NESTED SHELLS REVEAL the REJUVENATION of the ORION-ERIDANUS SUPERBUBBLE Bram B

Total Page:16

File Type:pdf, Size:1020Kb

NESTED SHELLS REVEAL the REJUVENATION of the ORION-ERIDANUS SUPERBUBBLE Bram B Draft version July 19, 2018 Preprint typeset using LATEX style emulateapj v. 5/2/11 NESTED SHELLS REVEAL THE REJUVENATION OF THE ORION-ERIDANUS SUPERBUBBLE Bram B. Ochsendorf1,Anthony G. A. Brown1,John Bally2 &Alexander G. G. M. Tielens1 1 Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA, The Netherlands 2 CASA, University of Colorado, CB 389, Boulder, CO 80309, USA Draft version July 19, 2018 ABSTRACT The Orion-Eridanus superbubble is the prototypical superbubble due to its proximity and evolutionary state. Here, we provide a synthesis of recent observational data from WISE and Planck with archival data, allow- ing to draw a new and more complete picture on the history and evolution of the Orion-Eridanus region. We discuss the general morphological structures and observational characteristics of the superbubble, and derive quantitative properties of the gas- and dust inside Barnard’s Loop. We reveal that Barnard’s Loop is a complete bubble structure which, together with the λ Ori region and other smaller-scale bubbles, expands within the Orion-Eridanus superbubble. We argue that the Orion-Eridanus superbubble is larger and more complex than previously thought, and that it can be viewed as a series of nested shells, superimposed along the line of sight. During the lifetime of the superbubble, H II region champagne flows and thermal evaporation of embedded clouds continuously mass-load the superbubble interior, while winds or supernovae from the Orion OB associ- ation rejuvenate the superbubble by sweeping up the material from the interior cavities in an episodic fashion, possibly triggering the formation of new stars that form shells of their own. The steady supply of material into the superbubble cavity implies that dust processing from interior supernova remnants is more efficient than pre- viously thought. The cycle of mass-loading, interior cleansing, and star formation repeats until the molecular reservoir is depleted or the clouds have been disrupted. While the nested shells come and go, the superbubble remains for tens of millions of years. 1. INTRODUCTION ble structure, separate from the Orion-Eridanus superbubble, The Orion-Eridanus superbubble is a nearby (∼400 pc) ex- that sweeps up the mass-loaded interior of the pre-existing panding structure that is thought to span 20◦ × 45◦ on the sky superbubble. It is argued that the Orion-Eridanus superbub- (Reynolds & Ogden 1979; Bally 2008; Pon et al. 2014a). Be- ble is larger and more complex than previously thought, and cause of its proximity and evolutionary stage, it is traced at that the entire morphological appearance of the superbubble a multitude of wavelengths (Heiles et al. 1999), serving as a can be viewed as a series of nested shells, superimposed along benchmark to the study of superbubbles. The expansion of the line of sight. The shells originate from explosive feedback the bubble is most likely connected to the combined effects of from Orion OB1 that accelerate, sweep-up, and compress the ionizing UV radiation, stellar winds, and a sequence of super- superbubble interior plasmas in an episodic fashion to form nova explosions from the Orion OB association, Orion OB1 nested shells within the Orion-Eridanus superbubble. We ex- (Blaauw 1964; Brown et al. 1994). plore the origin of the shells, their relation with the subgroups The line of sight expansion of the Orion-Eridanus super- of Orion OB1, and their impact on the molecular clouds and bubble is previously estimated at ∼ 15 km s−1 through line- star formation efficiency within Orion. We discuss our find- splitting of Hα, which also revealed a total ionized gas mass ings in terms of the long-term evolution of the superbubble. We present the obervations in Sec. 2 and our results in Sec. 3. of 8 × 104 M and a kinetic energy of E > 1.9 × 1050 erg kin In Sec. 4, we discuss our findings, and summarize in Sec. 5. (Reynolds & Ogden 1979). Large-scale spectroscopic map- ping of the entire Orion-Eridanus region in H I reported a 2. OBSERVATIONS larger expansion velocity of the superbubble of ∼ 40 km s−1 with a mass of 2.5 × 105 M , containing a kinetic energy We made use of the all-sky surveys from Planck (Planck Collaboration et al. 2014c), the Wide-Field Infrared Explorer of 3.7 × 1051 erg (Brown et al. 1995), which is shown to be arXiv:1506.02426v1 [astro-ph.GA] 8 Jun 2015 (WISE; Wright et al. 2010), the Leiden/Argentina/Bonn consistent with the integrated mechanical luminosity exerted survey of Galactic H I (LAB; Kalberla et al. 2005), the ∼ 52 by Orion OB1 ( 10 erg; Brown et al. 1995). The expan- R¨ontgensatellit soft X-ray background (ROSAT SXRB; sion of the superbubble is also traced through high-velocity Snowden et al. 1997), and an all-sky Hα map that combines and intermediate-velocity gas in several lines of sight towards several large-scale surveys (Finkbeiner 2003), including the Orion (Cowie et al. 1979; Welty et al. 2002). Soft X-rays Southern H-alpha Sky Survey Atlas (SHASSA; Gaustad et al. emanate from the million-degree plasma in the interior of the 2001), the Virginia-Tech Spectral-line Survey (VTSS; Den- superbubble (Burrows et al. 1993; Snowden et al. 1995). nison et al. 1998), and the Wisconsin Hα Mapper (WHAM; Here, we present observations of recent all-sky surveys with Haffner et al. 2003). WISE and Planck, and combine them with existing sky sur- veys to provide a new and more complete insight in the his- 3. RESULTS tory and evolution of the Orion-Eridanus region. In particular, we will reveal that Barnard’s Loop is part of a complete bub- Figure 1 reveals the large-scale structure of the Orion- Eridanus superbubble. In Hα, the region exhibits various fila- mentary structures, including Barnard’s loop (Barnard 1894) [email protected] and the Eridanus filaments (e.g., Pon et al. 2014b). Projected 2 a E E a N b N BL Top BL Top b 1 1 5 5 c BL Bot 8 BL Bot 8 7 7 2 2 6 6 3 d 3 4 4 S.A. -1 -1 Towards Galactic plane -40 km s < vLSR < 40 km s E OMC B E N N c Barnard’s loop d λ Ori BL Top OMC A 1 GS206-17+13 IC 434 5 ONC High latitude BL Bot 8 MBM20 clouds 7 2 Eri A MBM18 6 3 Eri C 4 Eri B IR l. Fig. 1.— (a) Three-color image of the Orion-Eridanus superbubble. Hα (blue) reveals ionized gas, surrounded by a layer of polycyclic aromatic hydrocarbons or stochastically-heated small grains, traced by the WISE 12 µm band (green). Red is Planck 353 GHz that probes columns of cold (20 K) dust. The polycyclic aromatic hydrocarbons/small grains trace the UV-illuminated edges of the clouds containing cold dust, resulting in that red and green blend to form yellow. To the north-east (top part the image) lies the Galactic plane, while to the north-west (right part of the image) lie high-latitude clouds (e.g., Schlafly et al. 2014). The numbered boxes define the apertures discussed in Sec. 3.2, while the light-green labelled solid lines mark the positions of cross-cuts used in Fig. 2. (b) Same region as panel (a), but only showing the Hα emission using a different stretch to accentuate the faint shell structure which envelops the Orion region in Hα. The white dot reveals the flux-weighted centre of the Hα bubble (Reynolds & Ogden 1979). (c) HI emission from the LAB survey, integrated in velocity −1 −1 space along the full extent of the Orion-Eridanus superbubble, -40 km s < vLSR < 40 km s (Brown et al. 1995). Overlayed are contours of ROSAT 0.25 keV (orange dashed) and ROSAT 0.75 keV diffuse X-rays (light blue dashed). The 0.75 keV emission projected within Barnard’s Loop originates from bright sources within the ONC and IC 434 regions, but is blended with the more diffuse emission from the superbubble because of smoothing of the ROSAT maps. Below the white solid line the image has a different scaling to accentuate the faint HI filament intersecting apertures 2-4. Also overplotted is the shape of the superbubble aperture (S.A.; see text) (d) Schematic representation of the region. Hα gas structures are shown in blue lines/contours, while dust structures are plotted in red. The solid lines trace faint filaments of the region to guide the eye in panels (a) & (b). The stars that form the well-known constellation of Orion are also plotted to appreciate the immense size of the region (black diamonds). Members of the different subgroups of the Orion OB association (Blaauw 1964; Brown et al. 1994) with spectral type B2 or earlier are also shown in different grey symbols shown by the legend. See text for the explanation of the different abbreviations. 3 on top of Barnard’s Loop are the Orion A and Orion B molec- part of Barnard’s Loop. Then, the observed optical depths −6 −6 ular clouds (OMC A and OMC B), the Orion Nebular cluster are τ353;obs = 9.0 × 10 (for BLtop) and τ353;obs = 5.1 × 10 (ONC) associated with the Orion nebula, and the IC 434 emis- (BLbot). We can compare this to the expected optical depth, −3 sion nebula that is characterized by a champagne flow of ion- τ353;cal, from the density (3.4 cm ), estimated line of sight ized gas (Tenorio-Tagle 1979; Sec. 3.3.4). Another prominent depth (45 pc for a 1◦ thickness) and the opacity at 353 GHz ◦ −27 2 −1 feature is the λ Orionis bubble, a 10 circular H II region, en- (σν = 7.9 × 10 cm H ) appropriate for the diffuse ISM capsulated by a swept-up shell of gas and dust.
Recommended publications
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • List of Bright Nebulae Primary I.D. Alternate I.D. Nickname
    List of Bright Nebulae Alternate Primary I.D. Nickname I.D. NGC 281 IC 1590 Pac Man Neb LBN 619 Sh 2-183 IC 59, IC 63 Sh2-285 Gamma Cas Nebula Sh 2-185 NGC 896 LBN 645 IC 1795, IC 1805 Melotte 15 Heart Nebula IC 848 Soul Nebula/Baby Nebula vdB14 BD+59 660 NGC 1333 Embryo Neb vdB15 BD+58 607 GK-N1901 MCG+7-8-22 Nova Persei 1901 DG 19 IC 348 LBN 758 vdB 20 Electra Neb. vdB21 BD+23 516 Maia Nebula vdB22 BD+23 522 Merope Neb. vdB23 BD+23 541 Alcyone Neb. IC 353 NGC 1499 California Nebula NGC 1491 Fossil Footprint Neb IC 360 LBN 786 NGC 1554-55 Hind’s Nebula -Struve’s Lost Nebula LBN 896 Sh 2-210 NGC 1579 Northern Trifid Nebula NGC 1624 G156.2+05.7 G160.9+02.6 IC 2118 Witch Head Nebula LBN 991 LBN 945 IC 405 Caldwell 31 Flaming Star Nebula NGC 1931 LBN 1001 NGC 1952 M 1 Crab Nebula Sh 2-264 Lambda Orionis N NGC 1973, 1975, Running Man Nebula 1977 NGC 1976, 1982 M 42, M 43 Orion Nebula NGC 1990 Epsilon Orionis Neb NGC 1999 Rubber Stamp Neb NGC 2070 Caldwell 103 Tarantula Nebula Sh2-240 Simeis 147 IC 425 IC 434 Horsehead Nebula (surrounds dark nebula) Sh 2-218 LBN 962 NGC 2023-24 Flame Nebula LBN 1010 NGC 2068, 2071 M 78 SH 2 276 Barnard’s Loop NGC 2149 NGC 2174 Monkey Head Nebula IC 2162 Ced 72 IC 443 LBN 844 Jellyfish Nebula Sh2-249 IC 2169 Ced 78 NGC Caldwell 49 Rosette Nebula 2237,38,39,2246 LBN 943 Sh 2-280 SNR205.6- G205.5+00.5 Monoceros Nebula 00.1 NGC 2261 Caldwell 46 Hubble’s Var.
    [Show full text]
  • The Interstellar Medium
    The Interstellar Medium http://apod.nasa.gov/apod/astropix.html THE INTERSTELLAR MEDIUM • Total mass ~ 5 to 10 x 109 solar masses of about 5 – 10% of the mass of the Milky Way Galaxy interior to the suns orbit • Average density overall about 0.5 atoms/cm3 or ~10-24 g cm-3, but large variations are seen • Composition - essentially the same as the surfaces of Population I stars, but the gas may be ionized, neutral, or in molecules (or dust) H I – neutral atomic hydrogen H2 - molecular hydrogen H II – ionized hydrogen He I – neutral helium Carbon, nitrogen, oxygen, dust, molecules, etc. THE INTERSTELLAR MEDIUM • Energy input – starlight (especially O and B), supernovae, cosmic rays • Cooling – line radiation and infrared radiation from dust • Largely concentrated (in our Galaxy) in the disk Evolution in the ISM of the Galaxy Stellar winds Planetary Nebulae Supernovae + Circulation Stellar burial ground The The Stars Interstellar Big Medium Galaxy Bang Formation White Dwarfs Neutron stars Black holes Star Formation As a result the ISM is continually stirred, heated, and cooled – a dynamic environment And its composition evolves: 0.02 Total fraction of heavy elements Total 10 billion Time years THE LOCAL BUBBLE http://www.daviddarling.info/encyclopedia/L/Local_Bubble.html The “Local Bubble” is a region of low density (~0.05 cm-3 and Loop I bubble high temperature (~106 K) 600 ly has been inflated by numerous supernova explosions. It is Galactic Center about 300 light years long and 300 ly peanut-shaped. Its smallest dimension is in the plane of the Milky Way Galaxy.
    [Show full text]
  • Caldwell Catalogue - Wikipedia, the Free Encyclopedia
    Caldwell catalogue - Wikipedia, the free encyclopedia Log in / create account Article Discussion Read Edit View history Caldwell catalogue From Wikipedia, the free encyclopedia Main page Contents The Caldwell Catalogue is an astronomical catalog of 109 bright star clusters, nebulae, and galaxies for observation by amateur astronomers. The list was compiled Featured content by Sir Patrick Caldwell-Moore, better known as Patrick Moore, as a complement to the Messier Catalogue. Current events The Messier Catalogue is used frequently by amateur astronomers as a list of interesting deep-sky objects for observations, but Moore noted that the list did not include Random article many of the sky's brightest deep-sky objects, including the Hyades, the Double Cluster (NGC 869 and NGC 884), and NGC 253. Moreover, Moore observed that the Donate to Wikipedia Messier Catalogue, which was compiled based on observations in the Northern Hemisphere, excluded bright deep-sky objects visible in the Southern Hemisphere such [1][2] Interaction as Omega Centauri, Centaurus A, the Jewel Box, and 47 Tucanae. He quickly compiled a list of 109 objects (to match the number of objects in the Messier [3] Help Catalogue) and published it in Sky & Telescope in December 1995. About Wikipedia Since its publication, the catalogue has grown in popularity and usage within the amateur astronomical community. Small compilation errors in the original 1995 version Community portal of the list have since been corrected. Unusually, Moore used one of his surnames to name the list, and the catalogue adopts "C" numbers to rename objects with more Recent changes common designations.[4] Contact Wikipedia As stated above, the list was compiled from objects already identified by professional astronomers and commonly observed by amateur astronomers.
    [Show full text]
  • Astronomy Magazine 2011 Index Subject Index
    Astronomy Magazine 2011 Index Subject Index A AAVSO (American Association of Variable Star Observers), 6:18, 44–47, 7:58, 10:11 Abell 35 (Sharpless 2-313) (planetary nebula), 10:70 Abell 85 (supernova remnant), 8:70 Abell 1656 (Coma galaxy cluster), 11:56 Abell 1689 (galaxy cluster), 3:23 Abell 2218 (galaxy cluster), 11:68 Abell 2744 (Pandora's Cluster) (galaxy cluster), 10:20 Abell catalog planetary nebulae, 6:50–53 Acheron Fossae (feature on Mars), 11:36 Adirondack Astronomy Retreat, 5:16 Adobe Photoshop software, 6:64 AKATSUKI orbiter, 4:19 AL (Astronomical League), 7:17, 8:50–51 albedo, 8:12 Alexhelios (moon of 216 Kleopatra), 6:18 Altair (star), 9:15 amateur astronomy change in construction of portable telescopes, 1:70–73 discovery of asteroids, 12:56–60 ten tips for, 1:68–69 American Association of Variable Star Observers (AAVSO), 6:18, 44–47, 7:58, 10:11 American Astronomical Society decadal survey recommendations, 7:16 Lancelot M. Berkeley-New York Community Trust Prize for Meritorious Work in Astronomy, 3:19 Andromeda Galaxy (M31) image of, 11:26 stellar disks, 6:19 Antarctica, astronomical research in, 10:44–48 Antennae galaxies (NGC 4038 and NGC 4039), 11:32, 56 antimatter, 8:24–29 Antu Telescope, 11:37 APM 08279+5255 (quasar), 11:18 arcminutes, 10:51 arcseconds, 10:51 Arp 147 (galaxy pair), 6:19 Arp 188 (Tadpole Galaxy), 11:30 Arp 273 (galaxy pair), 11:65 Arp 299 (NGC 3690) (galaxy pair), 10:55–57 ARTEMIS spacecraft, 11:17 asteroid belt, origin of, 8:55 asteroids See also names of specific asteroids amateur discovery of, 12:62–63
    [Show full text]
  • THE INTERSTELLAR MEDIUM (ISM) • Total Mass ~ 5 to 10 X 109 Solar Masses of About 5 – 10% of the Mass of the Milky Way Galaxy Interior to the SunS Orbit
    THE INTERSTELLAR MEDIUM (ISM) • Total mass ~ 5 to 10 x 109 solar masses of about 5 – 10% of the mass of the Milky Way Galaxy interior to the suns orbit • Average density overall about 0.5 atoms/cm3 or ~10-24 g cm-3, but large variations are seen The Interstellar Medium • Elemental Composition - essentially the same as the surfaces of Population I stars, but the gas may be ionized, neutral, or in molecules or dust. H I – neutral atomic hydrogen http://apod.nasa.gov/apod/astropix.html H2 - molecular hydrogen H II – ionized hydrogen He I – neutral helium Carbon, nitrogen, oxygen, dust, molecules, etc. THE INTERSTELLAR MEDIUM • Energy input – starlight (especially O and B), supernovae, cosmic rays • Cooling – line radiation from atoms and molecules and infrared radiation from dust • Largely concentrated (in our Galaxy) in the disk Evolution in the ISM of the Galaxy As a result the ISM is continually stirred, heated, and cooled – a dynamic environment, a bit like the Stellar winds earth’s atmosphere but more so because not gravitationally Planetary Nebulae confined Supernovae + Circulation And its composition evolves as the products of stellar evolution are mixed back in by stellar winds, supernovae, etc.: Stellar burial ground metal content The The 0.02 Stars Interstellar Big Medium Galaxy Bang Formation star formation White Dwarfs and Collisions Neutron stars Black holes of heavy elements fraction Total Star Formation 10 billion Time years The interstellar medium (hereafter ISM) was first discovered in 1904, with the observation of stationary calcium absorption lines superimposed on the Doppler shifting spectrum of a spectroscopic binary.
    [Show full text]
  • Chemical Composition of Gaseous Nebula NGC 6302 (Planetary Nebulae/Spectrophotometry) L
    Proc. Nati. Acad. Sci. USA Vol. 75, No. 1, pp. 1-3, January 1978 Astronomy Chemical composition of gaseous nebula NGC 6302 (planetary nebulae/spectrophotometry) L. H. ALLER* AND S. J. CZYZAKt * Department of Astronomy, University of California, Los Angeles, California 90024; and Physics Department, University of Queensland, Brisbane, Queensland, Australia; and t Department of Astronomy, Ohio State University, Columbus, Ohio 43210 Contributed by L. H. Aller, October 20, 1977 ABSTRACT The irregular emission nebula NGC 6302 ex- ITS slots on the nebula and then on the sky alternately. Thus, hibits a rich spectrum oflines ranging in excitation from [NI] although observations from X3800-X8500A were secured at two to [FeVII]. An assessment of available spectrosco ic data, cov- points with the ITS, we have analyzed only the data for the ering a large intensity range, indicates excess ofhelium and nitrogen as compared with average planetary nebulae, but de- bright central patch. Photoelectric scanner measurements ficiencies in iron and calcium. These metals are presumably tied yielded intensities of the stronger lines and provided a funda- up in solid grains, as suggested by Shields for iron in NGC mental calibration for the ITS data. 7027. The first 2 columns of Table 1 give the wavelengths and spectral line identifications. The third column gives the loga- It is well recognized that, in the terminal phases of their evo- rithm of the adopted nebular line intensities on the scale lution, many stars eject their outer envelopes, which become logI(H3) = 2.00, corrected for interstellar extinction. We planetary nebulae, while the compact residue of the dying star adopted an extinction correction C = log[I(Hf)/F(Hf)] = 1.0 evolves into a white dwarf.
    [Show full text]
  • One of the Most Useful Accessories an Amateur Can Possess Is One of the Ubiquitous Optical Filters
    One of the most useful accessories an amateur can possess is one of the ubiquitous optical filters. Having been accessible previously only to the professional astronomer, they came onto the marker relatively recently, and have made a very big impact. They are useful, but don't think they're the whole answer! They can be a mixed blessing. From reading some of the advertisements in astronomy magazines you would be correct in thinking that they will make hitherto faint and indistinct objects burst into vivid observ­ ability. They don't. What the manufacturers do not mention is that regardless of the filter used, you will still need dark and transparent skies for the use of the filter to be worthwhile. Don't make the mistake of thinking that using a filter from an urban location will always make objects become clearer. The first and most immediately apparent item on the downside is that in all cases the use of a filter reduces the amount oflight that reaches the eye, often quite sub­ stantially. The brightness of the field of view and the objects contained therein is reduced. However, what the filter does do is select specific wavelengths of light emitted by an object, which may be swamped by other wavelengths. It does this by suppressing the unwanted wavelengths. This is particularly effective in observing extended objects such as emission nebulae and planetary nebulae. In the former case, use a filter that transmits light around the wavelength of 653.2 nm, which is the spectral line of hydrogen alpha (Ha), and is the wavelength oflight respons­ ible for the spectacular red colour seen in photographs of emission nebulae.
    [Show full text]
  • Gas, Dust & Starlight
    Astronomy 218 Gas, Dust & Starlight Five Phases Observations like these reveal 5 different phases for gas in the interstellar medium. 1) Cold Molecular Clouds (n > 109 m−3, T ~ 10 K) 2) Cold Neutral Medium (n ~ 108 m−3, T ~ 100 K) also called HI regions. 3) Warm Neutral Medium (n ~ 4 ×105 m−3, T ~ 7000 K) also called the Intercloud Medium. 4) Warm Ionized Medium (n ~ 106 m−3, T ~ 104 K) also called HII regions. 5) Hot Ionized Medium (n < 104 m−3, T ~ 106 K) also called coronal gas. Dark Nebulae Returning to our wider-angle view of the Milky Way, aside from the myriad of stars and glowing regions of gas, the most notable feature is the dark regions that blocking light from the stars beyond. These regions have historically been called dark nebulae. The question is what is the composition of these nebulae and how to they affect starlight. Interstellar Extinction The general affect of opacity is a reduction in the flux determined by the optical depth. −τ F = F0 e where for simplicity τ ≈ nσr ≈ κρr Observationally, this affects the apparent magnitude. −τ mobs = C − 2.5 log F = C − 2.5 log F0 − 2.5 log (e ) = m0 + 2.5τlog(e) = m0 + 1.086τ ≡ m0 + A The extinction, A, is added to the apparent magnitude and is linearly proportional to τ, A = 1.086τ. Optical Opacity A critical clue to the nature of dark nebulae is how the opacity changes as a function of wavelength. For example, Barnard 68 is far more opaque to visible light than it is to infra-red light.
    [Show full text]
  • Starry Nights Typeset
    Index Antares 104,106-107 Anubis 28 Apollo 53,119,130,136 21-centimeter radiation 206 apparent magnitude 7,156-157,177,223 57 Cygni 140 Aquarius 146,160-161,164 61 Cygni 139,142 Aquila 128,131,146-149 3C 9 (quasar) 180 Arcas 78 3C 48 (quasar) 90 Archer 119 3C 273 (quasar) 89-90 arctic circle 103,175,212 absorption spectrum 25 Arcturus 17,79,93-96,98-100 Acadia 78 Ariadne 101 Achernar 67-68,162,217 Aries 167,183,196,217 Acubens (star in Cancer) 39 Arrow 149 Adhara (star in Canis Major) 22,67 Ascella (star in Sagittarius) 120 Aesculapius 115 asterisms 130 Age of Aquarius 161 astrology 161,196 age of clusters 186 Atlantis 140 age of stars 114 Atlas 14 Age of the Fish 196 Auriga 17 Al Rischa (star in Pisces) 196 autumnal equinox 174,223 Al Tarf (star in Cancer) 39 azimuth 171,223 Al- (prefix in star names) 4 Bacchus 101 Albireo (star in Cygnus) 144 Barnard’s Star 64-65,116 Alcmene 52,112 Barnard, E. 116 Alcor (star in Big Dipper) 14,78,82 barred spiral galaxies 179 Alcyone (star in Pleiades) 14 Bayer, Johan 125 Aldebaran 11,15,22,24 Becvar, A. 221 Alderamin (star in Cepheus) 154 Beehive (M 44) 42-43,45,50 Alexandria 7 Bellatrix (star in Orion) 9,107 Alfirk (star in Cepheus) 154 Algedi (star in Capricornus) 159 Berenice 70 Algeiba (star in Leo) 59,61 Bessel, Friedrich W. 27,142 Algenib (star in Pegasus) 167 Beta Cassiopeia 169 Algol (star in Perseus) 204-205,210 Beta Centauri 162,176 Alhena (star in Gemini) 32 Beta Crucis 162 Alioth (star in Big Dipper) 78 Beta Lyrae 132-133 Alkaid (star in Big Dipper) 78,80 Betelgeuse 10,22,24 Almagest 39 big
    [Show full text]
  • A Beautiful Instance of Stellar Ornamentation 18 May 2016
    A beautiful instance of stellar ornamentation 18 May 2016 inside a supergiant shell, or superbubble called LMC 4. Superbubbles, often hundreds of light-years across, are formed when the fierce winds from newly formed stars and shockwaves from supernova explosions work in tandem to blow away most of the gas and dust that originally surrounded them and create huge bubble-shaped cavities. The material that became N55, however, managed to survive as a small remnant pocket of gas and dust. It is now a standalone nebula inside the superbubble and a grouping of brilliant blue and white stars—known as LH 72—also managed to form hundreds of millions of years after the events that originally blew up the superbubble. The LH 72 stars are only a few million years old, so they did not play a role in emptying the space around N55. The stars instead represent a second round of stellar birth in the region. The recent rise of a new population of stars also explains the evocative colours surrounding the In this image from ESO's Very Large Telescope (VLT), stars in this image. The intense light from the light from blazing blue stars energises the gas left over powerful, blue-white stars is stripping nearby from the stars' recent formation. The result is a strikingly hydrogen atoms in N55 of their electrons, causing colorful emission nebula, called LHA 120-N55, in which the gas to glow in a characteristic pinkish colour in the stars are adorned with a mantle of glowing gas. visible light. Astronomers recognise this telltale Astronomers study these beautiful displays to learn about the conditions in places where new stars develop.
    [Show full text]
  • Number of Objects by Type in the Caldwell Catalogue
    Caldwell catalogue Page 1 of 16 Number of objects by type in the Caldwell catalogue Dark nebulae 1 Nebulae 9 Planetary Nebulae 13 Galaxy 35 Open Clusters 25 Supernova remnant 2 Globular clusters 18 Open Clusters and Nebulae 6 Total 109 Caldwell objects Key Star cluster Nebula Galaxy Caldwell Distance Apparent NGC number Common name Image Object type Constellation number LY*103 magnitude C22 NGC 7662 Blue Snowball Planetary Nebula 3.2 Andromeda 9 C23 NGC 891 Galaxy 31,000 Andromeda 10 C28 NGC 752 Open Cluster 1.2 Andromeda 5.7 C107 NGC 6101 Globular Cluster 49.9 Apus 9.3 Page 2 of 16 Caldwell Distance Apparent NGC number Common name Image Object type Constellation number LY*103 magnitude C55 NGC 7009 Saturn Nebula Planetary Nebula 1.4 Aquarius 8 C63 NGC 7293 Helix Nebula Planetary Nebula 0.522 Aquarius 7.3 C81 NGC 6352 Globular Cluster 18.6 Ara 8.2 C82 NGC 6193 Open Cluster 4.3 Ara 5.2 C86 NGC 6397 Globular Cluster 7.5 Ara 5.7 Flaming Star C31 IC 405 Nebula 1.6 Auriga - Nebula C45 NGC 5248 Galaxy 74,000 Boötes 10.2 Page 3 of 16 Caldwell Distance Apparent NGC number Common name Image Object type Constellation number LY*103 magnitude C5 IC 342 Galaxy 13,000 Camelopardalis 9 C7 NGC 2403 Galaxy 14,000 Camelopardalis 8.4 C48 NGC 2775 Galaxy 55,000 Cancer 10.3 C21 NGC 4449 Galaxy 10,000 Canes Venatici 9.4 C26 NGC 4244 Galaxy 10,000 Canes Venatici 10.2 C29 NGC 5005 Galaxy 69,000 Canes Venatici 9.8 C32 NGC 4631 Whale Galaxy Galaxy 22,000 Canes Venatici 9.3 Page 4 of 16 Caldwell Distance Apparent NGC number Common name Image Object type Constellation
    [Show full text]