Appendix F1 Stygofauna Values.Pdf (PDF, 2.89

Total Page:16

File Type:pdf, Size:1020Kb

Appendix F1 Stygofauna Values.Pdf (PDF, 2.89 Stygofauna Values at the Lake Disappointment Potash Project Prepared for: Reward Minerals Limited October 2018 Final Report Lake Disappointment Stygofauna Reward Minerals Limited Stygofauna Values at the Lake Disappointment Potash Project Bennelongia Pty Ltd 5 Bishop Street Jolimont WA 6014 P: (08) 9285 8722 F: (08) 9285 8811 E: [email protected] ABN: 55 124 110 167 Report Number: 304 Report Version Prepared by Rev iewed by Submitted to Client Method Date Draft Anton Mittra Stuart Halse email 7 July 2017 Final Anton Mittra Stuart Halse email 27 July 2017 Final V2 Anton Mittra Stuart Halse email 22 September 2017 Final V3 Anton Mittra email 25 October 2017 Stuart Halse Final V4 email 15 October 2018 Anton Mittra BEC_Lake Disappoint m ent Stygofauna Final_V4_8x18.docx This document has been prepared to the requirements of the Client and is for the use by the Client, its agents, and Bennelongia Env ironmental Consultants. Copyright and any other Intellectual Property associated with the document belongs to Bennelongia Environmental Consultants and may not be reproduced without written permission of the Client or Bennelongia. No liability or responsibility is accepted in respect of any use by a third party or for purposes other than for which the document was commissioned. Bennelongia has not attempted to verify the accuracy and completeness of information supplied by the Client. © Copyright 2015 Bennelongia Pty Ltd. i Lake Disappointment Stygofauna Reward Minerals Limited ii Lake Disappointment Stygofauna Reward Minerals Limited EXECUTIVE SUMMARY Reward Minerals Limited is currently seeking approval to develop the Lake Disappointment Po tash Project (the Project), approximately 138 km south of Telfer and 285 km east of Newman in the northern Little Sandy Desert. The Project will require groundwater abstraction from two proposed borefields and therefore has the potential affect any stygofauna habitat, as well as species and communities, that occur there. Desktop review of a 100 km by 100 km area surrounding the Project found no records of stygofauna, but also no evidence of any survey having occurred, so the search area of the review was expanded to include the nearest known stygofauna communities. At least 97 species of stygofauna have been recorded in the extended search area, including nematodes, rotifers, gastropod molluscs, annelid worms, crustaceans (ostracods, copepods, syncarids, amphipods, isopods) and hexapods. Potential stygofauna habita ts in the vicinity of the Project are alluvial, colluvial, fractured sandstone and calcrete aquifers. There are two proposed process water supply borefields: the Cory Borefield will target the Gunanya sandsto ne fractured rock aquifer and the Northern Borefield will target the deeper units of the Tertiary cover sequence of sands, clays and sandy clays that overlies the Proterozoic basement. Regional calcretes will not be targeted for groundwater abstraction and are unlikely to be affected by drawdown. A field survey that collected 30 samples from 15 sites (10 in proposed borefields and five from the surrounding region) confirmed the occurrence of stygofauna in the Project area, with 300 specimens of 13 species being collected. Sixteen out of 30 samples and 13 out of 15 sites yielded stygofauna, althoug h two regional sites yielded only rotifers, nematodes and a very widespread cyclopoid copepod. Major groups recorded include oligochaetes, amphipods, syncarids, cyclopoid and harpacticoid copepods, and ostracods. The Cory Borefield appears to host more stygofauna tha n the Northern Borefield and the assemblages in the two borefields appear to be distinct from one another. Overall, the documented stygofa una community at La ke Disappointment is modest compared with many areas of the Pilbara and Yilgarn. Neither borefield appears rich in stygofauna. Six of the stygofauna species collected are currently kno wn only from the La ke Disappointment area. The distributions of two of the six species, Tubificidae sp. B03 (LD) and nr Pilbar us sp. B07, are locally extensive and include areas outside the proposed borefields and predicted zones of groundwater drawdown. While the o ther four species are known only from inside the proposed borefields and/or zones of predicted drawdown, it is likely that they also have more extensive ranges because of likely habitat connectivity. The locally extensive ranges of species such as the worm Tubificidae sp. B03 (LD) and amphipod nr Pilbarus sp. B07 support the no tion that other species known only from the boefields are likely to be locally widespread. iii Lake Disappointment Stygofauna Reward Minerals Limited CONTENTS Executive Summary ................................................................................................................. iii 1. Introduction .......................................................................................................................... 1 2. Background .......................................................................................................................... 1 2.1. Project Description......................................................................................................... 1 2.2. Subterranean Fauna ..................................................................................................... 1 2.2.1. Stygofauna ............................................................................................................... 4 2.3. Conservation Framework.............................................................................................. 4 3. Desktop Review ................................................................................................................... 5 3.1. Stygofauna Records ...................................................................................................... 5 3.2. Habitat Assessment........................................................................................................ 5 3.2.1. Cory Borefield ........................................................................................................... 5 3.2.2. Northern Borefield .................................................................................................... 7 4. Field Survey ........................................................................................................................... 8 4.1. Sampling Effort................................................................................................................ 8 4.2. Methods .......................................................................................................................... 8 4.2.1. Field Methods ........................................................................................................... 8 4.2.2. Laboratory Methods .............................................................................................. 10 4.3. Personnel ....................................................................................................................... 10 5. Results .................................................................................................................................. 10 5.1. Sampling Efficiency ..................................................................................................... 10 5.2. Species Distributions..................................................................................................... 13 5.3. Stygofauna Values....................................................................................................... 16 6. Potential Impacts on Stygofauna.................................................................................... 16 7. Conclusions......................................................................................................................... 19 8. References .......................................................................................................................... 20 9. Appendices ........................................................................................................................ 22 Appendix 1. Stygofauna species previously recorded in the vicinity of the Project identified through desktop review. ..................................................................................... 22 Appendix 2. Details of holes sampled for stygofauna around Lake Disappointment between 2016 and 2017. ...................................................................................................... 24 Appendix 3. Stygofauna species recorded at Lake Disappointment from October 2016 to March 2017, including collection locations of each species. ........................... 25 LIST OF FIGURES Figure 1. Location of the Project............................................................................................ 2 Figure 2. Geology (Gunanya 1:100,000 map sheet) and proposed borefield locations. ................................................................................................................................... 3 Figure 3. Conceptual hydrological model of the Cory Borefield (from Strategic Water Management 2018). .................................................................................................... 6 Figure 4. Conceptual hydrological model of the Northern Borefield (from Strategic Water Management 2018). .................................................................................................... 7 Figure 5. Locations of sites sampled for stygofauna in and around Lake Disappointment from
Recommended publications
  • Junior Cave Scientist Cave and Karst Program Activity Book Ages 5 – 12+
    National Park Service U.S. Department of the Interior Geologic Resources Division Junior Cave Scientist Cave and Karst Program Activity Book Ages 5 – 12+ Name: Age: Explore • Learn • Protect 1 Become a Junior Cave Scientist Caves and karst landscapes are found throughout the United States. These features are important as part of our Nation's geologic heritage. In this book, you will explore a fascinating and fragile underground world, learn about the values of caves and karst landscapes, and complete fun educational activities. Explore magnificent and beautiful caves. You will find an amazing underground world just beneath your feet! Learn about caves and karst systems and the work that cave scientists do. Protect our natural environments and the things that make caves and karst areas special. To earn your badge, complete at least activities. (Your Age) Activities in this book are marked with an age indicator. Look for the symbols below: Flashlight Lantern Helmet and Headlamp Ages 5 - 7 Ages 8 – 11 Ages 12 and Older Put a check next to your age indicator on each page that you complete. I received this book from: After completing the activities, there are two ways to receive your Junior Cave Scientist badge: • Return the completed book to a ranger at a participating park, or 2 • Visit go.nps.gov/jrcavesci What are Speleo-Fact: Mammoth Cave is the longest cave in world with over 405 miles (652 km) of connected passageways. Caves and Karst? Caves are naturally occurring voids, cavities, interconnected passageways, or alcoves in the earth. Caves preserve fossils, minerals, ecosystems, and records of past climates.
    [Show full text]
  • Hobbs, H.H., and D.C. Culver. 2009
    of the L"SA _~arional ~Ylogical Society, Inc. -~- J the ~ational Speleological Society, Inc. 13 Cave Avenue Ennrsville.Alabama 35810-4431, U.S.A. 256-852-1300 E-mail: [email protected] Web page: http://www.caves.org All rights reserved, including the right to reproduce this book or portions thereof in any fonn or by any means, mechanical or electronic, including photocopying, recording, or by any information storage or retrieval system without permission in writing from the publisher. All inquiries should be addressed to the National Speleological Society. Editors: Arthur N. Palmer and Margaret V. Palmer Graphics: M.Y. Palmer andA.N. Palmer Formatting and photograph preparation: A.N. Palmer Library of Congress Control Number: 2007943932 ISBN: 9781879961289 Printed in the U.S.A. ged; and they, their contents, and their biota deserve our protection. Try to leave no trace of your _-hDDiJ:tmcm~ are on private property, and land-owner relations can be delicate. For these reasons, specific ~ ~ ~ IJM inrhuinf in publications of the National Speleological Society. Caves can also pose a danger to those 'T who lack experience. Access to caves, and assistance in meeting the requirements for safe .~ lUI!~aticjeJ i1:r rarwrrring local chapters of the NSS. 15 Cave Biology An Overview of Cave Biology in the USA The transition zone of caves is a dynamic region of constant darkn (aphotic), but where the microclimate is noticeably still affected Horton H. Hobbs III and David C. Culver surface events. Fluctuations in temperature and humidity, decreasi diversity of species, and lower biomass reflect the influences of bo AVES have traditionally been considered exotic and rare habitats, epigean and hypogean environments.
    [Show full text]
  • A New Genus and Two New Species of Cave-Dwelling Cyclopoids (Crustacea, Copepoda) from the Epikarst Zone of Thailand and Up-To-D
    European Journal of Taxonomy 431: 1–30 ISSN 2118-9773 https://doi.org/10.5852/ejt.2018.431 www.europeanjournaloftaxonomy.eu 2018 · Boonyanusith C. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Research article urn:lsid:zoobank.org:pub:F64382BD-0597-4383-A597-81226EEE77A1 A new genus and two new species of cave-dwelling cyclopoids (Crustacea, Copepoda) from the epikarst zone of Thailand and up-to-date keys to genera and subgenera of the Bryocyclops and Microcyclops groups Chaichat BOONYANUSITH 1, La-orsri SANOAMUANG 2 & Anton BRANCELJ 3,* 1 School of Biology, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, 30000, Thailand. 2 Applied Taxonomic Research Centre, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand. 2 Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand. 3 National Institute of Biology,Večna pot 111, SI-1000 Ljubljana, Slovenia. 3 School of Environmental Sciences, University of Nova Gorica, Vipavska c. 13, 5000 Nova Gorica, Slovenia. * Corresponding author: [email protected] 1 Email: [email protected] 2 Email: [email protected] 1 urn:lsid:zoobank.org:author:5290B3B5-D3B3-4CF2-AF3B-DCEAEAE7B51D 2 urn:lsid:zoobank.org:author:F0CBCDC7-64C8-476D-83A1-4F7DB7D9E14F 3 urn:lsid:zoobank.org:author:CE8F02CA-A0CC-4769-95D9-DCB1BA25948D Abstract. Two obligate cave-dwelling species of cyclopoid copepods (Copepoda, Cyclopoida) were discovered inside caves in central Thailand. Siamcyclops cavernicolus gen. et sp. nov. was recognised as a member of a new genus. It resembles Bryocyclops jankowskajae Monchenko, 1972 from Uzbekistan (part of the former USSR). It differs from it by (1) lack of pointed triangular prominences on the intercoxal sclerite of the fourth swimming leg, (2) mandibular palp with three setae, (3) spine and setal formulae of swimming legs 3.3.3.2 and 5.5.5.5, respectively, and (4) specifi c shape of spermatophore.
    [Show full text]
  • An Overview on the Subterranean Fauna from Central Asia
    Ecologica Montenegrina 20: 168-193 (2019) This journal is available online at: www.biotaxa.org/em An overview on the subterranean fauna from Central Asia VASILE DECU1†, CHRISTIAN JUBERTHIE2*, SANDA IEPURE1,3, 4, VICTOR GHEORGHIU1 & GEORGE NAZAREANU5 1 Institut de Spéologie Emil Racovitza, Calea 13 September, 13, R0 13050711 Bucuresti, Rumania 2 Encyclopédie Biospéologique, Edition. 1 Impasse Saint-Jacques, 09190 Saint-Lizier, France 3Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, José Beltrán 15 Martínez, 2, 46980 Paterna, Valencia, Spain. E-mail: [email protected] 4University of Gdańsk, Faculty of Biology, Department of Genetics and Biosystematics, Wita Stwoswa 59, 80-308 Gdańsk, Poland 5Muzeul national de Istorie naturala « Grigore Antipa » Sos, Kiseleff 1, Bucharest, Rumania E-mail: [email protected] *Corresponding author: E-mail: [email protected] Received 9 December 2018 │ Accepted by V. Pešić: 8 March 2019 │ Published online 21 March 2019. Abstract Survey of the aquatic subterranean fauna from caves, springs, interstitial habitat, wells in deserts, artificial tunnels (Khanas) of five countries of the former URSS (Kazakhstan, Kyrgyzstan, Tadjikistan, Turkmenistan, Uzbekistan) located far east the Caspian Sea. The cave fauna present some originalities: - the rich fauna of foraminiferida in the wells of the Kara-Kum desert (Turkmenistan); - the cave fish Paracobitis starostini from the Provull gypsum Cave (Turkmenistan); - the presence of a rich stygobitic fauna in the wells of the Kyzyl-Kum desert (Uzbekistan); - the rich stygobitic fauna from the hyporheic of streams and wells around the tectonic Issyk-Kul Lake (Kyrgyzstan); - the eastern limit of the European genus Niphargus from the sub-lacustrin springs on the eastern shore of the Caspian Sea (Kazakhstan); - the presence of cave fauna of marine origin.
    [Show full text]
  • Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
    Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................
    [Show full text]
  • Copepoda: Crustacea) in the Neotropics Silva, WM.* Departamento Ciências Do Ambiente, Campus Pantanal, Universidade Federal De Mato Grosso Do Sul – UFMS, Av
    Diversity and distribution of the free-living freshwater Cyclopoida (Copepoda: Crustacea) in the Neotropics Silva, WM.* Departamento Ciências do Ambiente, Campus Pantanal, Universidade Federal de Mato Grosso do Sul – UFMS, Av. Rio Branco, 1270, CEP 79304-020, Corumbá, MS, Brazil *e-mail: [email protected] Received March 26, 2008 – Accepted March 26, 2008 – Distributed November 30, 2008 (With 1 figure) Abstract Cyclopoida species from the Neotropics are listed and their distributions are commented. The results showed 148 spe- cies in the Neotropics, where 83 species were recorded in the northern region (above upon Equator) and 110 species in the southern region (below the Equator). Species richness and endemism are related more to the number of specialists than to environmental complexity. New researcher should be made on to the Copepod taxonomy and the and new skills utilized to solve the main questions on the true distributions and Cyclopoida diversity patterns in the Neotropics. Keywords: Cyclopoida diversity, Copepoda, Neotropics, Americas, latitudinal distribution. Diversidade e distribuição dos Cyclopoida (Copepoda:Crustacea) de vida livre de água doce nos Neotrópicos Resumo Foram listadas as espécies de Cyclopoida dos Neotrópicos e sua distribuição comentada. Os resultados mostram um número de 148 espécies, sendo que 83 espécies registradas na Região Norte (acima da linha do Equador) e 110 na Região Sul (abaixo da linha do Equador). A riqueza de espécies e o endemismo estiveram relacionados mais com o número de especialistas do que com a complexidade ambiental. Novos especialistas devem ser formados em taxo- nomia de Copepoda e utilizar novas ferramentas para resolver as questões sobre a real distribuição e os padrões de diversidade dos Copepoda Cyclopoida nos Neotrópicos.
    [Show full text]
  • RECORDS of the HAWAII BIOLOGICAL SURVEY for 1994 Part 2: Notes1
    1 RECORDS OF THE HAWAII BIOLOGICAL SURVEY FOR 1994 Part 2: Notes1 This is the second of two parts to the Records of the Hawaii Biological Survey for 1994 and contains the notes on Hawaiian species of plants and animals including new state and island records, range extensions, and other information. Larger, more comprehensive treatments and papers describing new taxa are treated in the first part of this volume [Bishop Museum Occasional Papers 41]. New Hawaiian Plant Records. I BARBARA M. HAWLEY & B. LEILANI PYLE (Herbarium Pacificum, Department of Natural Sciences, Bishop Museum, P.O. Box 19000A, Honolulu, Hawaii 96817, USA) Amaranthaceae Achyranthes mutica A. Gray Significance. Considered extinct and previously known from only 2 collections: sup- posedly from Hawaii Island 1779, D. Nelson s.n.; and from Kauai between 1851 and 1855, J. Remy 208 (Wagner et al., 1990, Manual of the Flowering Plants of Hawai‘i, p. 181). Material examined. HAWAII: South Kohala, Keawewai Gulch, 975 m, gulch with pasture and relict Koaie, 10 Nov 1991, T.K. Pratt s.n.; W of Kilohana fork, 1000 m, on sides of dry gulch ca. 20 plants seen above and below falls, 350 °N aspect, 16 Dec 1992, K.R. Wood & S. Perlman 2177 (BISH). Caryophyllaceae Silene lanceolata A. Gray Significance. New island record for Oahu. Distribution in Wagner et al. (1990: 523, loc. cit.) limited to Kauai, Molokai, Hawaii, and Lanai. Several plants were later noted by Steve Perlman and Ken Wood from Makua, Oahu in 1993. Material examined. OAHU: Waianae Range, Ohikilolo Ridge at ca. 700 m elevation, off ridge crest, growing on a vertical rock face, facing northward and generally shaded most of the day but in an open, exposed face, only 1 plant noted, 25 Sep 1992, J.
    [Show full text]
  • Subterranean Fauna of Christmas Island, Indian Ocean
    Christmas Island: Karst features Helictite, (2001) 37(2): 59-74. Subterranean Fauna of Christmas Island, Indian Ocean W.F. Humphreys and Stefan Eberhard. W.F. Humphreys - Western Australian Museum, Francis Street, Perth, WA 6000, Australia. Email: [email protected] Stefan Eberhard - CaveWorks, P.O. Witchcliffe, WA 6286, Australia. Email: [email protected] Abstract The subterranean environment of Christmas Island is diverse and includes freshwater, marine, anchialine, and terrestrial habitats. The cave fauna comprises swiftlets, and a diverse assemblage of invertebrates, both terrestrial and aquatic, which includes a number of rare and endemic species of high conservation significance. At least twelve species are probably restricted to subterranean habitats and are endemic to Christmas Island. Previously poorly known, the cave fauna of Christmas Island is a significant component of the island's biodiversity, and a significant cave fauna province in an international context. The cave fauna and habitats are sensitive to disturbance from a number of threatening processes, including pollution, deforestation, mining, feral species and human visitors. Keywords: Island karst, biospeleology, stygofauna, troglobites, anchialine, scorpion, Procarididae INTRODUCTION DEFINITIONS As recently as 1995 Christmas Island (Indian Ocean) It has been found useful to classify cave-dwelling ani- was considered to have no specialized subterranean mals according to their presumed degree of ecological/ fauna (Gray, 1995: 68), despite biological collections evolutionary dependence on the cave environment. Many surface-dwelling forms enter caves by chance and having been made since 1887 (especially Andrews while such ‘accidentals’ may survive for some time they et al., 1900). However, in 1996 a specimen of blind do not reproduce underground.
    [Show full text]
  • Volume 2, Chapter 10-1: Arthropods: Crustacea
    Glime, J. M. 2017. Arthropods: Crustacea – Copepoda and Cladocera. Chapt. 10-1. In: Glime, J. M. Bryophyte Ecology. Volume 2. 10-1-1 Bryological Interaction. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 19 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology2/>. CHAPTER 10-1 ARTHROPODS: CRUSTACEA – COPEPODA AND CLADOCERA TABLE OF CONTENTS SUBPHYLUM CRUSTACEA ......................................................................................................................... 10-1-2 Reproduction .............................................................................................................................................. 10-1-3 Dispersal .................................................................................................................................................... 10-1-3 Habitat Fragmentation ................................................................................................................................ 10-1-3 Habitat Importance ..................................................................................................................................... 10-1-3 Terrestrial ............................................................................................................................................ 10-1-3 Peatlands ............................................................................................................................................. 10-1-4 Springs ...............................................................................................................................................
    [Show full text]
  • Troglofauna Survey at Koolyanobbing
    Troglofauna survey at Koolyanobbing Prepared for Portman Ltd by Bennelongia Pty Ltd November 2008 Report 2008/49 Troglofauna survey at Koolyanobbing Bennelongia Pty Ltd 64 Jersey Street Jolimont WA 6913 www.bennelongia.com.au ACN 124 110 167 November 2008 Report 2008/49 Bennelongia Pty Ltd Koolyanobbing troglofauna LIMITATION: This review has been prepared for use by Portman Ltd and its agents. Bennelongia accepts no liability or responsibility in respect of any use or reliance on the review by any third party. Bennelongia has not attempted to verify the accuracy and completeness of all information supplied by Portman. COPYRIGHT: The document has been prepared to the requirements of Portman. Copyright and any other Intellectual Property associated with the document belong to Bennelongia and may not be reproduced without written permission of Portman or Bennelongia. Client – Portman Ltd Report Version Prepared by Checked by Submitted to Client Method Date Draft report Vers. 1 Andrew Trotter Stuart Halse email 25.xi.08 Final report Andrew Trotter Stuart Halse email 12.xii.08 K:\Projects\B_PORT_01\Report\Koolyanobbing\BEC_Koolyanobbing_final_12.xii.08.docx ii Bennelongia Pty Ltd Koolyanobbing troglofauna Executive Summary This report provides the results of a troglofauna survey at Portman Ltd’s proposed mine sites in B and C Deposit (proposed B and C Pits) at Koolyanobbing, which is located approximately 50 km north of Southern Cross in the Yilgarn region of Western Australia. Portman is seeking environmental approval to mine B and C Deposits. The purpose of this survey was to document the troglofaunal community at the proposed mine sites and assess the potential impacts of the proposed mines on troglofauna.
    [Show full text]
  • Species Richness and Taxonomic Distinctness of Zooplankton in Ponds and Small Lakes from Albania and North Macedonia: the Role of Bioclimatic Factors
    water Article Species Richness and Taxonomic Distinctness of Zooplankton in Ponds and Small Lakes from Albania and North Macedonia: The Role of Bioclimatic Factors Giorgio Mancinelli 1,2,3, Sotir Mali 4 and Genuario Belmonte 1,5,* 1 CoNISMa, Consorzio Nazionale Interuniversitario per le Scienze del Mare, 00196 Roma, Italy; [email protected] 2 Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy 3 National Research Council (CNR), Institute of Biological Resources and Marine Biotechnologies (IRBIM), 08040 Lesina, Italy 4 Department of Biology, Faculty of Natural Sciences, “Aleksandër Xhuvani” University, 3001 Elbasan, Albania; [email protected] 5 Laboratory of Zoogegraphy and Fauna, Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy * Correspondence: [email protected] Received: 13 October 2019; Accepted: 11 November 2019; Published: 14 November 2019 Abstract: Resolving the contribution to biodiversity patterns of regional-scale environmental drivers is, to date, essential in the implementation of effective conservation strategies. Here, we assessed the species richness S and taxonomic distinctness D+ (used a proxy of phylogenetic diversity) of crustacean zooplankton assemblages from 40 ponds and small lakes located in Albania and North Macedonia and tested whether they could be predicted by waterbodies’ landscape characteristics (area, perimeter, and altitude), together with local bioclimatic conditions that were derived from Wordclim and MODIS databases. The results showed that a minimum adequate model, including the positive effects of non-arboreal vegetation cover and temperature seasonality, together with the negative influence of the mean temperature of the wettest quarter, effectively predicted assemblages’ variation in species richness.
    [Show full text]
  • Troglobitic Specimens Recorded
    655000 660000 665000 670000 675000 680000 685000 690000 695000 7450000 7445000 Deposit H Deposit I A3b (!*# (! Deposit B (! !((! Deposit G (! ^ 7440000 *# (! A2d Deposit C Legend (! (! Study Area Deposit D (! Deposit Deposit A Deposit F 7435000 Troglibitic specimens Mt Ella (! Anillini ‘sp. indet’. Deposit E (! Atelurinae ‘sp. indet.’ (! Cormocephalus 'CHI003'. A4 - -Pp (! Embioptera ‘sp. indet.’ 7430000 (! Hydrobiomorpha 'sp. indet.’ A4 - -Pp *# Meenoplidae ‘sp. indet.’ (! Nocticola ‘sp. indet.’ K A2d ^ Prethopalpus 'sp indet.' 0 2.5 5 !( Pseudodiploexochus ‘sp. nov.’ 7425000 Kilometres (! Trogiidae ‘sp. indet.’ Absolute Scale - 1:110,000 Figure: 4.3 Drawn: BG Project ID: 1459 Date: 12/2/2013 Troglobitic specimens recorded Coordinate System Unique Map ID: BG282 Name: GDA 1994 MGA Zone 50 Projection: Transverse Mercator Datum: GDA 1994 A3 Rio Tinto Greater West Angelas Subterranean Fauna Assessment This page has been left blank intentionally May 2013 34 Rio Tinto Greater West Angelas Subterranean Fauna Assessment 4.3 SUMMARY OF TROGLOFAUNA GROUPS RECORDED 4.3.1 Thysanura FAMILY NICOLETIIDAE Atelurinae ‘sp. Indet.’ A single specimen was collected from Deposit D in bore WAD 358. Pilbara thysanurans are poorly known and the taxonomy of Nicoletiidae is based on their DNA sequences rather than published species descriptions. Subterranean Atelurinae are well known throughout the Pilbara; however, nearly all of the species recognised to date appear to be range restricted. This specimen appears to be characteristic of the Pilbara nicoletiids. This species is a likely SRE. 4.3.2 Psocoptera FAMILY TROGIIDAE Trogiidae ‘sp. indet.’ A single specimen was collected from Deposit D in bore DDRC 006. Only identification to family level was possible.
    [Show full text]