Supporting Precise Garbage Collection in Java Bytecode-To-C
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Scala: a Functional, Object-Oriented Language COEN 171 Darren Atkinson What Is Scala? Scala Stands for Scalable Language It Was Created in 2004 by Martin Odersky
Scala: A Functional, Object-Oriented Language COEN 171 Darren Atkinson What is Scala? Scala stands for Scalable Language It was created in 2004 by Martin Odersky. It was designed to grow with the demands of its users. It was designed to overcome many criticisms of Java. It is compiled to Java bytecode and is interoperable with existing Java classes and libraries. It is more of a high-level language than Java, having higher- order containers and iteration constructs built-in. It encourages a functional programming style, much like ML and Scheme. It also has advanced object-oriented features, much like Java and C++. Using Scala Using Scala is much like using Python or ML, and is not as unwieldy as using Java. The Scala interpreter can be invoked directly from the command line: $ scala Welcome to Scala 2.11.8 scala> println("Hi!") The Scala interpreter can also be given a file on the command line to execute: $ scala foo.scala Scala Syntax Scala has a Java-like syntax with braces. The assignment operator is simply =. Strings are built-in and use + for concatenation. Indexing is done using ( ) rather than [ ]. The first index is index zero. Parameterized types use [ ] rather than < >. A semicolon is inferred at the end of a line. However, since it is functional, everything is an expression and there are no “statements”. Scala Types In Java, the primitive types are not objects and wrapper classes must be used. Integer for int, Boolean for bool, etc. In Scala, everything is an object including the more “primitive” types. The Scala types are Int, Boolean, String, etc. -
Anpassung Eines Netzwerkprozessor-Referenzsystems Im Rahmen Des MAMS-Forschungsprojektes
Anpassung eines Netzwerkprozessor-Referenzsystems im Rahmen des MAMS-Forschungsprojektes Diplomarbeit an der Fachhochschule Hof Fachbereich Informatik / Technik Studiengang: Angewandte Informatik Vorgelegt bei von Prof. Dr. Dieter Bauer Stefan Weber Fachhochschule Hof Pacellistr. 23 Alfons-Goppel-Platz 1 95119 Naila 95028 Hof Matrikelnr. 00041503 Abgabgetermin: Freitag, den 28. September 2007 Hof, den 27. September 2007 Diplomarbeit - ii - Inhaltsverzeichnis Titelseite i Inhaltsverzeichnis ii Abbildungsverzeichnis v Tabellenverzeichnis vii Quellcodeverzeichnis viii Funktionsverzeichnis x Abkurzungen¨ xi Definitionen / Worterkl¨arungen xiii 1 Vorwort 1 2 Einleitung 3 2.1 Abstract ......................................... 3 2.2 Zielsetzung der Arbeit ................................. 3 2.3 Aufbau der Arbeit .................................... 4 2.4 MAMS .......................................... 4 2.4.1 Anwendungsszenario .............................. 4 2.4.2 Einführung ................................... 5 2.4.3 NGN - Next Generation Networks ....................... 5 2.4.4 Abstrakte Darstellung und Begriffe ...................... 7 3 Hauptteil 8 3.1 BorderGateway Hardware ............................... 8 3.1.1 Control-Blade - Control-PC .......................... 9 3.1.2 ConverGate-D Evaluation Board: Modell easy4271 ............. 10 3.1.3 ConverGate-D Netzwerkprozessor ....................... 12 3.1.4 Motorola POWER Chip (MPC) Modul ..................... 12 3.1.5 Test- und Arbeitsumgebung .......................... 13 3.2 Vorhandene -
Embedded Java with GCJ
Embedded Java with GCJ http://0-delivery.acm.org.innopac.lib.ryerson.ca/10.1145/1140000/11341... Embedded Java with GCJ Gene Sally Abstract You don't always need a Java Virtual Machine to run Java in an embedded system. This article discusses how to use GCJ, part of the GCC compiler suite, in an embedded Linux project. Like all tools, GCJ has benefits, namely the ability to code in a high-level language like Java, and its share of drawbacks as well. The notion of getting GCJ running on an embedded target may be daunting at first, but you'll see that doing so requires less effort than you may think. After reading the article, you should be inspired to try this out on a target to see whether GCJ can fit into your next project. The Java language has all sorts of nifty features, like automatic garbage collection, an extensive, robust run-time library and expressive object-oriented constructs that help you quickly develop reliable code. Why Use GCJ in the First Place? The native code compiler for Java does what is says: compiles your Java source down to the machine code for the target. This means you won't have to get a JVM (Java Virtual Machine) on your target. When you run the program's code, it won't start a VM, it will simply load and run like any other program. This doesn't necessarily mean your code will run faster. Sometimes you get better performance numbers for byte code running on a hot-spot VM versus GCJ-compiled code. -
Nashorn Architecture and Performance Improvements in the Upcoming JDK 8U40 Release
Oracle Blogs Home Products & Services Downloads Support Partners Communities About Login Oracle Blog Nashorn JavaScript for the JVM. Nashorn architecture and performance improvements in the upcoming JDK 8u40 release By lagergren on Dec 12, 2014 Hello everyone! We've been bad att blogging here for a while. Apologizes for that. I thought it would be prudent to talk a little bit about OpenJDK 8u40 which is now code frozen, and what enhancements we have made for Nashorn. 8u40 includes a total rewrite of the Nashorn code generator, which now contains the optimistic type system. JavaScript, or any dynamic language for that matter, doesn't have enough statically available type information to provide performant code, just by doing compile time analysis. That's why we have designed the new type system to get around this performance bottleneck. While Java bytecode, which is the output of the Nashorn JIT, is strongly typed and JavaScript isn't, there are problems translating the AST to optimal bytecode. Attila Szegedi, Hannes Wallnöfer and myself have spent significant time researching and implementing this the last year. Background: Conservatively, when implementing a JavaScript runtime in Java, anything known to be a number can be represented in Java as a double, and everything else can be represented as an Object. This includes numbers, ints, longs and other primitive types that aren't statically provable. Needless to say, this approach leads to a lot of internal boxing, which is quite a bottleneck for dynamic language execution speed on the JVM. The JVM is very good at optimizing Java-like bytecode, and this is not Java-like bytecode. -
Java in Embedded Linux Systems
Java in Embedded Linux Systems Java in Embedded Linux Systems Thomas Petazzoni / Michael Opdenacker Free Electrons http://free-electrons.com/ Created with OpenOffice.org 2.x Java in Embedded Linux Systems © Copyright 2004-2007, Free Electrons, Creative Commons Attribution-ShareAlike 2.5 license http://free-electrons.com Sep 15, 2009 1 Rights to copy Attribution ± ShareAlike 2.5 © Copyright 2004-2008 You are free Free Electrons to copy, distribute, display, and perform the work [email protected] to make derivative works to make commercial use of the work Document sources, updates and translations: Under the following conditions http://free-electrons.com/articles/java Attribution. You must give the original author credit. Corrections, suggestions, contributions and Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under a license translations are welcome! identical to this one. For any reuse or distribution, you must make clear to others the license terms of this work. Any of these conditions can be waived if you get permission from the copyright holder. Your fair use and other rights are in no way affected by the above. License text: http://creativecommons.org/licenses/by-sa/2.5/legalcode Java in Embedded Linux Systems © Copyright 2004-2007, Free Electrons, Creative Commons Attribution-ShareAlike 2.5 license http://free-electrons.com Sep 15, 2009 2 Best viewed with... This document is best viewed with a recent PDF reader or with OpenOffice.org itself! Take advantage of internal -
Evaluation of Clojure, Java, and Scala
Evaluation of Clojure, Java, and Scala Analysis of Programming Languages TTÜ Toke Abildgaard von Ryberg 10.12.2015 Evaluation of Clojure, Java, and Scala 10.12.2015 Analysis of Programming Languages Toke Abildgaard von Ryberg Introduction Java Virtual Machine Java Scala Clojure Programming languages evaluation Essential characteristics Well defined syntactic and semantic definition of language Reliability Fast translation Machine independence Desirable characteristics Generality Consistency with commonly used notations Uniformity Extensibility (ease to add features) Summary References 2 Evaluation of Clojure, Java, and Scala 10.12.2015 Analysis of Programming Languages Toke Abildgaard von Ryberg Introduction In this paper I will evaluate three languages that all uses Java Virtual Machine (JVM). The three languages are Clojure, Java, and Scala. First, I will briefly describe JVM and the three languages. Then I will evaluate the languages based on essential characteristics and desirable characteristics. The essential characteristics I use for evaluating programming languages are: ● Well defined syntactic and semantic definition of language ● Reliability ● Fast translation ● Machine independence The desirable characteristics are: ● Generality ● Consistency with commonly used notations ● Uniformity ● Extensibility (ease to add features) Java Virtual Machine1 The Java Virtual Machine(JVM) is a virtual machine used for executing Java bytecode. JVM is part of Java Runtime Environment(JRE) along with Java Class library. JRE is available on multiple platforms including Windows, Mac OS X, and Linux. The features of JVM include garbage collection and a JIT compiler. A programming language with functionality expressed in valid class files and able to be hosted by JVM is called a JVM language. When choosing to create a new programming language one might choose to create a JVM language to take advantage of the features of JVM. -
Java and C I CSE 351 Autumn 2016
L26: JVM CSE351, Spring 2018 Java Virtual Machine CSE 351 Spring 2018 Model of a Computer “Showing the Weather” Pencil and Crayon on Paper Matai Feldacker-Grossman, Age 4 May 22, 2018 L26: JVM CSE351, Spring 2018 Roadmap C: Java: Memory & data Integers & floats car *c = malloc(sizeof(car)); Car c = new Car(); x86 assembly c->miles = 100; c.setMiles(100); c->gals = 17; c.setGals(17); Procedures & stacks float mpg = get_mpg(c); float mpg = Executables free(c); c.getMPG(); Arrays & structs Memory & caches Assembly get_mpg: Processes language: pushq %rbp Virtual memory movq %rsp, %rbp ... Memory allocation popq %rbp Java vs. C ret OS: Machine 0111010000011000 code: 100011010000010000000010 1000100111000010 110000011111101000011111 Computer system: 2 L26: JVM CSE351, Spring 2018 Implementing Programming Languages Many choices in how to implement programming models We’ve talked about compilation, can also interpret Interpreting languages has a long history . Lisp, an early programming language, was interpreted Interpreters are still in common use: . Python, Javascript, Ruby, Matlab, PHP, Perl, … Interpreter Your source code implementation Your source code Binary executable Interpreter binary Hardware Hardware 3 L26: JVM CSE351, Spring 2018 An Interpreter is a Program Execute (something close to) the source code directly Simpler/no compiler – less translation More transparent to debug – less translation Easier to run on different architectures – runs in a simulated environment that exists only inside the interpreter process . Just port the interpreter (program), not the program-intepreted Slower and harder to optimize 4 L26: JVM CSE351, Spring 2018 Interpreter vs. Compiler An aspect of a language implementation . A language can have multiple implementations . Some might be compilers and other interpreters “Compiled languages” vs. -
Design and Analysis of a Scala Benchmark Suite for the Java Virtual Machine
Design and Analysis of a Scala Benchmark Suite for the Java Virtual Machine Entwurf und Analyse einer Scala Benchmark Suite für die Java Virtual Machine Zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.) genehmigte Dissertation von Diplom-Mathematiker Andreas Sewe aus Twistringen, Deutschland April 2013 — Darmstadt — D 17 Fachbereich Informatik Fachgebiet Softwaretechnik Design and Analysis of a Scala Benchmark Suite for the Java Virtual Machine Entwurf und Analyse einer Scala Benchmark Suite für die Java Virtual Machine Genehmigte Dissertation von Diplom-Mathematiker Andreas Sewe aus Twistrin- gen, Deutschland 1. Gutachten: Prof. Dr.-Ing. Ermira Mezini 2. Gutachten: Prof. Richard E. Jones Tag der Einreichung: 17. August 2012 Tag der Prüfung: 29. Oktober 2012 Darmstadt — D 17 For Bettina Academic Résumé November 2007 – October 2012 Doctoral studies at the chair of Prof. Dr.-Ing. Er- mira Mezini, Fachgebiet Softwaretechnik, Fachbereich Informatik, Techni- sche Universität Darmstadt October 2001 – October 2007 Studies in mathematics with a special focus on com- puter science (Mathematik mit Schwerpunkt Informatik) at Technische Uni- versität Darmstadt, finishing with a degree of Diplom-Mathematiker (Dipl.- Math.) iii Acknowledgements First and foremost, I would like to thank Mira Mezini, my thesis supervisor, for pro- viding me with the opportunity and freedom to pursue my research, as condensed into the thesis you now hold in your hands. Her experience and her insights did much to improve my research as did her invaluable ability to ask the right questions at the right time. I would also like to thank Richard Jones for taking the time to act as secondary reviewer of this thesis. -
Java (Software Platform) from Wikipedia, the Free Encyclopedia Not to Be Confused with Javascript
Java (software platform) From Wikipedia, the free encyclopedia Not to be confused with JavaScript. This article may require copy editing for grammar, style, cohesion, tone , or spelling. You can assist by editing it. (February 2016) Java (software platform) Dukesource125.gif The Java technology logo Original author(s) James Gosling, Sun Microsystems Developer(s) Oracle Corporation Initial release 23 January 1996; 20 years ago[1][2] Stable release 8 Update 73 (1.8.0_73) (February 5, 2016; 34 days ago) [±][3] Preview release 9 Build b90 (November 2, 2015; 4 months ago) [±][4] Written in Java, C++[5] Operating system Windows, Solaris, Linux, OS X[6] Platform Cross-platform Available in 30+ languages List of languages [show] Type Software platform License Freeware, mostly open-source,[8] with a few proprietary[9] compo nents[10] Website www.java.com Java is a set of computer software and specifications developed by Sun Microsyst ems, later acquired by Oracle Corporation, that provides a system for developing application software and deploying it in a cross-platform computing environment . Java is used in a wide variety of computing platforms from embedded devices an d mobile phones to enterprise servers and supercomputers. While less common, Jav a applets run in secure, sandboxed environments to provide many features of nati ve applications and can be embedded in HTML pages. Writing in the Java programming language is the primary way to produce code that will be deployed as byte code in a Java Virtual Machine (JVM); byte code compil ers are also available for other languages, including Ada, JavaScript, Python, a nd Ruby. -
Industrial Iot: from Embedded to the Cloud Using Java from Beginning to End
Industrial IoT: from Embedded to the Cloud using Java from Beginning to End © Copyright Azul Systems 2015 Simon Ritter Deputy CTO, Azul Systems @speakjava © Copyright Azul Systems 2019 1 Industrial IoT © Copyright Azul Systems 2019 Industrial Revolutions Industry 1.0 Industry 2.0 Industry 3.0 Industry 4.0 st 1st mechanical loom 1st assembly line 1 programmable Industrial (1784) (1913) logic controller Internet (1969) End of Start of Start of Start of 18th Century 20th Century 1970s 21st Century © Copyright Azul Systems 2019 3 Industrial Automation The traditional segment drivers haven’t changed... Competitive edge Production throughput Enhanced quality Manufacturing visibility and control Energy and Government & Safety Business resource management standards compliance and security integration © Copyright Azul Systems 2019 5 Industrial Automation Smart devices are key Local intelligence and Flexible networking Performance and scalability decision-making Security Remote management Functions become services © Copyright Azul Systems 2019 6 Industrial IoT: Edge to Cloud Intelligent Gateways Cloud Edge Devices • Minimal compute power • Complex event filtering • Data collection • Raw event filtering • Basic analytics • Analytics • Programmable control • Offline/online control • Machine Learning • Mesh networking • Command & control © Copyright Azul Systems 2019 Why Java For Industrial IoT? © Copyright Azul Systems 2019 Java Embedded Platform ▪ Hardware and Operating System independence ▪ Local database, web-enabled, event aware ▪ Optimised for -
Implementing Novice Friendly Error Messages in Clojure
Implementing Novice Friendly Error Messages in Clojure Charlot Shaw Computer Science Discipline University of Minnesota Morris Morris, MN 56267 [email protected] March 17, 2018 Abstract Clojures promise as an educational language taught to first time programmers is limited by its error messages, which show its Java underpinnings. The messages are generated by the Java code executing the Clojure program, and thus are focused on the state of the Java implementation of Clojure, which hides the details about the issue in the users code. By using these messages, along with the information obtained via Clojure.Spec contracts, error messages can be reformatted into a beginner friendly, near plain-language representation. By integrating the re-formatting code into Clojures nREPL middleware system, the trans- formation can be accomplished without disturbing programmers’ workflow, and be easily incorporated into Integrated Development Environments. We present a proof of concept implementation integrating beginner friendly error messages into Clojure via nREPL. 1 Introduction Clojure [2], amongst other functional languages, has gained attention in recent years in part for its management of state and concurrency. Running on the Java Virtual Machine (JVM), Clojure has a number of advantages for beginning students. Its Lisp style syntax and elegant core library work together to let beginners learn easily, while its ties to the JVM keep it relevant as students progress into later courses. However, from an educational perspective, it has a significant flaw in the form of error messages. As Clojure code runs in the JVM, its errors take the structure and terminology of Java error messages, and so are confusing to new students. -
Design and Implementation of a Java Bytecode Manipulation Library for Clojure
Journal of Information Processing Vol.23 No.5 716–729 (Sep. 2015) [DOI: 10.2197/ipsjjip.23.716] Regular Paper Design and Implementation of a Java Bytecode Manipulation Library for Clojure Seiji Umatani1,a) Tomoharu Ugawa2 Masahiro Yasugi3 Received: November 14, 2014, Accepted: March 17, 2015 Abstract: Recently, the Java Virtual Machine (JVM) has become widely used as a common execution platform for various applications. There is often the need to manipulate bytecodes at class-load time, particularly in application domains that demand dynamic modification of program behaviors. Whereas several bytecode manipulation tools for Java exist for implementing such behaviors, JVM is also the platform for various modern programming languages, and there is no need to write bytecode manipulation programs exclusively in Java. In this paper, we propose a novel bytecode manipulation library for Clojure, a Lisp dialect running on JVM. Our library is as expressive and flexible as ASM, the de facto standard bytecode manipulation tool in Java, while enabling more concise representation of typical manipulation cases. Our library works at class-load time as a series of rewrites of (parts of) the tree representing the target class file, basically in a similar way to Lisp’s macro system. However, our library differs from Lisp’s macro system in the following significant respects. First, instead of matching a single name against the first item of the target form (tree), our library matches a tree pattern against the target tree itself during macro expansion so that users can de- fine rewriting rules for raw class files that cannot contain any special tags (names) for pattern matching.