Naive Prey Versus Nonnative Predators: a Role for Behavior in Endangered Species Conservation

Total Page:16

File Type:pdf, Size:1020Kb

Naive Prey Versus Nonnative Predators: a Role for Behavior in Endangered Species Conservation Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2009 Naive Prey versus Nonnative Predators: A Role for Behavior in Endangered Species Conservation Stephanie A. Kraft Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Biology Commons Recommended Citation Kraft, Stephanie A., "Naive Prey versus Nonnative Predators: A Role for Behavior in Endangered Species Conservation" (2009). All Graduate Theses and Dissertations. 442. https://digitalcommons.usu.edu/etd/442 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. NAIVE PREY VERSUS NONNATIVE PREDATORS: A ROLE FOR BEHAVIOR IN ENDANGERED SPECIES CONSERVATION by Stephanie A. Kraft A thesis submitted in partial fulfillment Of the requirements for the degree of MASTER OF SCIENCE in Ecology Approved: Todd A. Crowl Charles P. Hawkins Major Professor Committee Member Kimberly Sullivan Byron Burnham Committee Member Dean of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2009 ii Copyright © Stephanie Kraft 2009 All Rights Reserved iii ABSTRACT Naive Prey Versus Nonnative Predators: A Role for Behavior in Endangered Species Conservation by Stephanie A. Kraft, Master of Science Utah State University, 2009 Major Professor: Dr. Todd A. Crowl Program: Ecology Fish are one of the most imperiled groups of vertebrates worldwide. Threats to fish fall into one of four general categories: physical habitat loss or degradation, chemical pollution, overfishing, and nonnative species introductions. Nonnative predatory fish often have a devastating impact on native prey, especially with endemic fish, whose restricted distribution and often limited evolutionary history with predators make them particularly susceptible to nonnative predators. One reason nonnative fish are often so efficient predators is that the native fish do not recognize the predator as a threat. Although many studies have examined the role of predator odor recognition, no fish have been shown to possess an innate recognition of the odor of predators unless they share a close co-evolutionary history. Many fish learn to identify novel predators through exposure to a predator’s odor in conjunction with a conspecific alarm cue. Alarm cues are substances that are stored in the epidermis of many fish and are released when skin cells are broken. Exposure to novel predator odor in conjunction with alarm cue does not iv necessarily require a fish to survive a close encounter with a predator to be able to learn to recognize the predator. Here I show that it is possible to train hatchery-raised fish (June sucker, Chasmistes liorus) to recognize a nonnative predator odor (largemouth bass, Micropterus salmoides) through exposure to the odor of a predator that has eaten June sucker. I also show that this training can translate into higher survival in subsequent encounters with predators. I propose that training hatchery-raised fish prior to stocking may increase survival of hatchery-raised fish through anti-predator behavior. (77 pages) v ACKNOWLEDGMENTS I would especially like to thank Dr. Todd A. Crowl and my committee members, Drs. Charles P. Hawkins and Kimberly A. Sullivan, for their support and assistance throughout this process. I would also like to thank the Utah Chapter of the American Fisheries Society and Utah State University’s Ecology Center for financial support of my research. I give special thanks to my husband, Erik Archer, without whose support I would never have completed this document. My family and friends have been particularly helpful as well. Specifically, I would like to thank my parents without whose support I would not have the strength to get here. I would also like to thank the members of the Crowl Aquatic Ecology Lab. I am grateful to the staff of the Utah Department of Wildlife’s Fisheries Experiment Station, especially Doug Routledge, for supplying fish and invaluable advice. Stephanie A. Kraft vi CONTENTS Page ABSTRACT.……………………………………………………………………….…. ii ACKNOWLEDGMENTS……….………………………………………………..….. v LIST OF TABLES......................................................................................................... viii LIST OF FIGURES.….................................................................................................. ix INTRODUCTION…………..……………………….................................................... 1 PREVIOUS WORK—LITERATURE REVIEW….………...………………............ 4 STUDY ORGANISM………………………………………….................................... 15 METHODS……….……….………............................................................................... 19 Preparation of Stimuli…………………………………………………………….. 19 Initial trials………………………………………………………………………... 20 Alarm cue experiment...…………………………………………………………... 20 Behavioral measurements…………....…...………………………..…........ 21 Statistical analysis......................................................................................... 22 Learning experiment................................................................................................ 23 Survivorship experiment.......................................................................................... 24 28 RESULTS…………………………............................................................................... Alarm cue experiment……………………………………....……………..........… 28 Learning experiment................................................................................................ 28 DISCUSSION…………………..………………......................................................... 35 LITERATURE CITED.................................................................................................. 42 APPENDICES………………..…………………......................................................... 60 Appendix A. Data from alarm cue experiment........................................................ 61 Appendix B. Data from learning experiment.......................................................... 64 Appendix C. Data from survivorship experiment.................................................... 67 vii LIST OF TABLES Table Page 1 Species shown to respond to damage-released alarm signals……………………...11 2 Native fish of Utah Lake, Utah…………………………………………………….18 3 Nonnative fish established in Utah Lake, Utah…………………………………….19 4 Experimental treatments for experiment one………………………………………26 A.1. Data from alarm cue experiment..………………………………………………….62 B.1. Data from learning experiment.....…………………………………………………66 C.1. Data from survivorship experiment………………………………………………..69 viii LIST OF FIGURES Figure Page 1 Illustration of the behavioral sequence initiated by the release of alarm cues during a predation event…………………...……………………………………..10 2 Experimental design for experiment two ……………………………………….27 3 Time spent dashing (mean + SE) by treatment in the alarm cue experiment……30 4 Time spent freezing (mean + SE) for control and bass treatments in the alarm cue experiment…………………………………………………………………...31 5 Time spent freezing (mean + SE) by exposure history after two and ten days in the learning experiment………………………...……………………………..32 6 The number of trials with and without predation for both trained and naïve fish………………………………………………………………………...33 7 Distribution of sucker consumed in survivorship experiment experiment trials…………………..………………………………………………………….34 INTRODUCTION The loss of native species is a subject of concern for conservationists and managers worldwide. Fish represent one of the most specios vertebrate groups on the planet (Helfman et al. 1997). Over the last few decades the number of threatened and endangered fish has increased dramatically. The number of fish listed as threatened, endangered or extinct on the International Union for the Conservation of Nature’s (IUCN) Red List has gone from 734 in 1996 to 1275 in 2008. Some estimates suggest 35% of fish native to North America are threatened (Helfman 2007). Of 377 vertebrate species and subspecies on the United States Endangered Species List, 138 are fish (U.S. Fish and Wildlife Service 2008). Freshwater fish are particularly threatened (Bruton 1995). In North America alone, there have been at least 42 documented extinctions of freshwater fish species and subspecies (Dextrase & Mandrak 2006). The decline of freshwater fish can be linked to four general threats: physical habitat degradation and alteration, chemical pollution, overexploitation, and nonnative species introductions (Warren & Burr 1994; Bruton 1995). Nonnative species can affect native fish in many ways, including habitat alteration, competition, introduction of disease, hybridization, and predation (Dextrase & Mandrak 2006). Predation is often the most harmful effect of nonnative fish. Often when nonnative predatory fish become established in freshwater systems, the result is rapid population decline in native fish, sometimes leading to local extinction (McIntosh et al. 1994; Lodge et al. 1998; Mills et al. 2004). The negative effects of nonnative species can be exaggerated in freshwater systems due to isolation and lack of refuge for native species. Nonnative predators are particularly 2 effective in reducing populations of endemic fish (Bruton 1995). Freshwater fish exhibit high levels of endemism due to the difficulty of dispersion within and between watersheds. The isolation that facilitated the evolution of endemic species
Recommended publications
  • Critical Habitat for Canterbury Freshwater Fish, Kōura/Kēkēwai and Kākahi
    CRITICAL HABITAT FOR CANTERBURY FRESHWATER FISH, KŌURA/KĒKĒWAI AND KĀKAHI REPORT PREPARED FOR CANTERBURY REGIONAL COUNCIL BY RICHARD ALLIBONE WATERWAYS CONSULTING REPORT NUMBER: 55-2018 AND DUNCAN GRAY CANTERBURY REGIONAL COUNCIL DATE: DECEMBER 2018 EXECUTIVE SUMMARY Aquatic habitat in Canterbury supports a range of native freshwater fish and the mega macroinvertebrates kōura/kēkēwai (crayfish) and kākahi (mussel). Loss of habitat, barriers to fish passage, water quality and water quantity issues present management challenges when we seek to protect this freshwater fauna while providing for human use. Water plans in Canterbury are intended to set rules for the use of water, the quality of water in aquatic systems and activities that occur within and adjacent to aquatic areas. To inform the planning and resource consent processes, information on the distribution of species and their critical habitat requirements can be used to provide for their protection. This report assesses the conservation status and distributions of indigenous freshwater fish, kēkēwai and kākahi in the Canterbury region. The report identifies the geographic distribution of these species and provides information on the critical habitat requirements of these species and/or populations. Water Ways Consulting Ltd Critical habitats for Canterbury aquatic fauna Table of Contents 1 Introduction ......................................................................................................................................... 1 2 Methods ..............................................................................................................................................
    [Show full text]
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • Evidence of Interactive Segregation Between Introduced Trout and Native Fishes in Northern Patagonian Rivers, Chile
    Transactions of the American Fisheries Society 138:839–845, 2009 [Note] Ó Copyright by the American Fisheries Society 2009 DOI: 10.1577/T08-134.1 Evidence of Interactive Segregation between Introduced Trout and Native Fishes in Northern Patagonian Rivers, Chile BROOKE E. PENALUNA* Department of Fisheries and Wildlife, Oregon State University, 3200 Jefferson Way, Corvallis, Oregon 97331, USA IVAN ARISMENDI Nu´cleo Milenio FORECOS, and Escuela de Graduados, Facultad de Ciencias Forestales, Universidad Austral de Chile, Casilla #567, Valdivia, Chile DORIS SOTO Nu´cleo Milenio FORECOS, Universidad Austral de Chile, Casilla #567, Valdivia, Chile; and Food and Agriculture Organization of the United Nations, Fisheries Department, Inland Water Resources and Aquaculture Service, Viale delle Terme di Caracalla, 00100 Rome, Italy Abstract.—Introduced rainbow trout Oncorhynchus mykiss recreational fishing and early practices of aquaculture and brown trout Salmo trutta fario are the most abundant (Basulto 2003). It was thought that these areas in the fishes in the northern Chilean Patagonia, and their effect on Southern Hemisphere were suitable for and would benefit native fishes is not well known. We tested for interactive from the addition of trout (Campos 1970; Basulto 2003). segregation between trout and native fishes by using a before– Since their introduction, trout have formed naturalized after, control–impact design in which we deliberately reduced the density of trout and observed the response of the native populations and have become the most abundant fish fishes in their mesohabitat use (pool, run, riffle). Three native species, accounting for over 95% of the total biomass in fish species, Brachygalaxias bullocki, Galaxias maculatus rivers of the Chilean Patagonia (Soto et al.
    [Show full text]
  • Pacific Plate Biogeography, with Special Reference to Shorefishes
    Pacific Plate Biogeography, with Special Reference to Shorefishes VICTOR G. SPRINGER m SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 367 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoo/ogy Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world cf science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review.
    [Show full text]
  • Behavioral Evidence of Chemical Communication by Male Caudal Fin Organs of a Glandulocaudine Fish (Teleostei: Characidae)
    1 Ichthyological Exploration of Freshwaters/IEF-1127/pp. 1-11 Published 22 September 2020 LSID: http://zoobank.org/urn:lsid:zoobank.org:pub:483EB8ED-1D49-4584-9030-DE92226A6771 DOI: http://doi.org/10.23788/IEF-1127 Behavioral evidence of chemical communication by male caudal fin organs of a glandulocaudine fish (Teleostei: Characidae) Clayton Kunio Fukakusa* All fishes in the tribe Glandulocaudini have hypertrophied tissue with club cells in the caudal fin (the caudal organ). Because this structure is present only in adult males, it is hypothesized that these cells secrete a reproduction-related pheromone. The hypothesis that the caudal organ releases chemicals that attract females is tested in Mimagoniates inequalis. In a Y-maze and an aquarium, females were attracted to a caudal organ extract and to water that was conditioned with caudal organ-bearing males, respectively, but not to caudal-fin lobe extract or water conditioned with males from which the caudal organs were removed (control stimuli). In tests with male-female pairs, there were no differences in the responses to caudal organ extract and male caudal organ-conditioned water, but the responses to both stimuli differed in relation to the controls. Male-female pairs engaged in fewer courtship events and more agonistic interactions than they did without chemical stimuli and with control stimuli. These results provide evidence for a possible pheromonal system in M. inequalis. The caudal organ is a specialized secretory structure that produces a chemical signal that attracts females and increases the aggressiveness of males. Introduction formes (Kutaygil, 1959; Nelson, 1964a; Burns et al., 1995, 1997, 2000; Malabarba, 1998; Weitzman The ability of animals to obtain information about & Menezes, 1998; Castro et al., 2003; Weitzman et their physical and social environment is essential al., 2005; Javonillo et al., 2009; Quagio-Grassiotto for their survival and reproductive success (Ward et al., 2012) and Siluriformes (von Ihering, 1937; et al., 2007).
    [Show full text]
  • A Revision of the South American Fishes of the Genus Nannostomus Giinther (Family Lebiasinidae)
    A Revision of the South American Fishes of the Genus Nannostomus Giinther (Family Lebiasinidae) STANLEY H. WEITZMAN and J. STANLEY COBB SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 186 SERIAL PUBLICATIONS OF THE SMITHSONIAN INSTITUTION The emphasis upon publications as a means of diffusing knowledge was expressed by the first Secretary of the Smithsonian Institution. In his formal plan for the Insti- tution, Joseph Henry articulated a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This keynote of basic research has been adhered to over the years in the issuance of thousands of titles in serial publications under the Smithsonian imprint, com- mencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Annals of Flight Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Studies in History and Technology In these series, the Institution publishes original articles and monographs dealing with the research and collections of its several museums and offices and of professional colleagues at other institutions of learning. These papers report newly acquired facts, synoptic interpretations of data, or original theory in specialized fields. These pub- lications are distributed by mailing lists to libraries, laboratories, and other interested institutions and specialists throughout the world. Individual copies may be obtained from the Smithsonian Institution Press as long as stocks are available.
    [Show full text]
  • Endangered Species (Protection, Conser Va Tion and Regulation of Trade)
    ENDANGERED SPECIES (PROTECTION, CONSER VA TION AND REGULATION OF TRADE) THE ENDANGERED SPECIES (PROTECTION, CONSERVATION AND REGULATION OF TRADE) ACT ARRANGEMENT OF SECTIONS Preliminary Short title. Interpretation. Objects of Act. Saving of other laws. Exemptions, etc., relating to trade. Amendment of Schedules. Approved management programmes. Approval of scientific institution. Inter-scientific institution transfer. Breeding in captivity. Artificial propagation. Export of personal or household effects. PART I. Administration Designahem of Mana~mentand establishment of Scientific Authority. Policy directions. Functions of Management Authority. Functions of Scientific Authority. Scientific reports. PART II. Restriction on wade in endangered species 18. Restriction on trade in endangered species. 2 ENDANGERED SPECIES (PROTECTION, CONSERVATION AND REGULA TION OF TRADE) Regulation of trade in species spec fled in the First, Second, Third and Fourth Schedules Application to trade in endangered specimen of species specified in First, Second, Third and Fourth Schedule. Export of specimens of species specified in First Schedule. Importation of specimens of species specified in First Schedule. Re-export of specimens of species specified in First Schedule. Introduction from the sea certificate for specimens of species specified in First Schedule. Export of specimens of species specified in Second Schedule. Import of specimens of species specified in Second Schedule. Re-export of specimens of species specified in Second Schedule. Introduction from the sea of specimens of species specified in Second Schedule. Export of specimens of species specified in Third Schedule. Import of specimens of species specified in Third Schedule. Re-export of specimens of species specified in Third Schedule. Export of specimens specified in Fourth Schedule. PART 111.
    [Show full text]
  • An Overview of the Dwarfgobies, the Second Most Speciose Coral-Reef Fish Genus (Teleostei: Gobiidae:Eviota )
    An overview of the dwarfgobies, the second most speciose coral-reef fish genus (Teleostei: Gobiidae:Eviota ) DAVID W. GREENFIELD Research Associate, Department of Ichthyology, California Academy of Sciences, 55 Music Concourse Dr., Golden Gate Park, San Francisco, California 94118-4503, USA Professor Emeritus, University of Hawai‘i Mailing address: 944 Egan Ave., Pacific Grove, CA 93950, USA E-mail: [email protected] Abstract An overview of the dwarfgobies in the genus Eviota is presented. Background information is provided on the taxonomic history, systematics, reproduction, ecology, geographic distribution, genetic studies, and speciation of dwarfgobies. Future research directions are discussed. A list of all valid species to date is included, as well as tables with species included in various cephalic sensory-canal pore groupings. Key words: review, taxonomy, systematics, ichthyology, ecology, behavior, reproduction, evolution, coloration, Indo-Pacific Ocean, gobies. Citation: Greenfield, D.W. (2017) An overview of the dwarfgobies, the second most speciose coral-reef fish genus (Teleostei: Gobiidae: Eviota). Journal of the Ocean Science Foundation, 29, 32–54. doi: http://dx.doi.org/10.5281/zenodo.1115683 Introduction The gobiid genus Eviota, known as dwarfgobies, is a very speciose genus of teleost fishes, with 113 valid described species occurring throughout the Indo-Pacific Ocean (Table 1), and many more awaiting description. It is the fifth most speciose saltwater teleost genus, and second only to the 129 species in the eel genusGymnothorax in the coral-reef ecosystem (Eschmeyer et al. 2017). Information on the systematics and biology of the species of the genus is scattered in the literature, often in obscure references, and, other than the taxonomic key to all the species in the genus (Greenfield & Winterbottom 2016), no recent overview of the genus exists.
    [Show full text]
  • Hemigrammus Rhodostomus), the Mechanisms Underlying Both the Coordination of Motion and the Propagation of Information in Their Schools
    THTHESEESE`` En vue de l’obtention du DOCTORAT DE L’UNIVERSITE´ DE TOULOUSE D´elivr´e par : l’Universit´eToulouse 3 Paul Sabatier (UT3 Paul Sabatier) Cotutelle internationale University of Groningen Pr´esent´ee et soutenue le mardi 5 d´ecembre 2017 (05/12/2017) par : Valentin Lecheval Experimental analysis and modelling of the behavioural interactions underlying the coordination of collective motion and the propagation of information in fish schools JURY Nicolas Destainville Professeur Pr´esident du Jury Simon Verhulst Professeur MembreduJury Rineke Verbrugge Professeur MembreduJury Jose´ Halloy Professeur Rapporteur Christos C. Ioannou Docteur Rapporteur Colin J. Torney Docteur Rapporteur Ecole´ doctorale et sp´ecialit´e : SEVAB : Ecologie,´ biodiversit´eet ´evolution Unit´e de Recherche : Centre de Recherches sur la Cognition Animale (UMR 5169) Directeur(s) de Th`ese : Charlotte K. Hemelrijk et Guy Theraulaz Rapporteurs : Jos´eHalloy, Christos C. Ioannou et Colin J. Torney 2 Acknowledgements The research presented in this thesis is the result of a collective effort that has emerged from interactions between many individuals to whom I am extremely grateful. First, I would like to warmly thank Guy Theraulaz and Charlotte Hemelrijk. They have initiated a fruitful collaboration between two research teams in Toulouse and Groningen, that investigate moving animal groups with different approaches and methods. I am very pleased for having been part of this project during three years, under their demanding and enriching supervision. I would also like to thank Cl´ement Sire for all the work he dedicated to this thesis and for his inspired and illuminating assistance regarding analysis and modelling. Thank you to all members of the research teams involved in this work, that is staff, researchers, students and friends of the Centre de Recherches sur la Cognition Animale (in particular the CAB1 and IVEP2 teams) in Toulouse as well as the BPE3 and TRESˆ 4 teams in Groningen.
    [Show full text]
  • The Sensory World of Bees
    June 2015 in Australia ccThehh senseeory mmiissttrryy world of bees chemaust.raci.org.au ALSO IN THIS ISSUE: • One X-ray technique better than two • Haber’s rule and toxicity • Madeira wines worth the wait The tale in the Working and sensory lives DAVE SAMMUT g sBY tin of bees 18 | Chemistry in Australia June 2015 Bees have a well-earned reputation for pollination and honey-making, but their lesser known skills in electrocommunication are just as impressive. ccording to the United Nations, ‘of Once the worker bee’s honey stomach is the 100 crop species that provide full, it returns to the hive and regurgitates the 90 per cent of the world’s food, partially modified nectar for a hive bee. The A over 70 are pollinated by bees’ hive bee ingests this material to continue the (bit.ly/1DpiRYF). It’s little wonder, then, that conversion process, then again regurgitates it bees continue to be a subject of study around into a cell of the honeycomb. During these the world. More surprising, perhaps, is that so processes, the bees also absorb water, which much remains to be learned. dehydrates the mixture. Bee-keeping (apiculture) is believed to Hive bees then beat their wings to fan the have started as far back as about 4500 years regurgitated material. As the water evaporates ago; sculptures in ancient Egypt show workers (to as little as around 10% moisture), the blowing smoke into hives as they remove sugars thicken into honey – a supersaturated honeycomb. In ancient Greece, Aristotle either hygroscopic solution of carbohydrates (plus kept and studied bees in his own hives or oils, minerals and other impurities).
    [Show full text]
  • Cui-Ui Recovery Plan
    1 ESA 81 RECOVERY PLAN DRAWING BY: JOSETTECUILEY I CUI-UI RECOVERY PLAN Prepared by the Cui-ui Recovery Team December 1977 TEAM MEMBERS Earl Pyle, Team Leader, U.S. Fish and Wildlife Service, Reno, Nevada John Frazier, Pyramid Lake Paiute Indian Tribe, Nixon, Nevada Donald King, U.S. Fish and Wildlife Service, Reno, Nevada Kay Johnson, Nevada Department of Fish and Game, Reno, Nevada Dale Lockard, Nevada Department of Fish and Game, Reno, Nevada Thomas J.. Trelease, Team Advisor, Verdi , Nevada Published by U.S. Fish and Wildlife Service Endangered Species Program Region 1 Portland, Oregon Approved Director, U.S. Fish & Wildlife Service Title Date TABLE OF CONTENTS Page PART I. INTRODUCTION .................. 1 Former Status ................. 2 Reasons for Decline of the Fishery ....... 3 Figure 1 .................... 4 PART II . THE RECOVERY PLAN ............... Objectives and Rationale ............ Accomplishments ................ Specific Problem Areas ............. Recovery Plan Out1 ine ............. Action Diagram ................. Action Narrative ................ PART I11 . SCHEDULE OF PRIORITIES. RESPONSIBILITIES & COSTS APPENDIX A . REFERENCES CITED ................ APPENDIX B . PROPOSED ESSENTIAL HABITAT ........... Maps . Proposed Essential Habitat ....... APPENDIX C . LETTERS OF COMMENT ............... CUI-UI RECOVERY PLAN PART I INTRODUCTION The history of the cui-ui 1 (Chasmistes cujus) and the Pyramid Lake Paiute Indian Tribe is so intimately entwined that the unwritten, ancestral name for the tribe is Kuyuidokado (Wheeler, 1969) or Ku-yu-wi-kut-teh (Hermann, 1973) meaning "sucker eaters". Spawning runs of cui-ui and cutthroat trout (mclarki provided a readily available and dependable source of food. There can be no doubt the shores of Pyramid Lake were highly val- ued as a haven against the uncertainty and hardship of obtaining food in the arid and often inhospitable lands of the Great Basin.
    [Show full text]
  • Ostariophysi: Characiformes: Anostomidae)
    Neotropical Ichthyology, 4(1):27-44, 2006 Copyright © 2006 Sociedade Brasileira de Ictiologia Revision of the South American freshwater fish genus Laemolyta Cope, 1872 (Ostariophysi: Characiformes: Anostomidae) Kelly Cristina Mautari and Naércio Aquino Menezes The anostomid genus Laemolyta Cope, 1872, is redefined.Various morphological, especially osteological characters in addi- tion to the commonly utilized features of dentition proved useful for its characterization. A taxonomic revision of all species was made using meristics, morphometrics and color pattern. Five species are recognized: Laemolyta fernandezi Myers, 1950, from the río Orinoco (Venezuela) and the sub-basins Tocantins/Araguaia and Xingu, L. orinocensis (Steindachner, 1879), restricted to the río Orinoco, L. garmani (Borodin, 1931) and L. proxima (Garman, 1890), from the Amazon basin with the latter also occurring in the Essequibo River (Guiana), and L. taeniata (Kner, 1859), from the Amazon and Orinoco basins. Laemolyta garmani macra is considered a synonym of L. garmani, L. petiti a synonym of L. fernandezi, and L. nitens and L. varia synonyms of L. proxima. Lectotypes are designated herein for L. orinocencis and L. taeniata. O gênero Laemolyta Cope, 1872 da família Anostomidae é redefinido e além das características da dentição usualmente utilizadas, outros caracteres morfológicos, principalmente osteológicos, também se revelaram úteis para sua conceituação. Foi feita a revisão taxonômica de todas as espécies utilizando-se dados morfométricos, merísticos e padrão de colorido. Cinco espécies são reconhecidas: Laemolyta fernandezi Myers, 1950 do rio Orinoco (Venezuela) e rios Tocantins/Araguaia e Xingu, Laemolyta orinocensis (Steindachner, 1879) restrita ao rio Orenoco, L. garmani (Borodin, 1931) e Laemolyta proxima (Garman, 1890) da bacia Amazônica, esta última ocorrendo também no rio Essequibo (Guianas) e Laemolyta taeniata (Kner, 1859) da bacia Amazônica e rio Orenoco.
    [Show full text]