.1.4, 2.4; LA.C.1.4, 2.4, 3.4; LA.D.2.4; SC.D.1.4, SC.F.1.4, 2.4; SC.G.1.4, 2.4). 13.02 Explain how changes in water affect aquatic life (LA.A.1.4, 2.4; LA.B.2.4; LA.C.1.4, 2.4; LA.D.2.4; SC.F.1.4; SC.G.1.4). 13.03 Explain, monitor, and maintain freshwater/saltwater quality standards for the production of desirable species (LA.A.1.4, 2.4; LA.B.2.4; LA.C.1.4, 2.4; LA.D.2.4; MA>B.1.4; MA.E.1.4, 2.4, 3.4; SC.E.2.4; SC.F.2.4; SC.G.1.4).
    [Show full text]
  • Chapter 9 Reproduction in Animals.Pmd
    9 Reproduction in Animals MULTIPLE CHOICE QUESTIONS 1. Sets of reproductive terms are given below. Choose the set that has an incorrect combination. (a) sperm, testis, sperm duct, penis (b) menstruation, egg, oviduct, uterus (c) sperm, oviduct, egg, uterus (d) ovulation, egg, oviduct, uterus 2. In humans, the development of fertilised egg takes place in the (a) ovary (c) oviduct (b) testis (d) uterus 3. In the list of animals given below, hen is the odd one out. human being, cow, dog, hen The reason for this is (a) it undergoes internal fertilisation. (b) it is oviparous. (c) it is viviparous. (d) it undergoes external fertilisation. 4. Animals exhibiting external fertilisation produce a large number of gametes. Pick the appropriate reason from the following. (a) The animals are small in size and want to produce more offsprings. (b) Food is available in plenty in water. (c) To ensure better chance of fertilisation. (d) Water promotes production of large number of gametes. 5. Reproduction by budding takes place in (a) hydra (c) paramecium (b) amoeba (d) bacteria 6. Which of the following statements about reproduction in humans is correct? (a) Fertilisation takes place externally. 12/04/18 48 EEE XEMPLAR PROBLEMS (b) Fertilisation takes place in the testes. (c) During fertilisation egg moves towards the sperm. (d) Fertilisation takes place in the human female. 7. In human beings, after fertilisation, the structure which gets embedded in the wall of uterus is (a) ovum (c) foetus (b) embryo (d) zygote 8. Aquatic animals in which fertilisation occurs in water are said to be: (a) viviparous without fertilisation.
    [Show full text]
  • Sperm Storage in the Oviduct of the American Alligator DANIEL H
    JOURNAL OF EXPERIMENTAL ZOOLOGY 309A:581–587 (2008) Sperm Storage in the Oviduct of the American Alligator DANIEL H. GIST1Ã, APRIL BAGWILL2, VALENTINE LANCE3, 2 4 DAVID M. SEVER , AND RUTH M. ELSEY 1Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio 2Department of Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana 3San Diego State University, Graduate School of Public Health, San Diego, California 4Louisiana Department of Wildlife and Fisheries, Rockefeller Wildlife Refuge, Grand Chenier, Louisiana ABSTRACT Oviducts of the American alligator (Alligator mississippiensis) were examined histologically for the presence of stored sperm. Two regions containing sperm were identified, one at the junction of the posterior uterus and the vagina (UVJ) and the other at the junction of the tube and isthmus (TIJ). In these areas, sperm were found in the lumina of oviductal glands. The glands in these areas of the oviduct are diffuse and shallow and appear to allow better access to sperm than glands located elsewhere. Histochemically, the glands of the UVJ reacted weakly for carbohydrates and proteins, whereas those of the TIJ reacted strongly for these same two components, secretions of which are associated with sperm storage structures in other reptiles. Sperm were not in contact with the glandular epithelium, and glands at the UVJ contained more sperm than those at the TIJ. Oviductal sperm storage was observed not only in recently mated females but in all females possessing uterine eggs as well as all females known to be associated with a nest. We conclude that female alligators are capable of storing sperm in their oviductal glands, but not from one year to the next.
    [Show full text]
  • Study on the Ovary, Oviduct And
    T it le of the paper : STUDY ON THE OVARY, OVIDUCT AND UTERUS OF THE EWE. By: ROBERT HADEK, Dr.Med.Vet.-, Vienna. From: The Department of Veterinary Histology and Embryology of The University of Glasgow Veterinary School. Submitted as Thesis for the Degree of Bi.D. in the Faculty of Medicine. ProQuest Number: 13838881 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 13838881 Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 I A4 Contents V ol. I . Introduction Page 1 L iterature 1 M aterial & Methods Anatomical observations and measurements 5 H isto lo g ic a l and histochem ical technique 6 The breeding season and the sexual cy cle in the ewe 10 The ovary Gross Anatomy 11 H istology 12 Oogenesis and follicular development 14 The growth of the follicle and ovum 19 Multinuclear ova, polyovular follicles and accessory oocytes 20 Follicular degeneration and atresia 22 The rupture of the follicle 23 The corpus luteum 24 Histochemical reactions in the ovary 30 Histochemical reactions in the follicle
    [Show full text]
  • Formation of the Hamster Zona Pellucida in Relation to Ovarian Differentiation and Follicular Growth M
    Formation of the hamster zona pellucida in relation to ovarian differentiation and follicular growth M. C. L\l=e'\veill\l=e'\,K. D. Roberts, S. Chevalier, A. Chapdelaine and G. Bleau Departments of Obstetrics and Gynecology, Biochemistry and Medicine, University of Montreal and Maisonneuve-Rosemont Research Center, Montreal, Quebec, Canada H1T 2M4 Summary. Using an immunofluorescence technique on ovarian sections, zona\x=req-\ immunoreactive components were detected in the cytoplasm of the oocyte from the beginning of its growth, when it is surrounded by only a thin squamous follicular cell layer, up to the end of its growth. In parallel with oocyte growth, the staining intensity decreased in the ooplasm. No staining was observed in the cytoplasm of the granulosa cells during normal follicular development in adult cyclic females. However, staining of the granulosa cells was observed at some stages of follicular development in immature females. This staining was especially evident in the ovaries of immature females (22 or 26 days old) stimulated with PMSG. In addition, the staining of the granulosa cells was consistently observed in ovaries showing an abnormal histology. Increased staining of the zona at its outer and inner regions could be distinguished in normal follicles, but when staining occurred on the granulosa cells no such pattern was observed over the zona matrix. These studies indicate that the oocyte itself but not the granulosa cells elaborates the native immunogenic material of the zona pellucida. The administration of PMSG at particular stages of ovarian differentiation interferes with follicular development leading to an abnormal extracellular assembly of the zona and its degradation (phagocytosis) by the surrounding granulosa cells.
    [Show full text]
  • Changes in the Composition of the Hamster Zona Pellucida After Fertilization in Vivo but Not in Vitro C
    Changes in the composition of the hamster zona pellucida after fertilization in vivo but not in vitro C. R. Brown, N. Clarke, M. Aiken and B. D. Bavister Institute of Animal Physiology and Genetics Research, Babraham Hall, Cambridge CB2 4AT, UK; and * Department ofVeterinary Science, University of Wisconsin, Madison, WI53706, USA Summary. Hamster zonae pellucidae were obtained from follicular oocytes, super- ovulated eggs, and eggs fertilized in vivo or in vitro. Zonae were labelled with N-succinimidyl-3(4-hydroxy,5-[125I]iodophenyl)propionate, and compared on single\x=req-\ and two-dimensional SDS-PAGE. Single-dimensional electrophoresis showed consider- able differences between zona categories in the amount of label that they incorporated; follicular zonae incorporated the least label and zonae from eggs fertilized in vivo the most. On two-dimensional electrophoresis, polypeptides from 3 of the 4 zona categories migrated into 4 major groups: two of these groups each with Mr 150 000\p=n-\250000 were within the Mr range of ZP1, and two others, at Mr90 000 and 55 000, appeared to be analogous to ZP2 and ZP3, respectively. The fourth zona category (zonae from eggs fertilized in vivo) showed a changed polypeptide profile as well as incorporating the most label; one of the polypeptides, Mr 150 000\p=n-\250000, was undetectable, but a train of Mr 70 000\p=n-\90000 polypeptides and a discrete polypeptide at Mr 20 000 were new. Since this changed profile did not occur in zonae from superovulated eggs, or in zonae from eggs fertilized in vitro, a synergism between oviducal factors and factors from the spermatozoon or egg, or both, towards the zona in vivo is indicated.
    [Show full text]
  • Embryology J
    Embryology J. Matthew Velkey, Ph.D. [email protected] 452A Davison, Duke South Textbook: Langmans’s Medical Embryology, 11th ed. When possible, lectures will be recorded and there may be notes for some lectures, but still NOT a substitute for reading the text. Completing assigned reading prior to class is essential for sessions where a READINESS ASSESSMENT is scheduled. Overall goal: understand the fundamental processes by which the adult form is produced and the clinical consequences that arise from abnormal development. Follicle Maturation and Ovulation Oocytes ~2 million at birth ~40,000 at puberty ~400 ovulated over lifetime Leutinizing Hormone surge (from pituitary gland) causes changes in tissues and within follicle: • Swelling within follicle due to increased hyaluronan • Matrix metalloproteinases degrade surrounding tissue causing rupture of follicle Egg and surrounding cells (corona radiata) ejected into peritoneum Corona radiata provides bulk to facilitate capture of egg. The egg (and corona radiata) at ovulation Corona radiata Zona pellucida (ZP-1, -2, and -3) Cortical granules Transport through the oviduct At around the midpoint of the menstrual cycle (~day 14), a single egg is ovulated and swept into the oviduct. Fertilization usually occurs in the ampulla of the oviduct within 24 hrs. of ovulation. Series of cleavage and differentiation events results in the formation of a blastocyst by the 4th embryonic day. Inner cell mass generates embryonic tissues Outer trophectoderm generates placental tissues Implantation into
    [Show full text]
  • ASC-201: Avian Female Reproductive System
    COOPERATIVE EXTENSION SERVICE UNIVERSITY OF KENTUCKY COLLEGE OF AGRICULTURE, FOOD AND ENVIRONMENT, LEXINGTON, KY, 40546 ASC-201 Avian Female Reproductive System Jacquie Jacob and Tony Pescatore, Animal Sciences nyone raising poultry for While mammals typically give Although the embryo has two ova- eggs, whether for eating or birth to their offpsring, the off- ries and oviducts, only the left pair forA incubation, should have an spring of birds develop outside (i.e., ovary and oviduct) develops. understanding of the reproduc- the body of the parents—in eggs. The right typically regresses during tive system. This will help them When carried in the womb, mam- development and is non-functional understand any problems that may malian embryos receive their daily in the adult bird. There have been occur and how to correct them. requirement for nutrients directly cases, however, where the left ova- The avian reproductive system is from their mother via the placenta. ry and oviduct have been damaged different from that of mammals. For birds, however, all the nutri- and the right one has developed to Nature has designed it to better ents that will be needed for the replace it. suit the risks associated with being embryo to fully develop must be Theovary is a cluster of devel- a bird. Unless you are a bird of prey provided in the egg before it is laid. oping yolks or ova and is located (a hawk, eagle or falcon), you are The female reproductive system midway between the neck and the faced with the fact that everyone is of the chicken is shown in Figure tail of the bird, attached to the trying to eat you.
    [Show full text]