Received: Added at production Revised: Added at production Accepted: Added at production DOI: xxx/xxxx RESEARCH ARTICLE Parallel adaptive FETI-DP using lightweight asynchronous dynamic load balancing Axel Klawonn1,2 | Martin J. Kühn3 | Oliver Rheinbach4 1Department of Mathematics and Computer Science, University of Cologne, Germany Summary 2Center for Data and Simulation Science, University of Cologne, Germany A parallel FETI-DP domain decomposition method using an adaptive coarse space 3Parallel Algorithms Team, CERFACS is presented. The implementation builds on a recently introduced adaptive FETI-DP (Centre Européen de Recherche et de approach for elliptic problems in three dimensions and uses small, local eigenvalue Formation Avancée en Calcul Scientifique), France problems for faces and, additionally, for a small number of edges. The condition 4Institut für Numerische Mathematik und number of the preconditioned operator then satisfies a bound which is independent Optimierung, Technische Universität of coefficient heterogeneities in the problem. The computational cost of the local Bergakademie Freiberg, Germany eigenvalue problems is not negligible, and also a significant load imbalance can be Correspondence introduced. As a remedy, certain eigenvalue problems are discarded by a theory- Martin J. Kühn, Parallel Algorithms Team, CERFACS (Centre Européen de Recherche guided heuristic strategy, based on the diagonal entries of the stiffness matrices. et de Formation Avancée en Calcul Additionally, a lightweight pairwise dynamic load balancing strategy is implemented Scientifique). Email: for the eigenvalue problems. The load balancing is supervised by an orchestrating
[email protected] rank using asynchronous point-to-point communication. The resulting method shows Present Address good weak and strong scalability up to thousands of cores while fast convergence is 42 Avenue Gaspard Coriolis, 31057 Toulouse Cedex 01, France obtained even for heterogeneous problems.