Peer Review Report: Methods and Approaches to Account for Lifecycle Greenhouse Gas Emissions from Biofuels Production

Total Page:16

File Type:pdf, Size:1020Kb

Peer Review Report: Methods and Approaches to Account for Lifecycle Greenhouse Gas Emissions from Biofuels Production Lifecycle Greenhouse Gas Emissions due to Increased Biofuel Production Methods and Approaches to Account for Lifecycle Greenhouse Gas Emissions from Biofuels Production Over Time Peer Review Report July 31, 2009 Prepared by: ICF International Table of Contents Introduction ...............................................................................................................................................I-1 Background of Peer Review and Overview of Results .........................................................................I-2 Peer Reviewer Responses to Charge Questions.....................................................................................1 Preliminary Remarks ...............................................................................................................................1 I. Overall Approach to Treatment of Lifecycle GHG Emissions over Time .....................................4 A. Framing the Issues................................................................................................................4 Charge Questions 1 and 2 .......................................................................................................4 II. Time Frame(s) for Accounting ..........................................................................................................5 A. Conceptual Description of Time Frame(s) for Lifecycle GHG Analysis ..........................5 Charge Questions 1, 1a, 1b, and 2..........................................................................................5 B. Determination of Project Time Frame(s).............................................................................6 Charge Question 1...................................................................................................................6 Charge Question 1a and 1a(i)..................................................................................................7 Charge Question 1b, 1b(i), and 1b(ii) ......................................................................................7 C. Determination of Impact Time Frame..................................................................................8 Charge Question 1...................................................................................................................8 Charge Question 2...................................................................................................................9 Charge Question 3...................................................................................................................9 Charge Question 4.................................................................................................................10 Charge Question 5 and 5a.....................................................................................................11 D. Accounting for Lifecycle GHG Emissions after the Project Time Frame ......................11 Charge Question 1.................................................................................................................11 Charge Question 2.................................................................................................................12 Charge Question 3.................................................................................................................13 III. Valuation of Future GHG Emissions ..............................................................................................13 A. Conceptual Issues...............................................................................................................13 Charge Question 1 and 1a.....................................................................................................13 Charge Question 2.................................................................................................................15 Charge Question 2a...............................................................................................................15 Charge Question 2b...............................................................................................................16 Charge Question 3.................................................................................................................16 B. Choice of Discount Rate.....................................................................................................17 Charge Question 1.................................................................................................................17 Charge Question 2.................................................................................................................17 Charge Question 3.................................................................................................................17 C. Appropriate Metrics for Evaluation of Lifecycle GHG Emissions Over Time ...............18 Charge Question 1.................................................................................................................18 Charge Question 2.................................................................................................................19 Charge Question 3.................................................................................................................19 i IV. Other Methodological Considerations ...........................................................................................20 A. Scenario Analysis ...............................................................................................................20 Charge Question 1.................................................................................................................20 Charge Question 2.................................................................................................................21 Charge Question 3.................................................................................................................21 Additional Comments Associated with Section IV ......................................................................21 Appendix A: Timing Peer Review Charge Questions.......................................................................... A-1 Appendix B: Dr. Joseph Fargione Response to Charge Questions .................................................. B-1 Appendix C: Mr. Ralph Heimlich Response to Charge Questions..................................................... C-1 Appendix D: Dr. Elizabeth Marshall Response to Charge Questions ............................................... D-1 Appendix E: Dr. Jeremy Martin Response to Charge Questions....................................................... E-1 Appendix F: Dr. Kenneth R. Richards Response to Charge Questions.............................................F-1 Appendix G: Curricula Vitae of Selected Peer Reviewers ..................................................................G-1 ii Introduction Background of Timing of Emissions Analysis The United States Environmental Protection Agency (EPA) has undertaken a lifecycle assessment of the greenhouse gas (GHG) emissions associated with increased renewable fuels production as part of the proposed revisions to the National Renewable Fuel Standard (RFS) program. The Energy Independence and Security Act of 2007 (EISA) set the first-ever mandatory lifecycle GHG reduction thresholds for renewable fuel categories. The Act requires EPA to conduct a broad lifecycle analysis of expanded biofuel use, including emissions associated with indirect land use changes. Several new pieces of analysis were developed to support this lifecycle assessment. A key component of the analysis is the issue of timing of GHG emissions and reductions. GHG emissions associated with gasoline or diesel are likely to be released over a short period of time, whereas GHG emissions from biofuels production may continue for a much longer period of time. The peer review detailed in this report looks at EPA’s methods and approaches for discounting emissions over time to ensure comparability of biofuels to other fuels. Evidence suggests that biofuel-induced land use change produces significant near-term GHG emissions, with displacement of petroleum by biofuels over subsequent years in effect “paying back” earlier land-conversion impacts. Therefore, it is critical to select an appropriate time horizon over which to analyze emissions and apply a proper discount rate to value near-term versus longer-term emissions. EPA highlights two options. Option one assumes a 30-year time period for assessing future GHG emission impacts and equally values all emission impacts regardless of time emitted (a 0% discount rate). Option two assesses emission impacts over a 100-year time period and discounts future emissions at 2% annually. Additional variations of the time period and discount rate are discussed in the proposed rule and peer review charge questions. This peer review focuses on time frames and discount rates proposed by EPA, appropriate criteria to select those parameters, and subsequent questions. I-1 Background of Peer Review and Overview of Results From May to July 2009, EPA arranged for several peer reviews to be conducted regarding aspects of its revisions to the RFS. Each of these reviews focused on the projection of emissions from indirect land use changes associated with increased fuel production as specified by EISA 2007. ICF International, an independent third-party contractor, coordinated the peer reviews and adhered to EPA’s “Peer Review Handbook “(3rd Edition). The peer review summarized here focuses
Recommended publications
  • Greenhouse Gas Emissions from Public Lands
    The Climate Report 2020: Greenhouse Gas Emissions from Public Lands As the world works to respond to the dire regulations meant to protect the public and the warnings issued last fall by the United Nations environment from these exact decisions. New Environment Programme, the Trump policies have made it cheaper and easier for administration continues to open up as much fossil energy corporations to gain and hold of our shared public lands as possible to fossil control of public lands. And they have hidden fuel extraction.1 And while doing so, the federal from public view the implications of these government continues to keep the public (aka decisions for taxpayers and the planet. the owners of these resources) in the dark on This report seeks to pull the curtain back on the mounting greenhouse gas emissions that this situation and shed light on the range of would result from drilling on our public lands. potential climate consequences of these At the same time, we’ve seen this leasing decisions. administration water down policies and 1 UN. 26 Nov. 2019. stories/press-release/cut-global-emissions-76- https://www.unenvironment.org/news-and- percent-every-year-next-decade-meet-15degc Key Takeaways: The federal government cannot manage development of these leases could be as what it does not measure, yet the Trump high as 6.6 billion MT CO2e. administration is actively seeking to These leasing decisions have significant suppress disclosure of climate emissions and long-term ramifications for our climate from fossil energy leases on public lands. and our ability to stave off the worst The leases issued during the Trump impacts of global warming.
    [Show full text]
  • ALBEDO ENHANCEMENT by STRATOSPHERIC SULFUR INJECTIONS: a CONTRIBUTION to RESOLVE a POLICY DILEMMA? an Editorial Essay
    ALBEDO ENHANCEMENT BY STRATOSPHERIC SULFUR INJECTIONS: A CONTRIBUTION TO RESOLVE A POLICY DILEMMA? An Editorial Essay Fossil fuel burning releases about 25 Pg of CO2 per year into the atmosphere, which leads to global warming (Prentice et al., 2001). However, it also emits 55 Tg S as SO2 per year (Stern, 2005), about half of which is converted to sub-micrometer size sulfate particles, the remainder being dry deposited. Recent research has shown that the warming of earth by the increasing concentrations of CO2 and other greenhouse gases is partially countered by some backscattering to space of solar radiation by the sulfate particles, which act as cloud condensation nuclei and thereby influ- ence the micro-physical and optical properties of clouds, affecting regional precip- itation patterns, and increasing cloud albedo (e.g., Rosenfeld, 2000; Ramanathan et al., 2001; Ramaswamy et al., 2001). Anthropogenically enhanced sulfate particle concentrations thus cool the planet, offsetting an uncertain fraction of the anthro- pogenic increase in greenhouse gas warming. However, this fortunate coincidence is “bought” at a substantial price. According to the World Health Organization, the pollution particles affect health and lead to more than 500,000 premature deaths per year worldwide (Nel, 2005). Through acid precipitation and deposition, SO2 and sulfates also cause various kinds of ecological damage. This creates a dilemma for environmental policy makers, because the required emission reductions of SO2, and also anthropogenic organics (except black carbon), as dictated by health and ecological considerations, add to global warming and associated negative conse- quences, such as sea level rise, caused by the greenhouse gases.
    [Show full text]
  • ENERGYENERCY a Balancing Act
    Educational Product Educators Grades 9–12 Investigating the Climate System ENERGYENERCY A Balancing Act PROBLEM-BASED CLASSROOM MODULES Responding to National Education Standards in: English Language Arts ◆ Geography ◆ Mathematics Science ◆ Social Studies Investigating the Climate System ENERGYENERGY A Balancing Act Authored by: CONTENTS Eric Barron, College of Earth and Mineral Science, Pennsylvania Grade Levels; Time Required; Objectives; State University, University Park, Disciplines Encompassed; Key Terms; Pennsylvania Prerequisite Knowledge . 2 Prepared by: Scenario. 5 Stacey Rudolph, Senior Science Education Specialist, Institute for Part 1: Understanding the absorption of energy Global Environmental Strategies at the surface of the Earth. (IGES), Arlington, Virginia Question: Does the type of the ground surface John Theon, Former Program influence its temperature? . 5 Scientist for NASA TRMM Part 2: How a change in water phase affects Editorial Assistance, Dan Stillman, surface temperatures. Science Communications Specialist, Institute for Global Environmental Question: How important is the evaporation of Strategies (IGES), Arlington, Virginia water in cooling a surface? . 6 Graphic Design by: Part 3: Determining what controls the temperature Susie Duckworth Graphic Design & of the land surface. Illustration, Falls Church, Virginia Question 1: If my town grows, will it impact the Funded by: area’s temperature? . 7 NASA TRMM Grant #NAG5-9641 Question 2: Why are the summer temperatures in the desert southwest so much higher than at the Give us your feedback: To provide feedback on the modules same latitude in the southeast? . 8 online, go to: Appendix A: Bibliography/Resources . 9 https://ehb2.gsfc.nasa.gov/edcats/ educational_product Appendix B: Answer Keys . 10 and click on “Investigating the Appendix C: National Education Standards.
    [Show full text]
  • Methodology for Afforestation And
    METHODOLOGY FOR THE QUANTIFICATION, MONITORING, REPORTING AND VERIFICATION OF GREENHOUSE GAS EMISSIONS REDUCTIONS AND REMOVALS FROM AFFORESTATION AND REFORESTATION OF DEGRADED LAND VERSION 1.2 May 2017 METHODOLOGY FOR THE QUANTIFICATION, MONITORING, REPORTING AND VERIFICATION OF GREENHOUSE GAS EMISSIONS REDUCTIONS AND REMOVALS FROM AFFORESTATION AND REFORESTATION OF DEGRADED LAND VERSION 1.2 May 2017 American Carbon Registry® WASHINGTON DC OFFICE c/o Winrock International 2451 Crystal Drive, Suite 700 Arlington, Virginia 22202 USA ph +1 703 302 6500 [email protected] americancarbonregistry.org ABOUT AMERICAN CARBON REGISTRY® (ACR) A leading carbon offset program founded in 1996 as the first private voluntary GHG registry in the world, ACR operates in the voluntary and regulated carbon markets. ACR has unparalleled experience in the development of environmentally rigorous, science-based offset methodolo- gies as well as operational experience in the oversight of offset project verification, registration, offset issuance and retirement reporting through its online registry system. © 2017 American Carbon Registry at Winrock International. All rights reserved. No part of this publication may be repro- duced, displayed, modified or distributed without express written permission of the American Carbon Registry. The sole permitted use of the publication is for the registration of projects on the American Carbon Registry. For requests to license the publication or any part thereof for a different use, write to the Washington DC address listed above.
    [Show full text]
  • Plastic & Climate
    EXECUTIVE SummarY Plastic & Climate THE HIDDEN COsts OF A PLAstIC PLANET Plastic Proliferation Threatens the Climate on a Global Scale he plastic pollution crisis that overwhelms our oceans is also a FIGURFIGUREE 1 significant and growing threat to the Earth’s climate. At current Annual Plastic Emissions to 2050 Tlevels, greenhouse gas emissions from the plastic lifecycle threaten the ability of the global community to keep global temperature rise below 3.0 billion metric tons 1.5°C. With the petrochemical and plastic industries planning a massive expansion in production, the problem is on track to get much worse. By 2050, annual emissions could grow to more than 2.5 2.75 billion metric tons Greenhouse gas emissions from the plastic lifecycle of CO2e from plastic threaten the ability of the global community to keep production and incineration. global temperature rise below 1.5°C. By 2050, the 2.0 greenhouse gas emissions from plastic could reach Annual emissions from incineration over 56 gigatons—10-13 percent of the entire 1.5 remaining carbon budget. If plastic production and use grow as currently planned, by 2030, these 1.0 emissions could reach 1.34 gigatons per year—equivalent to the emissions released by more than 295 new 500-megawatt coal-fired power plants. Annual emissions from By 2050, the cumulation of these greenhouse gas emissions from plastic 0.5 resin and fiber production could reach over 56 gigatons—10–13 percent of the entire remaining carbon budget. Nearly every piece of plastic begins as a fossil fuel, and greenhouse gases 0 are emitted at each of each stage of the plastic lifecycle: 1) fossil fuel 2015 2020 2030 2040 2050 extraction and transport, 2) plastic refining and manufacture, 3) managing plastic waste, and 4) plastic’s ongoing impact once it reaches our oceans, Source: CIEL waterways, and landscape.
    [Show full text]
  • Methane Emissions from Forests Ecosystems Enhance Global Warming? : Keppler Et.Al.(2006)
    Methane emissions from forests ecosystems enhance global warming? : Keppler et.al.(2006). Methane emissions from terrestrial plants under aerobic conditions. Nature 439: 187-191 Quantifications of possible effects and comments Summary The results of this study could affect attractiveness and returns of CDM carbon offset projects and future negotiations about carbon sinks in the second commitment period. If confirmed independently, they represent a paradigm shift regarding methane formation in plant physiology. When extrapolated, net greenhouse gas removals by growing forests, e.g. existing forests or forests created by afforestation projects under the Clean Development Mechanism, could be reduced by maximally 4-8% though aerobic emissions of methane by trees. Net actual effects are likely to be lower. However, transposing and up-scaling results obtained in containers on small samples, seedlings, and on only one tree species to global forests and other biomes is not a valid “first estimate”, but at best a hypothesis which should be tested. Results do not invalidate the role of forests as carbon sinks; they also do not support the view that deforestation mitigates global warming via reduced emissions of methane. Background The paper postulates a sizeable, previously unknown methane source of 60-240 Mt from forests and other biomes, and an additional source of 1-7 Mt CH4 from litter. Plant physiology has up to now not recognized the possibility of aerobic methane formation by intact plants or litter. Methane, a powerful greenhouse gas with a global warming potential of 23 times that of CO2, has been thought to originate in rice patties, natural wetlands, landfills, natural gas reservoirs, biomass burning and in the digestive tracts of cattle.If these methane emissions can be corroborated, the discovery amounts to a paradigm shift in plant physiology.
    [Show full text]
  • Synthetic Greenhouse Gases
    Synthetic Greenhouse Gases How are they different to What are ‘synthetic greenhouse gases’? ‘greenhouse gases’? Synthetic greenhouse gases are man made Greenhouse gases are naturally occurring. chemicals. They are commonly used in They include carbon dioxide (CO2), methane refrigeration and air conditioning, fire (CH4) and nitrous oxide (N2O). Synthetic extinguishing, foam production and in greenhouse gases are man made chemicals medical aerosols. When they are released, and generally have a much higher global synthetic greenhouse gases trap heat in warming potential than naturally occurring the atmosphere. greenhouse gases. What is global warming potential? Global warming potential (GWP) is a measure of how much heat a greenhouse gas traps in the atmosphere over a specific time compared to a similar mass of carbon dioxide (CO2). CO2, with a global warming potential of 1, is used as the base figure for measuring global warming potential. The higher the global warming potential number, the more heat a gas traps. The most common synthetic greenhouse gas in Australia is HFC-134a, which is mostly used in refrigerators and air conditioners. It has a global warming potential of 1430; this means the release of one tonne of HFC-134a is equivalent to releasing 1430 tonnes of CO2 into the atmosphere. Which synthetic greenhouse gases does 22,800 Australia regulate? SF6 the global warming potential of sulfur hexafluoride (SF6) • hydrofluorocarbons (HFCs) • perfluorocarbons (PFCs) • sulfur hexafluoride (SF6) Synthetic • nitrogen trifluoride (NF3) greenhouse gases account for around 2% of all greenhouse gas emissions in Australia How do we use synthetic greenhouse gases? They are man made chemicals with a wide variety of uses.
    [Show full text]
  • Accounting for the Climate–Carbon Feedback in Emission Metrics
    Earth Syst. Dynam., 8, 235–253, 2017 www.earth-syst-dynam.net/8/235/2017/ doi:10.5194/esd-8-235-2017 © Author(s) 2017. CC Attribution 3.0 License. Accounting for the climate–carbon feedback in emission metrics Thomas Gasser1,2,a, Glen P. Peters2, Jan S. Fuglestvedt2, William J. Collins3, Drew T. Shindell4, and Philippe Ciais1 1Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, Université Paris-Saclay, CEA – CNRS – UVSQ, 91191 Gif-sur-Yvette, France 2Center for International Climate and Environmental Research – Oslo (CICERO), 0349 Oslo, Norway 3Department of Meteorology, University of Reading, Reading, RG6 6BB, UK 4Nicholas School of the Environment, Duke University, Durham, NC 27708, USA anow at: International Institute for Applied Systems Analysis (IIASA), 2361 Laxenburg, Austria Correspondence to: Thomas Gasser ([email protected]) Received: 4 November 2016 – Discussion started: 10 November 2016 Accepted: 20 March 2017 – Published: 10 April 2017 Abstract. Most emission metrics have previously been inconsistently estimated by including the climate– carbon feedback for the reference gas (i.e. CO2) but not the other species (e.g. CH4). In the fifth assessment report of the IPCC, a first attempt was made to consistently account for the climate–carbon feedback in emission metrics. This attempt was based on only one study, and therefore the IPCC concluded that more research was needed. Here, we carry out this research. First, using the simple Earth system model OSCAR v2.2, we establish a new impulse response function for the climate–carbon feedback. Second, we use this impulse response func- tion to provide new estimates for the two most common metrics: global warming potential (GWP) and global temperature-change potential (GTP).
    [Show full text]
  • Greenhouse Gas Emissions from Cultivation of Plants Used for Biofuel Production in Poland
    atmosphere Article Greenhouse Gas Emissions from Cultivation of Plants Used for Biofuel Production in Poland Paweł Wi´sniewski* and Mariusz Kistowski Department of Landscape Research and Environmental Management, Faculty of Oceanography and Geography, University of Gdansk, Ba˙zy´nskiego4, 80309 Gda´nsk,Poland; [email protected] * Correspondence: [email protected] Received: 29 February 2020; Accepted: 14 April 2020; Published: 16 April 2020 Abstract: A reduction of greenhouse gas (GHG) emissions as well as an increase in the share of renewable energy are the main objectives of EU energy policy. In Poland, biofuels play an important role in the structure of obtaining energy from renewable sources. In the case of biofuels obtained from agricultural raw materials, one of the significant components of emissions generated in their full life cycle is emissions from the cultivation stage. The aim of the study is to estimate and recognize the structure of GHG emission from biomass production in selected farms in Poland. For this purpose, the methodology that was recommended by the Polish certification system of sustainable biofuels and bioliquids production, as approved by the European Commission, was used. The calculated emission values vary between 41.5 kg CO2eq/t and 147.2 kg CO2eq/t dry matter. The highest average emissions were obtained for wheat (103.6 kg CO2eq/t), followed by maize (100.5 kg CO2eq/t), triticale (95.4 kg CO2eq/t), and rye (72.5 kg CO2eq/t). The greatest impact on the total GHG emissions from biomass production is caused by field emissions of nitrous oxide and emissions from the production and transport of fertilizers and agrochemicals.
    [Show full text]
  • Global Warming Potential Values
    Global Warming Potential Values The following table includes the 100-year time horizon global warming potentials (GWP) i relative to CO2. This table is adapted from the IPCC Fifth Assessment Report, 2014 (AR5) . The AR5 values are the most recent, but the second assessment report (1995) and fourth assessment report (2007) values are also listed because they are sometimes used for inventory and reporting purposes. For more information, please see the IPCC website (www.ipcc.ch). The use of the latest (AR5) values is recommended. Please note that the GWP values provided here from the AR5 for non-CO2 gases do not include climate-carbon feedbacks. Global warming potential (GWP) values relative to CO2 GWP values for 100-year time horizon Industrial Second Fourth Fifth Assessment designation Chemical formula Assessment Assessment Report (AR5) or common Report (SAR) Report (AR4) name Carbon dioxide CO2 1 1 1 Methane CH4 21 25 28 Nitrous oxide N2O 310 298 265 Substances controlled by the Montreal Protocol CFC-11 CCl3F 3,800 4,750 4,660 CFC-12 CCl2F2 8,100 10,900 10,200 CFC-13 CClF3 14,400 13,900 CFC-113 CCl2FCClF2 4,800 6,130 5,820 CFC-114 CClF2CClF2 10,000 8,590 CFC-115 CClF2CF3 7,370 7,670 Halon-1301 CBrF3 5,400 7,140 6,290 Halon-1211 CBrClF2 1,890 1,750 Halon-2402 CBrF2CBrF2 1,640 1,470 Carbon tetrachloride CCl4 1,400 1,400 1,730 Methyl bromide CH3Br 5 2 Methyl chloroform CH3CCl3 100 146 160 GWP values for 100-year time horizon Industrial Second Fourth Fifth designation Chemical formula assessment Assessment Assessment or common report (SAR)
    [Show full text]
  • Inventory of US Greenhouse Gas Emissions and Sinks: 1990-2015
    ANNEX 6 Additional Information 6.1. Global Warming Potential Values Global Warming Potential (GWP) is intended as a quantified measure of the globally averaged relative radiative forcing impacts of a particular greenhouse gas. It is defined as the cumulative radiative forcing–both direct and indirect effectsintegrated over a specific period of time from the emission of a unit mass of gas relative to some reference gas (IPCC 2007). Carbon dioxide (CO2) was chosen as this reference gas. Direct effects occur when the gas itself is a greenhouse gas. Indirect radiative forcing occurs when chemical transformations involving the original gas produce a gas or gases that are greenhouse gases, or when a gas influences other radiatively important processes such as the atmospheric lifetimes of other gases. The relationship between kilotons (kt) of a gas and million metric tons of CO2 equivalents (MMT CO2 Eq.) can be expressed as follows: MMT MMT CO2 Eq. kt of gas GWP 1,000 kt where, MMT CO2 Eq. = Million metric tons of CO2 equivalent kt = kilotons (equivalent to a thousand metric tons) GWP = Global warming potential MMT = Million metric tons GWP values allow policy makers to compare the impacts of emissions and reductions of different gases. According to the IPCC, GWP values typically have an uncertainty of 35 percent, though some GWP values have larger uncertainty than others, especially those in which lifetimes have not yet been ascertained. In the following decision, the parties to the UNFCCC have agreed to use consistent GWP values from the IPCC Fourth Assessment Report (AR4), based upon a 100 year time horizon, although other time horizon values are available (see Table A-263).
    [Show full text]
  • Greenhouse Gas and Global Warming Potential Excerpt from U.S. National Emissions Inventory
    GREENHOUSE GASES AND GLOBAL WARMING POTENTIAL VALUES EXCERPT FROM THE INVENTORY OF U.S. GREENHOUSE EMISSIONS AND SINKS: 1990-2000 U.S. Greenhouse Gas Inventory Program Office of Atmospheric Programs U.S. Environmental Protection Agency April 2002 Greenhouse Gases and Global Warming Potential Values Original Reference All material taken from the Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990 - 2000, U.S. Environmental Protection Agency, Office of Atmospheric Programs, EPA 430-R-02- 003, April 2002. <www.epa.gov/globalwarming/publications/emissions> How to Obtain Copies You may electronically download this document from the U.S. EPA’s Global Warming web page on at: www.epa.gov/globalwarming/publications/emissions For Further Information Contact Mr. Michael Gillenwater, Office of Air and Radiation, Office of Atmospheric Programs, Tel: (202)564-0492, or e-mail [email protected] Acknowledgments The preparation of this document was directed by Michael Gillenwater. The staff of the Climate and Atmospheric Policy Practice at ICF Consulting, especially Marian Martin Van Pelt and Katrin Peterson deserve recognition for their expertise and efforts in supporting the preparation of this document. Excerpt from Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2000 Page 2 Greenhouse Gases and Global Warming Potential Values Introduction The Inventory of U.S. Greenhouse Gas Emissions elements of the Earth’s climate system. Natural and Sinks presents estimates by the United States processes such as solar-irradiance variations, government of U.S. anthropogenic greenhouse variations in the Earth’s orbital parameters, and gas emissions and removals for the years 1990 volcanic activity can produce variations in through 2000.
    [Show full text]