Pathogenesis of Dystonia: Is It of Cerebellar Or Basal Ganglia Origin? Ryuji Kaji,1 Kailash Bhatia,2 Ann M Graybiel3

Total Page:16

File Type:pdf, Size:1020Kb

Pathogenesis of Dystonia: Is It of Cerebellar Or Basal Ganglia Origin? Ryuji Kaji,1 Kailash Bhatia,2 Ann M Graybiel3 JNNP Online First, published on October 31, 2017 as 10.1136/jnnp-2017-316250 Movement disorders J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp-2017-316250 on 31 October 2017. Downloaded from REVIEW Pathogenesis of dystonia: is it of cerebellar or basal ganglia origin? Ryuji Kaji,1 Kailash Bhatia,2 Ann M Graybiel3 ► Additional material is ABSTRACT treatment altered muscle afferents. Diluted local published online only. To view Dystonia is a disorder of motor programmes controlling anaesthetics block first nerve fibres with the smallest please visit the journal online diameters. If injected diffusely into a muscle, they (http:// dx. doi. org/ 10. 1136/ semiautomatic movements or postures, with clinical jnnp- 2017- 316250). features such as sensory trick, which suggests predominantly affect the gamma efferent fibres sensorimotor mismatch as the basis. Dystonia was that innervate the spindles. Thus, this manoeuvre 1Department of Neurology, originally classified as a basal ganglia disease. It is desensitises the spindles and secondarily blocks the Tokushima University School of now regarded as a ’network’ disorder including the muscle afferents (muscle afferent block or MAB).7 Medicine, Tokushima, Japan 2Sobell Department of cerebellum, but the exact pathogenesis being unknown. This effect of diluted lidocaine injected into Movement Neuroscience, UCL Rare autopsy studies have found pathology both dystonic muscles has also been explored, and Institute of Neurology, London, in the striatum and the cerebellum, and functional MAB abated the abnormal contractions, although UK 8 3 disorganisation was reported in the somatosensory temporarily. The tonic vibration reflex (TVR) is a Department of Brain manoeuvre to activate muscle spindle afferents by and Cognitive Sciences, cortex in patients. Recent animal studies showed Massachusetts Institute of physiologically tight disynaptic connections between the applying high-frequency, large-amplitude vibra- Technology McGovern Institute cerebellum and the striatum. We review clinical evidence tory stimulation to the belly of the muscle or to the for Brain Research, Cambridge, in light of this new functional interaction between associated tendon. If the TVR is tested for the limb Massachusetts, USA the cerebellum and basal ganglia, and put forward a affected by dystonia, it indeed reproduces dystonic hypothesis that dystonia is a basal ganglia disorder that contractions without the subject’s intention to Correspondence to perform the task with the affected limb (online Dr Ryuji Kaji, Departmentof can be induced by aberrant afferent inputs from the Neurology, Tokushima cerebellum. supplementary video: segment 3). The exact neural University, Tokushima770-8503, pathways affected in the TVR are unknown, but Japan; rkaji@ clin. med. the reflex is considered as subcortical, as cortical copyright. tokushima- u. ac. jp lesions do not abolish it.9 These findings suggest INTRODUCTION Received 21 April 2017 that dystonic movements or postures are already Revised 27 September 2017 Dystonia is a syndrome of sustained muscle contrac- preprogrammed in a subcortical circuit even at rest, Accepted 8 October 2017 tions frequently producing twisting, repetitive or forming an abnormal sensory versus motor link 1 patterned movements or abnormal postures. It (figure 2) 2 often starts in a task-specific context. For instance, Subsequent functional studies focused attention a patient with writer’s cramp, a focal dystonia, has to the disorganisation of the primary somatosen- difficulty in writing, but the performance of other sory cortex,10 raising much interest in the sensory elaborate tasks, such as using chopsticks, remains aspects of dystonia.11 Further studies demon- intact (online supplementary video: segments 1 and strated abnormal temporal discrimination in the http://jnnp.bmj.com/ 2). These tasks are normally performed semiauto- affected limb,12 impaired cortical inhibition of the matically with little intentional effort of the subject. surrounding muscles (surround inhibition13) and This characteristic implies a subconscious mech- maladaptive cortical plasticity as shown by priming anism of activating a set of muscles specific for a sensory stimuli and the associated motor excitability 3 particular automatic task (a motor subroutine). (paired associated stimulation),14 which are func- Historically, this disease had been treated as a tional hallmarks of focal dystonias. It is not fully 4 psychogenic or functional disorder, partly because understood whether these cortical findings reflect of the clinical feature of sensory trick, in which the primary or compensatory events in the genesis of on September 28, 2021 by guest. Protected patient can benefit from particular cutaneous or dystonia. proprioceptive sensory inputs usually unrelated to 5 performing the task or maintaining the posture Lessons learnt from X-linked recessive dystonia- (figure 1). This trait, however, gave a clue to the parkinsonism and dopa-responsive dystonia understanding of its pathophysiology as a mismatch (DRD) of sensory input versus motor output for the task or X-linked dystonia-parkinsonism (XDP or DYT3) the posture. is a neurodegenerative disease affecting the basal ganglia and is endemic in the Panay Island in the Is dystonia a sensory disorder? Philippines. Its clinical features typically appear To cite: Kaji R, Bhatia K, Muscle afferents are the major inputs for kinesthetic in the mid-30s as a focal dystonia followed within Graybiel AM. J Neurol sensation, and spindle afferent pathways project several years by parkinsonism.15 Autopsy studies in Neurosurg Psychiatry Published Online First: [please densely to the cerebellum via spinocerebellar tracts. the early dystonic stage showed patchy lesions in 6 include Day Month Year]. Almost a century ago, Walshe reported that a the striatum, and those in the later parkinsonian doi:10.1136/jnnp-2017- diluted local anaesthetic can improve akinesia in a phase exhibited total atrophy of the entire dorsal 316250 man with Parkinson’s disease, reasoning that this striatum similar to multiple systems atrophy.16 Kaji R, et al. J Neurol Neurosurg Psychiatry 2017;0:1–5. doi:10.1136/jnnp-2017-316250 1 Copyright Article author (or their employer) 2017. Produced by BMJ Publishing Group Ltd under licence. Movement disorders J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp-2017-316250 on 31 October 2017. Downloaded from reported to occur in XDP could lead to disinhibition of dopa- mine release with relative direct pathway predominance, which could account for dystonia (figure 2). DRD23 or Segawa disease (DYT5) seems contradictory to a theory of dystonia based on an overabundance of dopamine, because DRD readily responds to l-dopa treatment. Sato and colleagues24 resolved this issue by examining the striosome and matrix compartments immunohistochemically in a mouse model of DRD. Using tyrosine hydroxylase (TH) staining, they found early selective loss of TH immunostaining in striosomes, suggesting that a lack of nigrostriatal dopamine D1 input to the striosomal MSNs could produce deficient GABAergic inhibition of neurons in the substantia nigra pars compacta with relative direct pathway predominance in the matrix, where TH activity remains intact. A single autopsy report of patient with DYT5 also showed striosomal decrease of TH staining, lending support to this hypothesis.25 Is dystonia a cerebellar disorder? It has been reported that dystonia could be the presenting symptom in the spinocerebellar ataxias (SCA2, 3, 6 and 17). Among these, SCA6 is associated with pathology confined to the cerebellum. Furthermore, cerebellar atrophy or signs have Figure 1 A classical picture of sensory trick (geste antagoniste) in been noted in late-onset dystonia.26 A family with marked cere- spasmodic torticollis.5 Left: without trick. Right: abnormal posture is bellar atrophy presenting predominant dystonia has also been corrected by placing the right hand on the hip bone and touching the chin described.27 Miyamoto and colleagues28 reported an autopsy with the left hand. study of such a family. The patient presented mostly with gener- alised dystonia that partially responded to deep brain stimulation (DBS) of the globus pallidus internus (GPi). The pathological Detailed immunohistochemical studies have suggested that the finding was pure cerebello-olivary degeneration with no abnor- copyright. striatal projection neurons (medium spiny neurons (MSNs)) malities in the basal ganglia. The fact that DBS was effective indi- affected in the early dystonic phase of the disease likely are cates that the basal ganglia dysfunction, if any, is downstream located in striosomes, a neurochemically defined compartment effects of the cerebellar lesion. in the striatum, as opposed to the striatal matrix, for which a Animal studies also provided clues to the cerebellar involve- marker (calbindin) remained (figure 2). No recognisable abnor- ment in dystonia. DYT1 model mice exhibit increased energy malities were observed in the cerebellum in these cases. metabolism in the olivocerebellar network.29 Phenotypes of These findings drew attention to the three-compartment pharmacologically or genetically modified animal models of model of the basal ganglia circuit.17 The striosomes and the cerebellar origin are markedly aggravated by the dysfunction of matrix are the major neurochemically defined compartments the basal ganglia.30 Conversely, dystonic features are improved of the striatum. It is mainly the large
Recommended publications
  • Anatomical, Biological, and Surgical Features of Basal Gangliaanatomical, Biological, and Surgical Features of Basal Ganglia
    DOI: 10.5772/intechopen.68851 Provisional chapter Chapter 7 Anatomical, Biological, and Surgical Features of Basal Anatomical,Ganglia Biological, and Surgical Features of Basal Ganglia Nuket Gocmen Mas, Harun Muayad Said, NuketMurat GocmenTosun, Nilufer Mas, HarunYonguc, Muayad Yasemin Said, Soysal Muratand Hamit Tosun, Selim Nilufer Karabekir Yonguc, Yasemin Soysal and HamitAdditional Selim information Karabekir is available at the end of the chapter Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.68851 Abstract Basal ganglia refers to the deep gray matter masses on the deeply telencephalon and encompasses a group of nuclei and it influence the information in the extrapyramidal system. In human they are related with numerous significant functions controlled by the nervous system. Gross anatomically, it is comprised of different parts as the dorsal stria- tum that are consisted of the caudate nucleus and putamen and ventral striatum which includes the nucleus accumbens, olfactory tubercle, globus pallidus, substantia nigra, and subthalamic nucleus. Nucleus accumbens, is also associated with reward circuits and has two parts; the nucleus accumbens core and the nucleus accumbens shell. Neurological diseases are characterized through the obvious pathology of the basal ganglia, and there are important findings explaining striatal neurodegeneration on human brain. Some of these diseases are induced by bacterial and/or viral infections. Surgical interference can be one alternative for neuronal disease treatment like Parkinson’s Disease or Thiamine Responsive Basal Ganglia Disease or Wilson’s Disease, respectively in addition to the vas- cular or tumor surgery within this area. Extensive knowledge on the morphological basis of diseases of the basal ganglia along with motor, behavioral and cognitive symptoms can contribute significantly to the optimization of the diagnosis and later patient’s treatment.
    [Show full text]
  • Part Ii – Neurological Disorders
    Part ii – Neurological Disorders CHAPTER 14 MOVEMENT DISORDERS AND MOTOR NEURONE DISEASE Dr William P. Howlett 2012 Kilimanjaro Christian Medical Centre, Moshi, Kilimanjaro, Tanzania BRIC 2012 University of Bergen PO Box 7800 NO-5020 Bergen Norway NEUROLOGY IN AFRICA William Howlett Illustrations: Ellinor Moldeklev Hoff, Department of Photos and Drawings, UiB Cover: Tor Vegard Tobiassen Layout: Christian Bakke, Division of Communication, University of Bergen E JØM RKE IL T M 2 Printed by Bodoni, Bergen, Norway 4 9 1 9 6 Trykksak Copyright © 2012 William Howlett NEUROLOGY IN AFRICA is freely available to download at Bergen Open Research Archive (https://bora.uib.no) www.uib.no/cih/en/resources/neurology-in-africa ISBN 978-82-7453-085-0 Notice/Disclaimer This publication is intended to give accurate information with regard to the subject matter covered. However medical knowledge is constantly changing and information may alter. It is the responsibility of the practitioner to determine the best treatment for the patient and readers are therefore obliged to check and verify information contained within the book. This recommendation is most important with regard to drugs used, their dose, route and duration of administration, indications and contraindications and side effects. The author and the publisher waive any and all liability for damages, injury or death to persons or property incurred, directly or indirectly by this publication. CONTENTS MOVEMENT DISORDERS AND MOTOR NEURONE DISEASE 329 PARKINSON’S DISEASE (PD) � � � � � � � � � � �
    [Show full text]
  • Reliability of MRI in Detection and Differentiation of Acute Neonatal/Pediatric Encephalopathy Causes Among Neonatal/ Pediatric Intensive Care Unit Patients Tamir A
    Hassan and Mohey Egyptian Journal of Radiology and Nuclear Medicine Egyptian Journal of Radiology (2020) 51:62 https://doi.org/10.1186/s43055-020-00173-7 and Nuclear Medicine RESEARCH Open Access Reliability of MRI in detection and differentiation of acute neonatal/pediatric encephalopathy causes among neonatal/ pediatric intensive care unit patients Tamir A. Hassan* and Nesreen Mohey Abstract Background: Causes of encephalopathy in neonates/pediatrics include hypoxic-ischemic injury (which is the most frequent cause and is defined as any impairment to the brain caused by insufficient blood flow and oxygenation), trauma, metabolic disorders, and congenital and infectious diseases. The aim of this study is to evaluate the value of MRI in detection and possible differentiation of different non-traumatic, non-infectious causes of acute neonatal/ pediatric encephalopathy among NICU/PICU patients. Results: This retrospective study included 60 selected patients according to the study inclusion and exclusion criteria; all presented with positive MRI findings for non-traumatic, non-infectious acute brain injury. Females (32, 53.3%) were affected more than males (28, 46.7%) with a mean age of 1.1 ± 1.02 years; all presented with variable neurological symptoms and signs that necessitate neonatal intensive care unit/pediatric intensive care unit (NICU/ PICU) admission. The final diagnosis of the study group patients were hypoxic ischemia injury (HII) in 39 patients (65%), metachromatic leukodystrophy in 6 patients (10%), biotin-thiamine-responsive basal ganglia disease (BTBGD) and Leigh disease each in 4 patients (6.7%), periventricular leukomalacia (PVL) in 3 patients (5%), and mitochondrial encephalopathy with lactic acidosis and stroke-like episodes syndrome (MELAS) and non-ketotic hyperglycinemia (NKH) each in 2 patients (3.3%).
    [Show full text]
  • Para/Post Infectious Recovering Encephalitis with Localized Basal
    INDIAN PEDIATRICS VOLUME 34-AUGUST 1997 Para/Post Infectious Recovering sity lesions of the caudate and putamen in Encephalitis with Localized Basal 3 (Fig. 1), of the gl6bus pallidus in 1, and Ganglia Involvement thalamus and mid brain in one. MRI was done in 7 children, including the 3 with normal CT scans, and showed increased V.P. Udani signal intensity on T2 weighted images in V.R. Dharnidharka the caudate and putamen (Fig. 2) in all ex- A.R. Gajendragadkar cept one. Involvement was bilateral in 5 and unilateral in one. One child had a CT Neurological dysfunction in children done at the time of illness which was ab- associated with bilateral hypodense lesions normal and then recovered to such an ex- of the basal ganglia is seen in disorders like tent that her MRI after 1 year was totally Huntington's chorea, Wilson's disease, normal. Two illustrative cases are de- Hallervorden Spatz syndrome, Leigh's dis- scribed below. ease, infantile striatal necrosis, hypoxia, ischemia and various intoxications(l). Case 1: A 10-year-old male child was re- Goutieres and Aicardi described in 1982 a ferred from another city with a history of new neuroradiological syndrome charac- febrile illness 1 month earlier, during terized by a rapid clinical onset of striatal which he developed alterations in sensori- symptoms following an infectious illness, um, became unconscious and developed associated with similar hypodense basal weakness in all 4 limbs. He slowly im- ganglia lesions, but with a far better out- proved in consciousness but remained come than seen with the conditions men- quadriplegic.
    [Show full text]
  • Prof. Firoz Ahmed Quraishi
    ADEM (Acute Disseminated Encephalomyelitis) Professor Firoz Ahmed Quraishi FCPS, MD Professor of Neurology, Anwer Khan Modern Medical College & Hospital, Dhanmondi, Dhaka 18 February 2018 SCENARIO… 01 Ms. R. 18/F presented in the emergency with 02 days history of dimness of vision of the right eye followed by left one, with pain on both eyes on movement. In ED she was drowy, confused and irritabile. Her parents states an episodes of cough with fever lasted for 3 days resolved spontaneously 12 days back. Examination revealed GCS 8 with bilateral optic disc swelling, bilateral planter extensor without neck rigidity. 03 hrs after admission, she developed generalized tonic clonic seizure. 18 February 2018 SCENARIO 01 MIMICS 1. Infectious meningitis/encephalitis, viral/bacterial /protozoal / autoimmune 2. Metabolic encephalopathy 3. ADEM 4. NMO 5. Cerebral Venous Sinus Thrombosis 18 February 2018 SCENARIO 01 INVESTIGATIONS 1. Blood Biochemistry and Count was normal 2. CSF Study 10 Cells/Cubic mm, 3. Protein & Sugar :Normal 4. AFB & Gram stain: Negative 5. CSF culture: Negative 6. Bacterial Antigen: Negative 7. PCR for Viral: Negative 8. MRI of Head Dx ?????? 18 February 2018 SCENARIO… 02 Mr. K. M/24 (old farmer) was licked in his feet by his pet dog. He consulted the nearest Upazilla Health Complex and advised to have anti-rabis vaccination, subcutaneously in peri-umblical region for 14 days. After 7 injections he developed pain in the back followed by urinary hesitancy progressed to acute retention of urine. He was admitted in Health Complex and 01 day after he developed weakness of both lower limbs with loss of sensations up to Mid Chest.
    [Show full text]
  • Biotin-Responsive Basal Ganglia Disease: a Case Diagnosed by Whole Exome Sequencing
    Journal of Human Genetics (2015) 60, 381–385 & 2015 The Japan Society of Human Genetics All rights reserved 1434-5161/15 www.nature.com/jhg ORIGINAL ARTICLE Biotin-responsive basal ganglia disease: a case diagnosed by whole exome sequencing Kensaku Kohrogi1,2,4, Eri Imagawa3,4, Yuichiro Muto1, Katsuki Hirai1, Masahiro Migita1, Hiroshi Mitsubuchi2, Noriko Miyake3, Naomichi Matsumoto3, Kimitoshi Nakamura2 and Fumio Endo2 Using whole exome sequencing, we confirmed a diagnosis of biotin-responsive basal ganglia disease (BBGD) accompanied by possible Kawasaki Disease. BBGD is an autosomal-recessive disease arising from a mutation of the SLC19A3 gene encoding the human thiamine transporter 2 protein, and usually manifests as subacute to acute encephalopathy. In this case, compound heterozygous mutations of SLC19A3, including a de novo mutation in one allele, was the cause of disease. Although a large number of genetic neural diseases have no efficient therapy, there are several treatable genetic diseases, including BBGD. However, to achieve better outcome and accurate diagnosis, therapeutic analysis and examination for disease confirmation should be done simultaneously. We encountered a case of possible Kawasaki disease, which had progressed to BBGD caused by an extremely rare genetic condition. Although the prevalence of BBGD is low, early recognition of this disease is important because effective improvement can be achieved by early biotin and thiamine supplementation. Journal of Human Genetics (2015) 60, 381–385; doi:10.1038/jhg.2015.35; published online 16 April 2015 INTRODUCTION confirmed by haplotype analysis (Supplementary Method). Total RNA from Biotin-responsive basal ganglia disease (BBGD) is an autosomal- lymphoblastoid cell lines was obtained by the RNeasy Plus Mini Kit (Qiagen, recessive disease, which presents as confusions, dysarthria, dysphagia Valencia, CA, USA).
    [Show full text]
  • Imaging Basal Ganglia Function
    J. Anat. (2000) 196, pp. 543–554, with 5 figures Printed in the United Kingdom 543 Review Imaging basal ganglia function DAVID J. BROOKS MRC Cyclotron Unit, Hammersmith Hospital, London, UK (Accepted 14 September 1999) In this review, the value of functional imaging for providing insight into the role of the basal ganglia in motor control is reviewed. Brain activation findings in normal subjects and Parkinson’s disease patients are examined and evidence supporting the existence for functionally independent distributed basal ganglia- frontal loops is presented. It is argued that the basal ganglia probably act to focus and filter cortical output, optimising the running of motor programs. Key words: Motor control; Parkinson’s disease; positron emission tomography. inhibiting unwanted movements (Penney & Young, 1983; Mink & Thach, 1991), alerting animals to the While there have been considerable advances in our presence of novel or rewarding circumstances (Brown understanding of the pathophysiology of movement & Marsden, 1990; Ljungberg et al. 1992; Schultz, disorders, based on development of animal models of 1992), and mediating selective attention (Wichman & parkinsonism and chorea and observations of the DeLong, 1999) and conditional learning and planning functional effects of stereotactic surgery in tremor and (Taylor et al. 1986; Gotham et al. 1988; Robbins et al. Parkinson’s disease (PD), rather less is known about 1994). The basal ganglia, however, clearly do not act the precise role that the basal ganglia play in motor in isolation but are part of a system of parallel control. Single unit electrical recordings have been distributed corticosubcortical loops. At least 5 sep- obtained from the basal ganglia of lesioned and intact arate loops have been described (Alexander et al.
    [Show full text]
  • Anatomy and Pathology of the Basal Ganglia P.L
    LE JOURNAL CANADIEN DES SCIENCES NEUROLOGIQUES Anatomy and Pathology of the Basal Ganglia P.L. McGeer, E.G. McGeer, S. Itagaki and K. Mizukawa ABSTRACT: Neurotransmitters of the basal ganglia are of three types: I, amino acids; II, amines; and III, peptides. The amino acids generally act ionotropically while the amines and peptides generally act metabotropically. There are many examples of neurotransmitter coexistence in basal ganglia neurons. Diseases of the basal ganglia are character­ ized by selective neuronal degeneration. Lesions of the caudate, putamen, subthalamus and substantia nigra pars compacta occur, respectively, in chorea, dystonia, hemiballismus and parkinsonism. The differing signs and symp­ toms of these diseases constitute strong evidence of the functions of these various nuclei. Basal ganglia diseases can be of genetic origin, as in Huntington's chorea and Wilson's disease, of infectious origin as in Sydenham's chorea and postencephalitic parkinsonism, or of toxic origin as in MPTP poisoning. Regardless of the etiology, the pathogenesis is often regionally concentrated for reasons that are poorly understood. From studies on Parkinson and Huntington disease brains, evidence is presented that a common feature may be the expression of HLA-DR antigen on reactive microglia in the region where pathological neuronal dropout is occurring. RESUME: Anatomie et pathologie des noyaux gris centraux. II y a trois types de neurotransmetteurs au niveau des noyaux gris centraux: 1) les acides amines; 2) les amines; 3) les peptides. Les acide amines agissent generalement par ionotropie alors que les amines et les peptides agissent generalement par metabotropie. II existe plusieurs exemples de la coexistence de differents neurotransmetteurs dans les neurones de ces noyaux.
    [Show full text]
  • Basal Ganglia Disease and Visuospatial Cognition: Are There Disease-Specific I Mpai Rments?
    Behavioural Neurology (1997), 10,67-75 Basal ganglia disease and visuospatial cognition: Are there disease-specific i mpai rments? Erich Mohr\ Jules J. Claus2 and Pim Brouwers3 1Division of Neurology, University of Ottawa, Ottawa Civic Hospital & Elisabeth Bruyere Health Centre, Ottawa, Canada, 2Department of Neurology, Academic Medical Center, University of Amsterdam, The Netherlands and 3HIV and AIDS Malignancy, Division of Clinical Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA Correspondence to: Erich Mohr, Elisabeth Bruyere Health Centre, 75 Bruyere Street, Suite 298-21, Ottawa, Ontario, K1N 5C8, Canada Visuospatial deficits in basal ganglia disease may be a non-specific function of the severity of dementia or they could reflect disease-specific impairments. To examine this question, Huntington (HD) patients, demented and non-demented Parkinson (PD) patients and healthy controls were examined with neuropsychological tests emphasising visuospatial abil­ ities. Global intellectual function and general visuospatial cognition were less efficient in the two demented patient groups relative to both controls and non-demented PD patients and they did not differ significantly between non-demented Parkinsonians and controls nor between demented PD and HD patients. However, HD patients but not demented PD patients were impaired on a test of person-centred spatial judgement compared to non-demented subjects while demented PD patients scored significantly lower than HD patients on a test of field independence. Factor analysis yielded a factor reflecting general visuospatial processing capacity which discriminated between demented and non-demented PD patients but not between demented PD and HD patients. A unique factor associated with the manipulation of person-centred space discriminated between demented PD and HD patients.
    [Show full text]
  • Evidence of Thalamic Disinhibition in Patients with Hemichorea
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.72.3.329 on 1 March 2002. Downloaded from 329 PAPER Evidence of thalamic disinhibition in patients with hemichorea: semiquantitative analysis using SPECT J-S Kim, K-S Lee, K-H Lee, Y-I Kim, B-S Kim, Y-A Chung, S-K Chung ............................................................................................................................. J Neurol Neurosurg Psychiatry 2002;72:329–333 Objectives: Hemichorea sometimes occurs after lesions that selectively involve the caudate nucleus, putamen, and globus pallidus. Some reports have hypothesised that the loss of subthalamic nucleus control on the internal segment of the globus pallidus, followed by the disinhibition of the thalamus may contribute to chorea. However, the pathophysiology is poorly understood. Therefore, clinicoradiologi- cal localisation was evaluated and a comparison of the haemodynamic status of the basal ganglia and See end of article for thalamus was made. authors’ affiliations Methods: Six patients presenting with acute onset of hemichorea were assessed. Neuroimaging stud- ....................... ies, including MRI and SPECT examinations in addition to detailed biochemical tests, were performed. Correspondence to: A semiquantitative analysis was performed by comparing the ratio of blood flow between patients and Dr K-S Lee, Movement normal controls. In addition, the ratio of perfusion asymmetry was calculated as the ratio between each Clinic, Department of Neurology, Kangnam St area contralateral to the chorea and that homolateral to the chorea. The comparison was made with a Mary’s Hospital, 505 two sample t test. Banpo-Dong, Seocho-Ku, Results: The causes of hemichorea found consisted of four cases of acute stroke, one non-ketotic Seoul, 130–701, South hyperglycaemia, and one systemic lupus erythematosus.
    [Show full text]
  • Doesoldage Or Parkinson's Disease Cause Bradyphrenia?
    Journal ofGerontology: MEDICAL SCIENCES Copyright 1999 by The Gerontological Society ofAmerica 1999, Vol. 54A, No.8, M404-M409 Does OldAge or Parkinson's Disease Cause Bradyphrenia? James G. Phillips, l Tanya Schiffler,' Michael E. R. Nicholls," John L. Bradshaw,' Robert Iansek,' and Lauren L. Saling' 'Departmentof Psychology, MonashUniversity, Clayton, Australia 2Department of Psychology, University of Melbourne, Parkville, Australia. Downloaded from https://academic.oup.com/biomedgerontology/article/54/8/M404/542741 by guest on 30 September 2021 3Geriatric ResearchUnit,Kingston Centre,Cheltenham, Australia. Background. Age-related declines in intellectual functioning have been linked to slower processing ofinformation. However, any slowness with advancing age could simply reflect slower movement rather than impaired cognition. To assess any age-related decline in cognitive speed, we used an accuracy-based task that does not require a speeded motor response and that measures the time required to acquire information (inspection time). To identify possible biological mechanisms of cogni­ tive slowing, this task was also applied to patients with Parkinson's disease, a basal ganglia disorder that reportedly causes bradyphrenia (slower thought processes). Methods. In one experiment, 16 young (mean age 22.4 years) and 16 older adults (mean age 71.6 years) matched for intelli­ gence and education completed an inspection time task. The task required judgments as to order of onset oftwo lights, where the interval between onsets ranged from 20-250 msec. A second experiment compared 16 patients diagnosed with idiopathic Parkinson's disease and 16 age-matched controls upon the same task. Results. Older adults demonstrated significant cognitive slowing compared to younger adults.
    [Show full text]
  • The Direct Basal Ganglia Pathway Is Hyperfunctional in Focal Dystonia
    doi:10.1093/brain/awx263 BRAIN 2017: 140; 3179–3190 | 3179 The direct basal ganglia pathway is hyperfunctional in focal dystonia Kristina Simonyan,1,2 Hyun Cho,3 Azadeh Hamzehei Sichani,1 Estee Rubien-Thomas2 and Mark Hallett3 See Fujita and Eidelberg (doi:10.1093/brain/awx305) for a scientific commentary on this article. Focal dystonias are the most common type of isolated dystonia. Although their causative pathophysiology remains unclear, it is thought to involve abnormal functioning of the basal ganglia-thalamo-cortical circuitry. We used high-resolution research tomog- 11 raphy with the radioligand C-NNC-112 to examine striatal dopamine D1 receptor function in two independent groups of patients, writer’s cramp and laryngeal dystonia, compared to healthy controls. We found that availability of dopamine D1 recep- tors was significantly increased in bilateral putamen by 19.6–22.5% in writer’s cramp and in right putamen and caudate nucleus by 24.6–26.8% in laryngeal dystonia (all P 4 0.009). This suggests hyperactivity of the direct basal ganglia pathway in focal dystonia. Our findings paralleled abnormally decreased dopaminergic function via the indirect basal ganglia pathway and decreased symptom-induced phasic striatal dopamine release in writer’s cramp and laryngeal dystonia. When examining topo- logical distribution of dopamine D1 and D2 receptor abnormalities in these forms of dystonia, we found abnormal separation of direct and indirect pathways within the striatum, with negligible, if any, overlap between the two pathways and with the regions of phasic dopamine release. However, despite topological disorganization of dopaminergic function, alterations of dopamine D1 and D2 receptors were somatotopically localized within the striatal hand and larynx representations in writer’s cramp and laryngeal dystonia, respectively.
    [Show full text]