Publications of Continuing Interest

Total Page:16

File Type:pdf, Size:1020Kb

Publications of Continuing Interest cont-interest-sep99.qxp 7/14/99 12:45 PM Page 992 AMERICAN MATHEMATICAL SOCIETY PUBLICATIONS of CONTINUING INTEREST VOLUME 4 Titles of General Interest WHAT’S HAPPENING IN THE MATHEMATICAL The AMS is pleased to bring you these bestselling titles in the General Interest category. The selections are suitable for a wide SCIENCES – 1999 1998 audience, including high school students, undergraduates, and educators. Many of the books make fine texts for course adop- BARRY CIPRA tion. They offer vital and informative historical, biographical, and educational perspectives on mathematics. For more recommended textbooks, search the AMS Bookstore at www.ams.org/bookstore/. To request an exam copy, contact the AMS. What’s Happening in the An account of one of the great mathematicians of all time. Thoroughly researched biography plus summary of contributions to analytic func- M THE ATI A CA M L Σ ΜΗ ΤΡΗΤΡΗΤΟΣΤΟ ΜΗ ΕΙΣΙΤΕΙΣΙΤΩ N S O A Ε Μ C C Ω I I E E Ε Ω R R Γ T T Α ΑΓΕΩΜΕ E E Y Y M M A A Mathematical Sciences, Volume 4 8 FO 88 UNDED 1 tion theory, number theory, geometry, calculus of variations, Barry Cipra mathematical physics, PDEs, and other other subjects. —American Mathematical Monthly Praise for volumes 1, 2, and 3 of What’s Happening … H Some mathematicans are well remembered without being well OW TO TEACH Stylish format … largely accessible to laymen … This publication is acknowledged: the name circulates, but the contributions which caused MATHEMATICS one of the snappier examples of a growing genre from scientific soci- SECOND EDITION the fame are largely forgotten or at least not distinguished from others’: eties seeking to increase public understanding of their work and its STEVEN G. An outstanding case for this century is Jacques Hadamard … All the KRANTZ societal value. —Science & Government Report more reason to welcome this fine and exhaustive book, which treats in Another choice of new exciting developments in mathematics. These detail both his exceptionally long life and comparably important work … volumes really deserve a large audience, students as well as —Bulletin of the American Mathematical Society researchers will be fascinated by the insights and overviews presented. Co-published with the London Mathematical Society. Members of the LMS may order —Zentralblatt für Mathematik directly from the AMS at the AMS member price. The LMS is registered with the Charity Commissioners. HEM AT AT M IC A ΤΡΗΤΟΣ ΜΜΗ N Η L ΕΙΣΙΤΩ A Ε ΕΙΣΙΤΩ C S I O R C C E E I ΑΓΕΩΜΑΓΕΩΜΕ I E E M M T T A A Y Y F O U 88 NDED 18 American Mathematical Society The topics chosen and the lively writing fill a notorious gap—to make History of Mathematics, Volume 14; 1998; ISBN 0-8218-0841-9; 574 pages; the ideas, concepts and beauty of mathematics more visible for the Hardcover; Individual member $47, List $79, Institutional member $63, Order History of Mathematics general public … well-illustrated … Congratulations to Barry Cipra. Code HMATH/14CT99 Volume 14 —Zentralblatt für Mathematik Cover picture, detail from “Wave–Particle Duality”, was created and provided by artist Prospects in Mathematics Mel Fisher. Reproduced with permission. JACQUES Invited Talks on the Occasion of the 250th HADAMARD, What’s Happening in the Mathematical Sciences, Volume 4; 1999; ISBN 0- Anniversary of Princeton University A Universal Mathematician 8218-0766-8; 126 pages; Softcover; List $14, Order Code HAPPENING/4CT99 Hugo Rossi, Mathematical Sciences Research Institute, ′ya Vladimir Maz Recommended Text Berkeley, CA, Editor Tatyana Shaposhnikova How to Teach Mathematics Cover picture of Old Fine Hall at Princeton University is courtesy of Robert P. Matthews, Communications Department, Princeton University. American Mathematical Society London Mathematical Society Second Edition 1999; ISBN 0-8218-0975-X; 162 pages; Hardcover; All AMS members $23, Steven G. Krantz, Washington University, St. Louis, MO List $29, Order Code PIMCT99 Praise for the First Edition … Research in Collegiate Mathematics An original contribution to the educational literature on teaching math- Education. III PROSPECTS IN ematics at the post-secondary level. The book itself is an explicit proof Alan H. Schoenfeld, University of California, Berkeley, MATHEMATICS of the author’s claim “teaching can be rewarding, useful, and fun”. Invited Talks on the —Zentralblatt für Mathematik Jim Kaput, University of Massachusetts, Dartmouth, and Occasion of the 250th Anniversary 1999; ISBN 0-8218-1398-6; 307 pages; Softcover; All AMS members $19, Ed Dubinsky, Georgia State University, Atlanta, Editors of Princeton University List $24, Order Code HTM/2CT99 This volume presents state-of-the-art research on understanding, HUGO ROSSI, EDITOR teaching, and learning mathematics. Included is information on HEM AT AT M IC Jacques Hadamard, A Universal methodology and research concentrating on these areas of student A ΤΤΡΗΤΟΣ ΜΗ N ΡΗΤΟΣ ΜΗ L ΕΙΣΙΤΩ A Ε Ε C Μ ΙΣ S I Ω O ΙΤΩ R Ε C C Γ E E I ΑΓΕΩΜΕΑ I E E M M T T A A Y Y F O U 88 NDED 18 Mathematician learning: problem solving, understanding concepts, and understanding proofs. Vladimir Maz ya and Tatyana Shaposhnikova, Linköping ´ This series is published in cooperation with the Mathematical Association of America. Mathematical World • Volume 13 University, Sweden CBMS Issues in Mathematics Education, Volume 7; 1998; ISBN 0-8218-0882-6; The authors describe Hadamard’s life with numerous interesting details 316 pages; Softcover; All Individuals $24, List $40, Order Code CBMATH/7CT99 A Gentle contained in the references of those close to him and give many illus- Introduction to GAME trations of the wide-ranging mathematical impact of this “living legend”. Recommended Text THEORY Furthermore, the authors enhance the utility of their text as a research A Gentle Introduction to Game tool by organizing and listing hundreds of references to other pertinent materials about the life and works of Hadamard. Theory Saul Stahl —MAA Online Saul Stahl, University of Kansas, Lawrence The reviewer recommends the book highly for both enjoyment and infor- M THE ATI A CA M L Mathematical World, Volume 13; 1999; ISBN 0-8218-1339-0; 176 pages; ΤΡΗΤΟΣ ΜΗ ΕΙΣΙΤΩ N S O A C C I I E R T ΑΓΕΩΜΕ ΑΓΕΩΜΕ E Y M A F 8 O 88 mation. The authors have a masterful grasp of both the mathematics UNDED 1 Softcover; All AMS members $20, List $25, Order Code MAWRLD/13CT99 American Mathematical Society and the biography, and they tell the story in a very interesting way. —Mathematical Reviews All prices subject to change. Charges for delivery are $3.00 per order. For optional air delivery outside of the continental U. S., please include $6.50 per item. Prepayment required. Order from: American Mathematical Society, P. O. Box 5904, Boston, MA 02206-5904, USA. For credit card orders, fax 1-401-455-4046 or call toll free 1-800-321-4AMS (4267) in the U. S. and Canada,1-401-455-4000 worldwide. Or place your order through the AMS bookstore at www.ams.org/bookstore/. Residents of Canada, please include 7% GST. For more publications in your subject area visit the AMS Bookstore: www.ams.org/bookstore/. 992 NOTICES OF THE AMS VOLUME 46, NUMBER 8.
Recommended publications
  • Futureacademy.Org.UK
    The European Proceedings of Social & Behavioural Sciences EpSBS Future Academy ISSN: 2357-1330 http://dx.doi.org/10.15405/epsbs.2017.08.55 EEIA-2017 2017 International conference "Education Environment for the Information Age" PROBLEMS OF AN INTERDISCIPLINARITY IN COMPARATIVE EDUCATION IN THE INFORMATION AGE Vladimir Myasnikov (a), Irina Naydenova (b), Natalia Naydenova (c)*, Tatyana Shaposhnikova (d) *Corresponding author (a) Institute for Strategy of Education Development of the Russian Academy of Education, 5/16, Makarenko St., 105062 Moscow, Russia (b) Institute for Strategy of Education Development of the Russian Academy of Education, 5/16, Makarenko St., 105062 Moscow, Russia (c) Institute for Strategy of Education Development of the Russian Academy of Education, 5/16, Makarenko St., 105062 Moscow, Russia, [email protected]* (d) Institute for Strategy of Education Development of the Russian Academy of Education, 5/16, Makarenko St., 105062 Moscow, Russia Abstract The article is devoted to the topical issues for the methodology of modern comparative research in education, which at the moment in the information age should be interdisciplinary in describing and explaining the educational phenomena and practices; build on the results of research in other areas of knowledge and carried out by specialists from different scientific fields. In modern conditions, the interdisciplinary of comparative research requires an expansion of the framework of this approach, their orientations to results of new disciplines taking into account electronic means of the analysis and assessment of data with the prospect of moving from interdisciplinarity to transdisciplinarity. The interdisciplinarity in comparative research is studied in the works of foreign and domestic scientists.
    [Show full text]
  • EUROPEAN MATHEMATICAL SOCIETY EDITOR-IN-CHIEF ROBIN WILSON Department of Pure Mathematics the Open University Milton Keynes MK7 6AA, UK E-Mail: [email protected]
    CONTENTS EDITORIAL TEAM EUROPEAN MATHEMATICAL SOCIETY EDITOR-IN-CHIEF ROBIN WILSON Department of Pure Mathematics The Open University Milton Keynes MK7 6AA, UK e-mail: [email protected] ASSOCIATE EDITORS VASILE BERINDE Department of Mathematics, University of Baia Mare, Romania e-mail: [email protected] NEWSLETTER No. 47 KRZYSZTOF CIESIELSKI Mathematics Institute March 2003 Jagiellonian University Reymonta 4 EMS Agenda ................................................................................................. 2 30-059 Kraków, Poland e-mail: [email protected] Editorial by Sir John Kingman .................................................................... 3 STEEN MARKVORSEN Department of Mathematics Executive Committee Meeting ....................................................................... 4 Technical University of Denmark Building 303 Introducing the Committee ............................................................................ 7 DK-2800 Kgs. Lyngby, Denmark e-mail: [email protected] An Answer to the Growth of Mathematical Knowledge? ............................... 9 SPECIALIST EDITORS Interview with Vagn Lundsgaard Hansen .................................................. 15 INTERVIEWS Steen Markvorsen [address as above] Interview with D V Anosov .......................................................................... 20 SOCIETIES Krzysztof Ciesielski [address as above] Israel Mathematical Union ......................................................................... 25 EDUCATION Tony Gardiner
    [Show full text]
  • Layer Potentials for General Linear Elliptic Systems 1
    Electronic Journal of Differential Equations, Vol. 2017 (2017), No. 309, pp. 1{23. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu LAYER POTENTIALS FOR GENERAL LINEAR ELLIPTIC SYSTEMS ARIEL BARTON Abstract. In this article we construct layer potentials for elliptic differential operators using the Babuˇska-Lax-Milgram theorem, without recourse to the fundamental solution; this allows layer potentials to be constructed in very general settings. We then generalize several well known properties of layer potentials for harmonic and second order equations, in particular the Green's formula, jump relations, adjoint relations, and Verchota's equivalence between well-posedness of boundary value problems and invertibility of layer potentials. 1. Introduction There is by now a very rich theory of boundary value problems for the Laplace operator, and more generally for second order divergence form operators − div Ar. The Dirichlet problem − div Aru = 0 in Ω; u = f on @Ω; kukX ≤ CkfkD and the Neumann problem − div Aru = 0 in Ω; ν · Aru = g on @Ω; kukX ≤ CkgkN are known to be well-posed for many classes of coefficients A and domains Ω, and with solutions in many spaces X and boundary data in many boundary spaces D and N. A great deal of current research consists in extending these well posedness results to more general situations, such as operators of order 2m ≥ 4 (for example, [19, 25, 45, 47, 53, 54]; see also the survey paper [22]), operators with lower order terms (for example, [24, 30, 34, 55, 62]) and operators acting on functions defined on manifolds (for example, [46, 50, 51]).
    [Show full text]
  • International Congress of Mathematics 2002 Satellite
    中 央 研 究 院 數 學 研 究 所 INSTITUTE OF MATHEMATICS ACADEMIA SINICA TAIPEI 10617, TAIWAN TEL : 886-2-23685999 FAX : 886-2-23689771 International Congress of Mathematics 2002 Satellite Conference – Taipei 2002 International Conference on Nonlinear Analysis 13 August – 17 August 2002 Institute of Mathematics, Academia Sinica Organized by Nai-Heng Chang 張乃珩 (Academia Sinica) Kin-Ming Hui 許健明 (Academia Sinica) Fon-Che Liu 劉豐哲 (Academia Sinica) Tai-Ping Liu 劉太平 (Academia Sinica) Organized by National Science Council 中 央 研 究 院 數 學 研 究 所 INSTITUTE OF MATHEMATICS ACADEMIA SINICA TAIPEI 10617, TAIWAN TEL : 886-2-23685999 FAX : 886-2-23689771 Table of Contents August 13, Tuesday, 2002 13:30 – 14:30 Kyuya Masuda (Himeji Institute of Technology) Analyticity of solutions for some evolution equations .......................................................................... 1 14:40 – 15:40 Vladimir Maz'ya (Linkoping University) The Schrödinger and the relativistic Schrödinger operators on the energy space: boundedness and compactness criteria ....................................................................................................................... 2 16:00 – 17:00 Mariano Giaquinta (Scuola Normale Superiore, Pisa) Graph currents and applications ............................................................................................................ 3 August 14, Wednesday, 2002 09:00 – 10:00 Claude Bardos (University of Paris 7) Mean field dynamics of N quantum particles, Hartree, Hartree Fock approximations and Coulomb Potential ................................................................................................................................
    [Show full text]
  • Abstract and Applied Analysis, Volume 2011, Article ID 545264, 19 Pages, 2011
    Nikolai Azbelev −−− the Giant of Causal Mathematics Efim A. Galperin Universite du Quebec a Montreal, Canada One of the greatest mathematicians of all times, Nikolai Viktorovich Azbelev has died. He is one of those great scholars who rise to lasting prominence after leaving this world of fast market values in science. He left immortal ideas that are changing mathematics. I met him 20 years ago at the first world Congress of Nonlinear Analysts (1992) in Tampa, USA, and later in Ariel and Athens. We talked a lot about differential equations with deviating arguments, the branch of mathematics not duly recognized at the time and, I am afraid, not clearly understood right now. The classical theories of ODEs and PDEs well presented in all textbooks, monographs and high level articles in mathematics are physically invalid, and Nikolai Azbelev felt it strongly although he could not tell it from the podium of a congress. Even now, it is not common to talk about it. To put things straight, consider the 2nd law of Newton usually formulated in textbooks as follows: ma = mx’’ = F(t, x, v), v = x’ = lim[x(t+ dt) – x(t)]/dt as dt→ 0. Here the mass m is presumed to be constant. For m ≠ const, Georg Buquoy proposed (1812) another formula: mdv + (v – w)dm = F(t, x, v)dt where v – w is the relative velocity with which dm is ejected from a moving body. Both formulas are however non-causal, thus physically invalid, since at any current moment t, the value x(t + dt), dt > 0, does not exist and cannot be known (measured) at a future moment t + dt > t not yet realized.
    [Show full text]
  • Advances in Nonlinear Pdes ! Book$Of$Abstracts$
    ! ! Advances in Nonlinear PDEs ! in#honor#of##Nina#N.#Uraltseva## Book$of$abstracts$ St.!Petersburg,!!2014!!! ! ! Advances in Nonlinear PDEs September 3-5, 2014 Advances in Nonlinear PDEs ! Interna2onal#Conference# in#honor#of#the#outstanding#mathema2cian# Nina#N.#Uraltseva## and#on#the#occasion#of#her#80th#anniversary# St.!Petersburg,!!September!3@5,!2014!!! Supported!by:! St.!Petersburg!Steklov!Ins7tute! of!Mathema7cs! 1 Advances in Nonlinear PDEs September 3-5, 2014 ! ! Organizing(Commi,ee:( Darya%Apushkinskaya% Alexander%Mikhailov% Alexander%Nazarov% Sergey%Repin% Ta;ana%Vinogradova% Nadya%Zalesskaya% 2 Advances in Nonlinear PDEs September 3-5, 2014 Cauchy-Dirichlet problem for quasilinear parabolic systems with a nonsmooth in time principal matrix Arina Arkhipova St. Petersburg State University, Russia [email protected] We consider quasilinear parabolic systems with nonsmooth in time principal matrices. Only boundedness of these matrices is assumed in time variable. We prove partial regularity up to the parabolic boundary of a cylinder. To prove the result, we apply the method of modified A-caloric approximation assuming that the matrix A is not the constant one but depends on the time variable. The talk reports on results obtained jointly with J.Stara and O.John. 3 Advances in Nonlinear PDEs September 3-5, 2014 Semilinear elliptic problems with a Hardy potential Catherine Bandle University of Basel, Switzerland [email protected] We consider problems of the type p Δu +V (x)u = u in a bounded domain in n where µ V is a Hardy potential and δ(x) is the distance δ 2(x) from a point x to the boundary of the domain.
    [Show full text]
  • Recent Progress in Elliptic Equations and Systems of Arbitrary Order with Rough Coefficients in Lipschitz Domains
    Recent progress in elliptic equations and systems of arbitrary order with rough coefficients in Lipschitz domains Vladimir Maz'ya Department of Mathematical Sciences University of Liverpool, M&O Building Liverpool, L69 3BX, UK Department of Mathematics Link¨opingUniversity SE-58183 Link¨oping, Sweden Tatyana Shaposhnikova Department of Mathematics Link¨opingUniversity SE-58183 Link¨oping, Sweden Abstract. This is a survey of results mostly relating elliptic equations and systems of arbitrary even order with rough coefficients in Lipschitz graph domains. Asymp- totic properties of solutions at a point of a Lipschitz boundary are also discussed. 2010 MSC. Primary: 35G15, 35J55; Secondary: 35J67, 35E05 Keywords: higher order elliptic equations, higher order elliptic systems, Besov spaces, BMO, VMO, Lipschitz graph domains, Green's function, asymptotic be- haviour of solutions Introduction Results on the regularity of solutions up to the boundary of a domain play a very important role in the theory of linear elliptic equations and systems. The following classical example serves as an illustration. Consider the Dirichlet problem ( ∆u = 0 in Ω; Tr u = f on @Ω; where Ω is a bounded domain with smooth boundary in Rn and Tr u stands for the 1 boundary value (trace) of u. Let u 2 Wp (Ω), 1 < p < 1, that is Z 1=p p p kuk 1 := jruj + juj dx < 1; Wp (Ω) Ω 1−1=p and let f belong to the Besov space Bp (@Ω) with the norm Z Z p Z 1=p jf(x) − f(y)j p n+p−2 dσxdσy + jf(x)j dσx : @Ω @Ω jx − yj @Ω 1 It is well-known that 1 1−1=p Tr Wp (Ω) = Bp (@Ω): 1−1=p 1 Moreover, the harmonic extension u of f 2 Bp (@Ω) belongs to Wp (Ω) and the 1 1−1=p norm of u in Wp (Ω) is equivalent to the above norm in Bp (@Ω).
    [Show full text]
  • Recent Progress in Elliptic Equations and Systems of Arbitrary Order With
    Recent progress in elliptic equations and systems of arbitrary order with rough coefficients in Lipschitz domains Vladimir Maz’ya Department of Mathematical Sciences University of Liverpool, M&O Building Liverpool, L69 3BX, UK Department of Mathematics Link¨oping University SE-58183 Link¨oping, Sweden Tatyana Shaposhnikova Department of Mathematics Link¨oping University SE-58183 Link¨oping, Sweden Abstract. This is a survey of results mostly relating elliptic equations and systems of arbitrary even order with rough coefficients in Lipschitz graph domains. Asymp- totic properties of solutions at a point of a Lipschitz boundary are also discussed. 2010 MSC. Primary: 35G15, 35J55; Secondary: 35J67, 35E05 Keywords: higher order elliptic equations, higher order elliptic systems, Besov spaces, mean oscillations, BMO, VMO, Lipschitz domains, Green’s function, asymp- totic behaviour of solutions Introduction The fundamental role in the theory of linear elliptic equations and systems is played by results on regularity of solutions up to the boundary of a domain. The following classical example serves as an illustration. arXiv:1010.0480v1 [math.AP] 4 Oct 2010 Consider the Dirichlet problem ∆u = 0 in Ω, ( Tr u = f on ∂Ω, where Ω is a bounded domain with smooth boundary and Tr u stands for the boundary value (trace) of u. Let u L1(Ω), 1 <p< , that is ∈ p ∞ u pdx < |∇ | ∞ ZΩ 1−1/p and let f belong to the Besov space Bp (∂Ω) with the seminorm f(x) f(y) p 1/p | −n+p−2| dσxdσy . ∂Ω ∂Ω x y Z Z | − | 1 It is well-known that 1 1−1/p Tr Lp(Ω) = Bp (∂Ω).
    [Show full text]
  • Arxiv:Math/0601044V2
    FUNCTIONS OF BOUNDED VARIATION, THE DERIVATIVE OF THE ONE DIMENSIONAL MAXIMAL FUNCTION, AND APPLICATIONS TO INEQUALITIES J. M. ALDAZ AND J. PEREZ´ LAZARO´ Abstract. We prove that if f : I R R is of bounded variation, then the uncentered maximal function Mf is absolutely continuous,⊂ → and its derivative satisfies the sharp inequality DMf L1(I) Df (I). This allows us obtain, under less regularity, versions of classical inequalitiesk k involving≤ | | derivatives. 1. Introduction. The study of the regularity properties of the Hardy-Littlewood maximal function was initiated by Juha Kinnunen in [Ki], where it was shown that the centered maximal operator is bounded on the Sobolev spaces W 1,p(Rd) for 1 <p . This result was used to give a new proof of a weak-type inequality for the Sobolev capacity,≤∞ and to obtain the p-quasicontinuity of the maximal function of an element of W 1,p(Rd), 1 <p< . Since then, a good deal of work has been done within this line of research. In [KiLi] a local∞ version of the original boundedness result, valid on W 1,p(Ω), Ω Rd open, was given. Generalizations were presented in [HaOn], extending both the global and⊂ local theorems to the spherical maximal function for the range d> 1,d/(d 1) <p. The regularity of the fractional maximal operator was studied in [KiSa]. Hannes Luiro− proved in [Lu] the continuity of the Hardy-Littlewood maximal operator on W 1,p(Rd) (continuity is not immediate from boundedness because of the lack of linearity), finding an explicit representation for the derivative of the maximal function.
    [Show full text]
  • Sobolev Spaces in Mathematics I
    SOBOLEV SPACES IN MATHEMATICS I SOBOLEV TYPE INEQUALITIES INTERNATIONAL MATHEMATICAL SERIES Series Editor: Tamara Rozhkovskaya Novosibirsk, Russia 1. Nonlinear Problems in Mathematical Physics and Related Topics I. In Honor of Professor O.A. Ladyzhenskaya • M.Sh. Birman, S. Hildebrandt, V.A. Solonnikov, N.N. Uraltseva Eds. • 2002 2. Nonlinear Problems in Mathematical Physics and Related Topics II. In Honor of Professor O.A. Ladyzhenskaya • M.Sh. Birman, S. Hildebrandt, V.A. Solonnikov, N.N. Uraltseva Eds. • 2003 3. Different Faces of Geometry • S. Donaldson, Ya. Eliashberg, M. Gro- mov Eds. • 2004 4. Mathematical Problems from Applied Logic I. Logics for the XXIst Century • D. Gabbay, S. Goncharov, M. Zakharyaschev Eds. • 2006 5. Mathematical Problems from Applied Logic II. Logics for the XXIst Century • D. Gabbay, S. Goncharov, M. Zakharyaschev Eds. • 2007 6. Instability in Models Connected with Fluid Flows. I • C. Bardos, A. Fursikov Eds. • 2008 7. Instability in Models Connected with Fluid Flows. II • C. Bardos, A. Fursikov Eds. • 2008 8. Sobolev Spaces in Mathematics I. Sobolev Type Inequalities • V. Maz’ya Ed. • 2009 9. Sobolev Spaces in Mathematics II. Applications in Analysis and Partial Differential Equations • V. Maz’ya Ed. • 2009 10. Sobolev Spaces in Mathematics III. Applications in Mathemat- ical Physics • V. Isakov Ed. • 2009 SOBOLEV SPACES IN MATHEMATICS I Sobolev Type Inequalities Editor: Vladimir Maz’ya Ohio State University, USA University of Liverpool, UK Link¨oping University, SWEDEN 123 Tamara Rozhkovskaya Publisher Editor Prof. Vladimir Maz’ya Ohio State University Department of Mathematics Columbus, USA University of Liverpool Department of Mathematical Sciences Liverpool, UK Link¨oping University Department of Mathematics Link¨oping, Sweden This series was founded in 2002 and is a joint publication of Springer and “Tamara Rozhkovskaya Publisher.” Each volume presents contributions from the Volume Editors and Authors exclusively invited by the Series Editor Tamara Rozhkovskaya who also pre- pares the Camera Ready Manuscript.
    [Show full text]
  • INVENTARIO DELLA CORRISPONDENZA a Cura Di Claudio Sorrentino Con Il Coordinamento Scientifico Di Paola Cagiano De Azevedo
    ARCHIVIO GAETANO FICHERA INVENTARIO DELLA CORRISPONDENZA a cura di Claudio Sorrentino con il coordinamento scientifico di Paola Cagiano de Azevedo Roma 2020 1 NOTA INTRODUTTIVA Gaetano Fichera nacque ad Acireale, in provincia di Catania, l’8 febbraio 1922. Fu assai verosimilmente suo padre Giovanni, anch’egli insegnante di matematica, a infondergli la passione per questa disciplina. Dopo aver frequentato il primo biennio di matematica nell’Università di Catania (1937-1939), si laureò brillantemente a Roma nel 1941, a soli diciannove anni, sotto la guida di Mauro Picone (di cui fu allievo prediletto), eminente matematico e fondatore dell’Istituto nazionale per le applicazioni del calcolo, il quale nello stesso anno lo fece nominare assistente incaricato presso la sua cattedra. Libero docente dal 1948, la sua attività didattica fu svolta sempre a Roma, ad eccezione del periodo che va dal 1949 al 1956, durante il quale, dopo essere divenuto professore di ruolo, insegnò nell’Università di Trieste. Nel 1956 fu chiamato all’Università di Roma, dove successe proprio al suo Maestro Mauro Picone, nella quale occupò le cattedre di analisi matematica e analisi superiore. Alla sua attività ufficiale vanno aggiunti i periodi, a volte anche piuttosto lunghi, di insegnamento svolto in Università o istituzioni estere. Questi incarichi all’estero, tuttavia, non interferirono con la sua attività didattica in Italia. Fu membro dell’Accademia nazionale dei Lincei, di cui fu socio corrispondente dal 1963 e nazionale dal 1978, e di altre prestigiose istituzioni culturali nazionali e internazionali. Nel 1976 fu insignito dall’Accademia dei Lincei stessa del “Premio Feltrinelli”. Ai Lincei si era sempre dedicato, soprattutto negli ultimi anni, quando dal 1990 al 1996 diresse i «Rendiconti di matematica e applicazioni», ai quali diede forte impulso, migliorandone la qualità scientifica e incrementandone la diffusione a livello internazionale.
    [Show full text]
  • Inequality for Entire Functions Involving Their Maximum Modulus and Maximum Term,Bytatyana Shaposhnikova, Commu- Nicated on 9 March 2012
    Rend. Lincei Mat. Appl. 23 (2012), 259–265 DOI 10.4171/RLM/627 Complex Variables Functions — Inequality for entire functions involving their maximum modulus and maximum term,byTatyana Shaposhnikova, commu- nicated on 9 March 2012. Dedicated to the memory of Gaetano Fichera Abstract. — An estimate of the Wiman-Valiron type for a maximum modulus on a polydisk of an entire function of several complex variables is obtained. The estimate contains a weight function involved also in the calculation of the radius of the admissible ball. Key words: Entire function, several complex variables, maximal modulus and maximum term. 2010 Mathematics Subject Classification: Primary: 35G15, 35J55; Secondary: 35J67, 35E05. Introduction Let a ¼ða1; ...; anÞ be a multi-index with aj b 0 and let z ¼ðz1; ...; znÞ be a point of the n-dimensional complex space Cn. We consider the entire function X a ð0:1Þ f ðzÞ¼ aaz : a For any r ¼ðr1; ...; rnÞ with rj b 0 we introduce the maximum modulus and the maximum term of f : a ð0:2Þ Mf ðrÞ¼ max j f ðzÞj; mf ðrÞ¼max jaajr : fz:jzj j¼rj g a Clearly, by the Cauchy formula for the coe‰cients aa, mf ðrÞ a Mf ðrÞ: For n ¼ 1 the first result on the comparison between Mf ðrÞ and mf ðrÞ is due to A. Wiman [W] who showed that for any r0 there is an r > r0 such that 1=2þe ð0:3Þ Mf ðrÞ < ðlog mf ðrÞÞ mf ðrÞ 260 t. shaposhnikova with any e > 0. Moreover, if A is the set of r > 0 such that (0.3) holds, then Z dr < l: A r Wiman’s proof was essentially simplified by G.
    [Show full text]