Thesis Outline

Total Page:16

File Type:pdf, Size:1020Kb

Thesis Outline Nuclear Fuel Cycles for Mid-Century Deployment by Etienne Parent B. Eng. – Mechanical Engineering (2000) McGill University – Canada Submitted to the Department of Nuclear Engineering in partial fulfillment of the requirements for the degree of Master of Science in Nuclear Engineering at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY September 2003 © MIT, 2003, All rights reserved Author .................................................................................................................................... Department of Nuclear Engineering August 18, 2003 Certified by ............................................................................................................................ Neil E. Todreas KEPCO Professor of Nuclear Engineering Thesis Supervisor Certified by ............................................................................................................................ Michael J. Driscoll Professor Emeritus of Nuclear Engineering Thesis Reader Accepted by ........................................................................................................................... Jeffrey A. Coderre Associate Professor of Nuclear Engineering Chairman, Department Committee on Graduate Students Nuclear Fuel Cycles for Mid-century Deployment by Etienne Parent Submitted to the Department of Nuclear Engineering on August 18, 2003, in partial fulfillment of the requirements for the degree of Master of Science in Nuclear Engineering Abstract A comparative analysis of nuclear fuel cycles was carried out. Fuel cycles reviewed include: once-through fuel cycles in LWRs, PHWRs, HTGRs, and fast gas cooled breed and burn reactors; single-pass recycle schemes: plutonium recycle in LWRs and direct- use of spent PWR fuel in CANDU reactors (DUPIC); multi-pass recycle schemes: transmutation of transuranics in LWRs, fast reactors, double strata systems, and molten salt reactors. Mass flow calculations for the fuel cycles at equilibrium were carried out based on data available in the open literature, and results were used to compare the performance of the fuel cycles with respect to uranium utilization, waste management, proliferation resistance, and economics. Potential for mid-century deployment was assessed based on these results. Once-through fuel cycles based on solid fuel thermal reactors are found to be the best candidates for mid-century deployment because the substantial increase in electricity costs entailed by reprocessing schemes is unlikely to be justified by the afforded reductions in long-term proliferation and waste management risks. Furthermore, once-through cycles present lower proliferation and waste management risks in the short-term and their inefficient use of uranium is not likely to become an important issue before the middle of the century even under a high growth scenario. Thesis Supervisor: Neil E. Todreas Title: KEPCO Professor of Nuclear Engineering 2 Acknowledgements This thesis benefited from the work and input of several individuals. I am grateful to my advisor Neil Todreas and to Michael Driscoll for their review and comments. I must also thank several PhD students in the Department of Nuclear Engineering who have allowed me to benefit from their work, in particular Zhiwen Xu, Eugene Shwageraus, Antonino Romano, and Dean Wang. Finally, I learned a great deal from my involvement in the MIT Study on the Future of Nuclear Power. My interactions with the members of this project were extremely valuable in helping me develop an insight into the many technical, economic, and policy issues in nuclear energy. 3 TABLE OF CONTENTS 1 Introduction................................................................................................................. 5 2 Evaluation Metrics...................................................................................................... 6 2.1 Resource Utilization............................................................................................ 6 2.2 Waste................................................................................................................... 6 2.3 Proliferation ........................................................................................................ 7 2.4 Economics........................................................................................................... 8 2.5 Table of Metrics................................................................................................ 11 3 Analysis of Fuel Cycles ............................................................................................ 12 3.1 Once-Through................................................................................................... 12 3.1.1 Light Water Reactor.................................................................................. 12 3.1.2 Pressurized Heavy Water Reactor ............................................................ 20 3.1.3 High Temperature Gas Reactor ................................................................ 23 3.1.4 Seed and Blanket Thorium Reactor .......................................................... 29 3.1.5 Breed and Burn in Fast Reactor................................................................ 33 3.2 Closed Fuel Cycles ........................................................................................... 37 3.2.1 Plutonium Recycle in Light Water Reactor.............................................. 37 3.2.2 DUPIC Fuel Cycle .................................................................................... 42 3.2.3 Actinide recycle in Light Water Reactor .................................................. 46 3.2.4 Actinide Recycle in Fast Reactor.............................................................. 53 3.2.5 Double Strata Strategy .............................................................................. 56 3.2.6 Actinide Recycle in Molten Salt Reactor.................................................. 67 4 Outlook for Mid-Century Deployment ..................................................................... 74 4.1 Assessment of fuel cycles ................................................................................. 74 4.1.1 Uranium utilization ................................................................................... 74 4.1.2 Waste......................................................................................................... 75 4.1.3 Proliferation .............................................................................................. 76 4.1.4 Economics................................................................................................. 78 4.2 Outlook for mid-century deployment ............................................................... 80 5 Future Work.............................................................................................................. 86 References......................................................................................................................... 88 Appendices........................................................................................................................ 91 A Uranium Resources................................................................................................... 92 B Physics of Transmutation.......................................................................................... 99 B.1 Actinide Transmutation .................................................................................... 99 B.2 Fission Product Transmutation ....................................................................... 107 C Fuel Cycle Cost: Once-through vs. Pu Recycle...................................................... 112 4 1 Introduction The current nuclear industry is based predominantly on light water reactors (LWR), which account for almost 90% of installed capacity, with pressurized heavy water reactors (PHWR) also making a significant contribution with 5% of installed capacity. Most of these reactors operate on the once-through fuel cycle, where natural uranium is enriched to make uranium oxide (UOX) fuel, and, after irradiation, the spent fuel is encapsulated and disposed of directly in the repository. On the other hand, several countries choose to reprocess their spent fuel. Worldwide, a sizable fraction (>10%) of spent LWR fuel is reprocessed in order to extract plutonium1, which is recycled and used to make mixed oxide (MOX) fuel. The mixed oxide fuel is irradiated in conventional PWRs and then sent to the repository2. This fuel cycle is usually referred to as single-pass plutonium recycling. The reactors and fuel cycles identified above, which dominate today’s nuclear electricity industry, represent only a small subset of possibilities. Researchers in the field of nuclear energy have devoted much time and effort to devise fuel cycles that improve on today’s technology. Proposals for innovative reactors and fuel cycles abound in the open literature but none has emerged as a clear winner, as each one has its particular strengths and weaknesses. This situation has spurred efforts to review, evaluate, and compare fuel cycles on a methodical basis. The present study is one such effort, where the emphasis is placed on identifying fuel cycles that constitute viable options for mid-century deployment, meaning that their characteristics must match the needs of the nuclear electricity industry in the coming decades and that a significant deployment is feasible on this time scale. A literature review was conducted to identify
Recommended publications
  • Canada 176 Canada Canada
    CANADA 176 CANADA CANADA 1. GENERAL INFORMATION 1.1. General Overview 2 Canada, occupying about 10 million km and having a population of over 30 million (Table 1), is one of the least densely populated countries in the world. Canada’s birth rate, at present, is 12 per 1,000 whereas death rate is seven per 1,000 with the result that the rate of natural population increase now stands at five per 1,000 persons. Canada has strong seasonal changes and large regional variations in temperature. The rigorous climate, the energy intensive nature of the country's industries, and the large distances between population centres produce a high per capita energy use. TABLE 1. POPULATION INFORMATION Growth rate (%) 1980 1960 1970 1980 1990 2000 2001 To 2001 Population (millions) 17.9 21.7 24.5 27.7 30.8 31.0 1.1 Population density (inhabitants/km²) 1.8 2.2 2.5 2.8 3.1 3.1 Predicted population growth rate (%) 2001 to 2010 7.2 Area (1000 km²) 9976.1 Urban population in 2001 as percent of total Source: IAEA Energy and Economic Database. 1.2. Economic Indicators Table 2 gives the statistical Gross Domestic Product (GDP) data and the GDP by sector. TABLE 2. GROSS DOMESTIC PRODUCT (GDP) Growth rate (%) 1980 1970 1980 1990 2000 2001 To 2001 GDP (millions of current US$) 266,002 572,676 687,752 711,912 4.8 GDP (millions of constant 1990 US$) 286,186 434,401 572,676 748,108 779,872 3 GDP per capita (current US$/capita) 10,850 20,674 22,361 22,954 3.6 Source: IAEA Energy and Economic Database.
    [Show full text]
  • Fuel Cycle Flexibility in CANDU P.G
    IAEA-SM-353-5P Fuel Cycle Flexibility in CANDU P.G. Boczar XA9949933 Director, Fuel and Fuel Cycle Division, AECL Chalk River Laboratories, Chalk River, Ontario, Canada No single fuel-cycle path is appropriate for all countries. Many local and global factors will affect the best strategy for an individual country. Fuel-cycle flexibility is an important factor in an ever-changing, and unpredictable world. CANDU is an evolutionary reactor, offering a custom fuel cycle to fit local requirements. Its unsurpassed fuel-cycle flexibility can accommodate the widest range of fuel-cycle options in existing CANDU stations. In the short term, the CANFLEX® bundle is nearing power reactor implementation. The demonstration irradiation of 26 bundles in the Pt. Lepreau power station in New Brunswick, Canada, started this September, and a water-CHF test will take place later this year that will confirm the improvement in thermalhydraulic performance. CANFLEX provides enhanced operating and safety performance through a reduction in peak linear element ratings, and a significant increase in critical channel power. CANFLEX will be the near-term carrier of advanced fuel cycles. While natural uranium fuel provides outstanding advantages, the use of slightly enriched uranium (SEU) in CANDU offers even lower fuel cycle costs and other potential benefits, such as uprating capability through flattening the radial channel power distribution. Recycled uranium (RU) from reprocessing spent PWR fuel is a subset of SEU that has significant economic promise. The use of SEU/RU is the first logical step from natural uranium in CANDU. For countries having LWR reactors, the ability to use low-fissile material in CANDU reactors offers a range of unique synergistic fuel cycle opportunities.
    [Show full text]
  • A Comparison of Advanced Nuclear Technologies
    A COMPARISON OF ADVANCED NUCLEAR TECHNOLOGIES Andrew C. Kadak, Ph.D MARCH 2017 B | CHAPTER NAME ABOUT THE CENTER ON GLOBAL ENERGY POLICY The Center on Global Energy Policy provides independent, balanced, data-driven analysis to help policymakers navigate the complex world of energy. We approach energy as an economic, security, and environmental concern. And we draw on the resources of a world-class institution, faculty with real-world experience, and a location in the world’s finance and media capital. Visit us at energypolicy.columbia.edu facebook.com/ColumbiaUEnergy twitter.com/ColumbiaUEnergy ABOUT THE SCHOOL OF INTERNATIONAL AND PUBLIC AFFAIRS SIPA’s mission is to empower people to serve the global public interest. Our goal is to foster economic growth, sustainable development, social progress, and democratic governance by educating public policy professionals, producing policy-related research, and conveying the results to the world. Based in New York City, with a student body that is 50 percent international and educational partners in cities around the world, SIPA is the most global of public policy schools. For more information, please visit www.sipa.columbia.edu A COMPARISON OF ADVANCED NUCLEAR TECHNOLOGIES Andrew C. Kadak, Ph.D* MARCH 2017 *Andrew C. Kadak is the former president of Yankee Atomic Electric Company and professor of the practice at the Massachusetts Institute of Technology. He continues to consult on nuclear operations, advanced nuclear power plants, and policy and regulatory matters in the United States. He also serves on senior nuclear safety oversight boards in China. He is a graduate of MIT from the Nuclear Science and Engineering Department.
    [Show full text]
  • Health Physics Education Reference Book
    HEALTH PHYSICS EDUCATION REFERENCE BOOK 2010 - 2011 Health Physics Society Academic Education Committee Updated June 2010 1. Bloomsburg University Pennsylvania BS 2. Clemson University South Carolina MS PhD 3. Colorado State University Colorado MS PhD 4. Duke University North Carolina MS PhD 5. Francis Marion University South Carolina BS 6. Idaho State University Idaho AA BS MS PhD 7. Illinois Institute of Technology Illinois MS 8. Linn State Technical College Missouri AA 9. Louisiana State University Louisiana MS PhD 10. Ohio State University Ohio MS PhD 11. Oregon State University Oregon BS MS PhD 12. Purdue University Indiana BS MS PhD 13. Rensselaer Polytechnic Institute New York BS MS PhD 14. San Diego State University California MS 15. Texas A&M University Texas BS MS PhD 16. Texas State Technical College Texas AA 17. Thomas Edison State College AS BS 18. University of Cincinnati Ohio MS PhD 19. University of Florida Florida BS MS PhD 20. University of Massachusetts Lowell Massachusetts BS MS PhD 21. University of Michigan Michigan BS MS PhD 22. University of Missouri-Columbia Missouri MS PhD 23. University of Nevada Las Vegas Nevada BS MS 24. University of Tennessee Tennessee BS MS PhD 25. Vanderbilt University Tennessee MS PhD 26. Virginia Commonwealth University Degree Programs Recognized by the Accreditation Board for Engineering and Technology (ABET) in Health Physics under ABET’s Applied Science Accreditation Commission (ASAC) Bloomsburg University Health Physics (BS) (2006) Clemson University Environmental Health Physics (MS) (2005) Colorado State University Health Physics (MS) (2007) Idaho State University Health Physics (BS) (2003) Idaho State University Health Physics (MS) (2003) Oregon State University Radiation (2004) University of Nevada Las Vegas Health Physics (MS) (2003) Degree Programs Recognized by the Accreditation Board for Engineering and Technology (ABET) in Radiological Engineering under ABET’s Engineering Accreditation Commission (EAC) Texas A&M University Radiological Health Engineering (BS) (1987) 1.
    [Show full text]
  • CHAPTER 6 Thermal-Hydraulic Design
    1 CHAPTER 6 Thermal-Hydraulic Design Prepared by Dr. Nikola K. Popov Summary This chapter covers the thermal-hydraulic design of nuclear power plants with a focus on the primary and secondary sides of the nuclear steam supply system. This chapter covers the following topics: evolution of the reactor thermal-hydraulic system; key design requirements for the heat transport system; thermal-hydraulic design principles and margins; design details of the primary and secondary heat transport systems; fundamentals of two-phase flow; fundamentals of heat transfer and fluid flow in the reactor heat transport system; other related topics. ©UNENE, all rights reserved. For educational use only, no assumed liability. Thermal-Hydraulic Design – December 2015 2 The Essential CANDU Table of Contents 1 Introduction........................................................................................................................... 10 1.1 Overview....................................................................................................................... 10 1.2 Learning outcomes........................................................................................................ 12 1.3 Summary of relationship to other chapters ................................................................... 12 1.4 Thermal-hydraulic design ............................................................................................. 12 2 Reactor Types ......................................................................................................................
    [Show full text]
  • NPR81: South Korea's Shifting and Controversial Interest in Spent Fuel
    JUNGMIN KANG & H.A. FEIVESON Viewpoint South Korea’s Shifting and Controversial Interest in Spent Fuel Reprocessing JUNGMIN KANG & H.A. FEIVESON1 Dr. Jungmin Kang was a Visiting Research Fellow at the Center for Energy and Environmental Studies (CEES), Princeton University in 1999-2000. He is the author of forthcoming articles in Science & Global Security and Journal of Nuclear Science and Technology. Dr. H.A. Feiveson is a Senior Research Scientist at CEES and a Co- director of Princeton’s research Program on Nuclear Policy Alternatives. He is the Editor of Science and Global Security, editor and co-author of The Nuclear Turning Point: A Blueprint for Deep Cuts and De-alerting of Nuclear Weapons (Brookings Institution, 1999), and co-author of Ending the Threat of Nuclear Attack (Stanford University Center for International Security and Arms Control, 1997). rom the beginning of its nuclear power program could reduce dependence on imported uranium. During in the 1970s, the Republic of Korea (South Ko- the 1990s, the South Korean government remained con- Frea) has been intermittently interested in the cerned about energy security but also began to see re- reprocessing of nuclear-power spent fuel. Such repro- processing as a way to address South Korea’s spent fuel cessing would typically separate the spent fuel into three disposal problem. Throughout this entire period, the constituent components: the unfissioned uranium re- United States consistently and effectively opposed all maining in the spent fuel, the plutonium produced dur- reprocessing initiatives on nonproliferation grounds. We ing reactor operation, and the highly radioactive fission review South Korea’s evolving interest in spent fuel re- products and transuranics other than plutonium.
    [Show full text]
  • Summary This Document Is a Summary of the Report Maintaining Excellence: Planning a New Multi-Purpose Research Reactor for Canada
    y S u m m a r About the CNS: The Canadian Nuclear Society (CNS), established in 1979 and independently incorporated in 1998, is a not-for-profit learned society with a nation-wide membership of over 1200. The CNS is dedicated to the exchange of information on the peaceful applications of nuclear science and technology. This encompasses all aspects of nuclear energy, uranium, For more information about the Canadian Nuclear Society, fission and other nuclear technologies, such please visit its website or main office: as occupational and environmental protection, medical diagnosis and Canadian Nuclear Society www.cns-snc.ca 480 University Avenue treatment, the use of radioisotopes, and Suite 200 Tel: (416) 977-7620 food preservation. CNS members join as Toronto, ON. Fax: (416) 977-8131 Canada M5G 1V2 individuals (there is no corporate category of membership), and are drawn mainly © 2010 - Canadian Nuclear Society from the various fields mentioned above, The information contained in this document may be copied without permission. including from within the academic This document is not intended for commercial use. Copyright for photography remains with the Canadian Nuclear Society, unless otherwise indicated. community. Canadian Nuclear Society / Société Nucléaire Canadienne MAINTAINING EXCELLENCE: PLANNING A NEW MULTI-PURPOSE RESEARCH REACTOR FOR CANADA Summary This document is a summary of the report Maintaining Excellence: Planning a New Multi-Purpose Research Reactor for Canada. In representing the interests of the Canadian nuclear science and engineering community, the Canadian Nuclear Society (CNS) issued that report as a factual, objective contribution to the national discussion on the future role of a national multi-purpose research reactor in Canada.
    [Show full text]
  • THE NEXT GENERATION CANDU 6 J.M. HOPWOOD XA0053559 Atomic Energy of Canada Ltd, Mississauga, Ontario, Canada
    IAEA-SM-353/29 THE NEXT GENERATION CANDU 6 illinium J.M. HOPWOOD XA0053559 Atomic Energy of Canada Ltd, Mississauga, Ontario, Canada Abstract AECL's product line of CANDU 6 and CANDU 9 nuclear power plants are adapted to respond to chang- ing market conditions, experience feedback and technological development by a continuous improvement process of design evolution. The CANDU 6 Nuclear Power Plant design is a successful family of nuclear units, with the first four units entering service in 1983, and the most recent entering service this year. A further four CANDU 6 units are under construction. Starting in 1996, a focused forward-looking development program is under way at AECL to incorporate a series of individual improvements and integrate them into the CANDU 6, leading to the evolutionary development of the next-generation enhanced CANDU 6. The CANDU 6 improvements program includes all aspects of an NPP project, including engineering tools improvements, design for improved constructability, scheduling for faster, more streamlined commissioning, and improved operating performance. This enhanced CANDU 6 product will combine the benefits of design provenness (drawing on the more than 70 reactor-years experience of the seven operating CANDU 6 units), with the advantages of an evolutionary next- generation design. Features of the enhanced CANDU 6 design include: • Advanced Human Machine Interface - built around the Advanced CANDU Control Centre. • Advanced fuel design - using the newly demonstrated CANFLEX fuel bundle. • Improved Efficiency based on improved utilization of waste heat. • Streamlined System Design - including simplifications to improve performance and safety system reliability. • Advanced Engineering Tools, - featuring linked electronic databases from 3D CADDS, equipment specifi- cation and material management.
    [Show full text]
  • Nuclear Theory–Nuclear Power
    LATVIAN JOURNAL OF PHYSICS AND TECHNICAL SCIENCES 2008, N 4 10.2478/v10047-008-0020-8 ATOMIC AND NUCLEAR PHYSICS NUCLEAR THEORY – NUCLEAR POWER J.P. Svenne1, L. Canton2 and K.S. Kozier3 1Department of Physics and Astronomy, University of Manitoba, and Winnipeg Institute for Theoretical Physics, Winnipeg, Manitoba, Canada R3T 2N2 (Foreign Member of the Latvian Academy of Sciences) 2Istituto Nazionale di Fisica Nucleare, sezione di Padova e Dipartimento di Fisica dell’Università di Padova, via Marzolo 8, I-35131 Padova, Italia 3Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, ON, Canada K0J 1J0 The results from modern nuclear theory are accurate and reliable enough to be used for practical applications, in particular for scattering that involves few-nucleon systems of importance to nuclear power. Using well-established nucleon-nucleon (NN) interactions that fit well the NN scattering data, and the AGS form of the three- body theory, we have performed precise calculations of low-energy neutron-deuteron (n+d) scattering. We show that three-nucleon force effects that have impact on the low-energy vector analyzing powers have no practical effects on the angular distribution of the n+d cross-section. There appear to be problems for this scattering in the evaluated nuclear data file (ENDF) libraries, at the incident neutron energies less than 3.2 MeV. Supporting experimental data in this energy region are rather old (>25 years), sparse and often inconsistent. Our three-body results at low energies, 50 keV to 10.0 MeV, are compared to the ENDF/B-VII.0 and JENDL (Japanese Evaluated Nuclear Data Library) –3.3 evaluated angular distributions.
    [Show full text]
  • Global Nuclear Markets – Market Arrangements and Service Agreements
    INL/EXT-16-38796 Global Nuclear Markets – Market Arrangements and Service Agreements Brent Dixon Leilani Beard June 2016 The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof. INL/EXT-16-38796 Global Nuclear Markets – Market Arrangements and Service Agreements Brent Dixon Leilani Beard June 2016 Idaho National Laboratory Nuclear Systems Design & Analysis Division Idaho Falls, Idaho 83415 Prepared for the U.S. Department of Energy Office of Energy Policy and Systems Analysis Under U.S. Department of Energy-Idaho Operations Office Contract DE-AC07-05ID14517 Forward The U.S. Department of Energy’s Office of Energy Policy and Systems Analysis (EPSA) requested an assessment of global nuclear markets, including the structure of nuclear companies in different countries and the partnerships between reactor vendors and buyers.
    [Show full text]
  • Radiation Safety Information Computational Center
    Radiation Safety Information Computational Center Oak Ridge National Laboratory POST OFFICE BOX 2008 OAK RIDGE, TENNESSEE 37831-6362 Managed by UT-Battelle, LLC for the U.S. Department of Energy under contract DE-AC05-00OR22725 Phone No. 865-574-6176 FAX 865-574-6182 Internet: [email protected] http://www-rsicc.ornl.gov/rsic.html No. 448 June 2002 "The measure of a man's real character is what he would do if he knew he never would be found out." -- Thomas B. Macaulay Printable PDF file of this newsletter available at: http://www-rsicc.ornl.gov/NEWSLETTER.html. Azmy Elected as Fellow to ANS Congratulations to Dr. Yousry Azmy, ORNL, for being elected to Fellow Membership of the American Nuclear Society. The ANS is recognizing Dr. Azmy's contributions to the advancement of nuclear science and technology through the years. Dr. Azmy is a member of the Radiation Protection and Shielding Division and Mathematics and Computation Division. He will be honored at the Awards Luncheon June 11, in Hollywood, Florida. NOTICE RSICC will be offering a few data, processing, and computational tools free of handling, testing, and other fees associated with package transmittal. A ***NO FEE*** label will appear next to the package name on the web request page. The ability to provide these packages at no charge is due in part to advanced funding from the sponsors. To acquire these tools, follow the normal registration procedure for first-time or updated users. Then complete the WWW Request Form. The license and export control statements will need the user signatures, which is standard procedure.
    [Show full text]
  • The Impact of Partitioning and Transmutation on the Risk Assesment of a Spent Nuclear Fuel
    h/e/-se SE0608415 The Impact of Partitioning and Transmutation on the Risk Assesment of a Spent Nuclear Fuel Naima Amrani and Ahmed Boucenna UFAS University Physics Department Faculty of sciences Setif 19000 ALGERIA I. INTRODUCTION Nuclear power produces steadily a mass of spent fuel which contains a part from the short lived fission products, a significant amount of actinides and fission products with height toxicity and long half-lives. These nuclides constitute the long-term radiotoxic inventory which remains as a hazard far beyond human perception. The reprocessing recycles most of the major actinides (Uranium and Plutonium), while the Minor Actinides (MA) (mainly Neptunium: Np, Americium: Am and Curium: Cm) with half lives up to 2 million years remain with the fission products which are vitrified before being buried in deep repositories. Partitioning of the minor actinides and some of the fission products is an efficient method to reduce the long term radiotoxicity of the residual waste components with a factor proportional to the separation yield. The improved minor actinide nuclides would be recycled into a fuel cycle activities and returned to the reactor inventory of fissile and fertile material for transmutation to short lived isotopes. Progressively the MAs and some long-lived fission product (LLFP) could be burn up out. This option would reduce the long term contamination hazard in the high-level waste and shorten the time interval necessary to keep the actinides containing wastes confined in a deep geologic repository. Partitioning and Transmutation (P&T) is, in principal, capable of reducing the radiotoxicity period, while a number of practical difficult remain to be surmounted.
    [Show full text]