Marinski Biodiverzitet Boke Kotorske
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Di Camillo Et Al 2017
This is a post-peer-review, pre-copyedit version of an article published in Biodiversity and Conservation on 23 December 2017 (First Online). The final authenticated version is available online at: https://doi.org/10.1007/s10531-017-1492-8 https://link.springer.com/article/10.1007%2Fs10531-017-1492-8 An embargo period of 12 months applies to this Journal. This paper has received funding from the European Union (EU)’s H2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 643712 to the project Green Bubbles RISE for sustainable diving (Green Bubbles). This paper reflects only the authors’ view. The Research Executive Agency is not responsible for any use that may be made of the information it contains. © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 AUTHORS' ACCEPTED MANUSCRIPT Building a baseline for habitat-forming corals by a multi-source approach, including Web Ecological Knowledge - Cristina G Di Camillo, Department of Life and Environmental Sciences, Marche Polytechnic University, CoNISMa, Ancona, Italy, [email protected] - Massimo Ponti, Department of Biological, Geological and Environmental Sciences and Interdepartmental Research Centre for Environmental SciencesUniversity of Bologna, CoNISMa, Ravenna, Italy - Giorgio Bavestrello, Department of Earth, Environment and Life Sciences, University of Genoa, CoNISMa, Genoa, Italy - Maja Krzelj, Department of Marine Studies, University of Split, Split, Croatia - Carlo Cerrano, Department of Life and Environmental Sciences, Marche Polytechnic University, CoNISMa, Ancona, Italy Received: 12 January 2017 Revised: 10 December 2017 Accepted: 14 December 2017 First online: 23 December 2017 Cite as: Di Camillo, C.G., Ponti, M., Bavestrello, G. -
Benthic Habitat Mapping and Assessment in the Wilmington-East Wind Energy Call Area
OCS Study BOEM 2016-003 NOAA Technical Memorandum NOS NCCOS 196 Benthic Habitat Mapping and Assessment in the Wilmington-East Wind Energy Call Area Final Report US Department of the Interior US Department of Commerce Bureau of Ocean Energy Management National Oceanic and Atmospheric Administration Office of Renewable Energy Programs National Centers for Coastal Ocean Science OCS Study BOEM 2016-003 NOAA Technical Memorandum NOS NCCOS 196 Benthic Habitat Mapping and Assessment in the Wilmington-East Wind Energy Call Area Authors J. Christopher Taylor1 T. Shay Viehman1 Avery B. Paxton2 Stephen R. Fegley2 Christine M. Voss2 Emily A. Pickering2 Benjamin W. Sumners3 Alyssa M. Adler2 Christine A. Buckel1 Christopher Freeman3 Jenny L. Vander Pluym1 Charles H. Peterson2 Erik E. Ebert1 Prepared under Cooperative and Interagency Agreements by 1National Ocean Service National Centers for Coastal Ocean Science 101 Pivers Island Road Beaufort, NC 28516 Interagency Agreement M13PG00019 In cooperation with 2The University of North Carolina 3Geodynamics Group Institute of Marine Sciences 310-A Greenfield Drive 3431 Arendell Street Newport, North Carolina 28570 Morehead City, NC 28557 Under contract to UNC Cooperative Agreement M13AC00006 Published by US Department of the Interior US Department of Commerce Bureau of Ocean Energy National Oceanic and Atmospheric Management Administration Office of Renewable Energy National Centers for Coastal Ocean Science Programs January 13, 2016 OCS Study BOEM 2016-003 NOAA Technical Memorandum NOS NCCOS 196 DISCLAIMER Research collaboration and funding were provided by the US Department of the Interior, Bureau of Ocean Energy Management, Office of Renewable Energy Programs, Sterling, VA under Agreement Number M13AC00006 and by the National Oceanic and Atmospheric Administration’s National Centers for Coastal Ocean Science under Interagency Agreement Number M13PG00019. -
Volume III of This Document)
4.1.3 Coastal Migratory Pelagics Description and Distribution (from CMP Am 15) The coastal migratory pelagics management unit includes cero (Scomberomous regalis), cobia (Rachycentron canadum), king mackerel (Scomberomous cavalla), Spanish mackerel (Scomberomorus maculatus) and little tunny (Euthynnus alleterattus). The mackerels and tuna in this management unit are often referred to as ―scombrids.‖ The family Scombridae includes tunas, mackerels and bonitos. They are among the most important commercial and sport fishes. The habitat of adults in the coastal pelagic management unit is the coastal waters out to the edge of the continental shelf in the Atlantic Ocean. Within the area, the occurrence of coastal migratory pelagic species is governed by temperature and salinity. All species are seldom found in water temperatures less than 20°C. Salinity preference varies, but these species generally prefer high salinity. The scombrids prefer high salinities, but less than 36 ppt. Salinity preference of little tunny and cobia is not well defined. The larval habitat of all species in the coastal pelagic management unit is the water column. Within the spawning area, eggs and larvae are concentrated in the surface waters. (from PH draft Mackerel Am. 18) King Mackerel King mackerel is a marine pelagic species that is found throughout the Gulf of Mexico and Caribbean Sea and along the western Atlantic from the Gulf of Maine to Brazil and from the shore to 200 meter depths. Adults are known to spawn in areas of low turbidity, with salinity and temperatures of approximately 30 ppt and 27°C, respectively. There are major spawning areas off Louisiana and Texas in the Gulf (McEachran and Finucane 1979); and off the Carolinas, Cape Canaveral, and Miami in the western Atlantic (Wollam 1970; Schekter 1971; Mayo 1973). -
Host-Microbe Interactions in Octocoral Holobionts - Recent Advances and Perspectives Jeroen A
van de Water et al. Microbiome (2018) 6:64 https://doi.org/10.1186/s40168-018-0431-6 REVIEW Open Access Host-microbe interactions in octocoral holobionts - recent advances and perspectives Jeroen A. J. M. van de Water* , Denis Allemand and Christine Ferrier-Pagès Abstract Octocorals are one of the most ubiquitous benthic organisms in marine ecosystems from the shallow tropics to the Antarctic deep sea, providing habitat for numerous organisms as well as ecosystem services for humans. In contrast to the holobionts of reef-building scleractinian corals, the holobionts of octocorals have received relatively little attention, despite the devastating effects of disease outbreaks on many populations. Recent advances have shown that octocorals possess remarkably stable bacterial communities on geographical and temporal scales as well as under environmental stress. This may be the result of their high capacity to regulate their microbiome through the production of antimicrobial and quorum-sensing interfering compounds. Despite decades of research relating to octocoral-microbe interactions, a synthesis of this expanding field has not been conducted to date. We therefore provide an urgently needed review on our current knowledge about octocoral holobionts. Specifically, we briefly introduce the ecological role of octocorals and the concept of holobiont before providing detailed overviews of (I) the symbiosis between octocorals and the algal symbiont Symbiodinium; (II) the main fungal, viral, and bacterial taxa associated with octocorals; (III) the dominance of the microbial assemblages by a few microbial species, the stability of these associations, and their evolutionary history with the host organism; (IV) octocoral diseases; (V) how octocorals use their immune system to fight pathogens; (VI) microbiome regulation by the octocoral and its associated microbes; and (VII) the discovery of natural products with microbiome regulatory activities. -
Deep-Sea Coral Taxa in the U.S. Southeast Region: Depth and Geographic Distribution (V
Deep-Sea Coral Taxa in the U.S. Southeast Region: Depth and Geographic Distribution (v. 2020) by Thomas F. Hourigan1, Stephen D. Cairns2, John K. Reed3, and Steve W. Ross4 1. NOAA Deep Sea Coral Research and Technology Program, Office of Habitat Conservation, Silver Spring, MD 2. National Museum of Natural History, Smithsonian Institution, Washington, DC 3. Cooperative Institute of Ocean Exploration, Research, and Technology, Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL 4. Center for Marine Science, University of North Carolina, Wilmington This annex to the U.S. Southeast chapter in “The State of Deep-Sea Coral and Sponge Ecosystems in the United States” provides a list of deep-sea coral taxa in the Phylum Cnidaria, Classes Anthozoa and Hydrozoa, known to occur in U.S. waters from Cape Hatteras to the Florida Keys (Figure 1). Deep-sea corals are defined as azooxanthellate, heterotrophic coral species occurring in waters 50 meters deep or more. Details are provided on the vertical and geographic extent of each species (Table 1). This list is an update of the peer-reviewed 2017 list (Hourigan et al. 2017) and includes taxa recognized through 2019, including one newly described species. Taxonomic names are generally those currently accepted in the World Register of Marine Species (WoRMS), and are arranged by order, and alphabetically within order by family, genus, and species. Data sources (references) listed are those principally used to establish geographic and depth distribution. Figure 1. U.S. Southeast region delimiting the geographic boundaries considered in this work. The region extends from Cape Hatteras to the Florida Keys and includes the Jacksonville Lithoherms (JL), Blake Plateau (BP), Oculina Coral Mounds (OC), Miami Terrace (MT), Pourtalès Terrace (PT), Florida Straits (FS), and Agassiz/Tortugas Valleys (AT). -
Présentation Powerpoint
Stability in the microbiomes of temperate gorgonians and the precious red coral Corallium rubrum across the Mediterranean Sea § § § Jeroen A.J.M. van de Water , Christian R. Voolstra¥, Denis Allemand & Christine Ferrier-Pagès § Centre Scientifique de Monaco, 8 Quai Antoine 1er, MC 98000, Principality of Monaco ¥ Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia Introduction Discussion & Conclusions • Gorgonians are key habitat-forming species of temperate benthic • Gorgonian-associated bacterial communities are highly structured and relatively stable on communities1 . both temporal and seasonal scales, suggesting tight regulation of holobiont membership. • Dramatic population declines due to local human impacts and mass • Microbiome impacted by / acclimated to local environmental conditions. mortality events caused by high temperatures and disease outbreaks 2. • Composition of C. rubrum microbiome unique in phylum Cnidaria. • However, relatively little is known about the microbial of gorgonians. • Ancient host-microbe associations, conserved OBJECTIVES – Reveal the composition of the bacterial communities of 5 soft through evolutionary times, but divergence in gorgonian species and the precious red coral and assess the stabilities of microbiome composition is clear along distant these associations on both spatial and temporal scales. phylogenetic lines. > Significant overlap in the microbiome among species from the same family. > Support ‘Holobiont Model’ over Material & Methods Figure 6 - Schematic overview of Mediterranean ‘Hologenome Theory of Evolution’. • Study species (encompassing 4 genera, 3 families, 2 sub-orders) gorgonian taxonomy. The different colours identify • Roles of the microbial symbionts to host health • Eunicella cavolini, E. singularis, E. verrucosa taxa harbouring distinct core microbiomes. remain to be elucidated. -
Mitogenomic Phylogenetic Analyses of Leptogorgia Virgulata And
Received: 22 July 2019 | Revised: 25 October 2019 | Accepted: 28 October 2019 DOI: 10.1002/ece3.5847 ORIGINAL RESEARCH Mitogenomic phylogenetic analyses of Leptogorgia virgulata and Leptogorgia hebes (Anthozoa: Octocorallia) from the Gulf of Mexico provides insight on Gorgoniidae divergence between Pacific and Atlantic lineages Samantha Silvestri | Diego F. Figueroa | David Hicks | Nicole J. Figueroa School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Abstract Valley, Brownsville, TX, USA The use of genetics in recent years has brought to light the need to reevaluate the Correspondence classification of many gorgonian octocorals. This study focuses on two Leptogorgia Diego F. Figueroa, School of Earth, species—Leptogorgia virgulata and Leptogorgia hebes—from the northwestern Gulf of Environmental, and Marine Sciences, University of Texas Rio Grande Valley, One Mexico (GOM). We target complete mitochondrial genomes and mtMutS sequences, West University Boulevard, Brownsville, TX and integrate this data with previous genetic research of gorgonian corals to resolve 78520, USA. Email: [email protected] phylogenetic relationships and estimate divergence times. This study contributes the first complete mitochondrial genomes for L. ptogorgia virgulata and L. hebes. Our re- Funding information TPWD-ARP, Grant/Award Number: 475342; sulting phylogenies stress the need to redefine the taxonomy of the genus Leptogorgia University of Texas Rio Grande Valley; in its entirety. The fossil-calibrated divergence times for Eastern Pacific and Western Gulf Research Program of the National Academies of Sciences, Engineering, Atlantic Leptogorgia species based on complete mitochondrial genomes shows that and Medicine, Grant/Award Number: the use of multiple genes results in estimates of more recent speciation events than 2000007266; National Sea Grant Office, National Oceanic and Atmospheric previous research based on single genes. -
Secondary Production of Gorgonian Corals in the Northern Gulf of Mexico
MARINE ECOLOGY PROGRESS SERIES Vol. 87: 275-281,1992 Published October 19 Mar. Ecol. Prog. Ser. - Secondary production of gorgonian corals in the northern Gulf of Mexico Naomi D. Mitchelll, Michael R. ~ardeau~,William W. Schroederl, Arthur C. ~enke~ Marine Science Program, The University of Alabama. PO Box 369, Dauphin Island. Alabama 36528. USA Marine Environmental Sciences Consortium. Dauphin Island Sea Lab, PO Box 369. Dauphin Island, Alabama 36528, USA Department of Biology, The University of Alabama, Box 870344, Tuscaloosa, Alabama 35487-0344, USA ABSTRACT: Gorgonians are the most conspicuous sessile macroinvertebrates at many hard-substrate sites in the northeastern Gulf of Mexico. Colonies from 3 sites, an isolated limestone outcropping at less than 2 m depth off coastal Florida (USA) and 2 exposed shelly sandstone and sandy rnudstone carbonate areas at depths of 22 and 27 m on the inner shelf off Alabama (USA), were sampled to estimate secondary production. Maximum colony ages ranged from 5 to 10 yr. Tissue mass for each age class was estimated from determinations of coenenchyme thickness and colony surface area. Secondary production was estimated from colony densities, age distribution, biomass per age class, and the increase in colony biornass between age classes. Production estimates for Leptogorgia hebes at the 2 offshore sites were 2.3 and 6.8 g ash-free dry mass (AFDM) yr-' while production of L. virgulata at the inshore site was 10.5 g AFDM m-2 yr-l, values similar to those reported for tropical scleractinian corals. Annual production-to-biomass ratios ranged from 0.37 to 0.45, indicating similar turnover times at all northern Gulf sites. -
Comprehensive Ecosystem-Based Amendment 2 for the South Atlantic Region
COMPREHENSIVE ECOSYSTEM-BASED AMENDMENT 2 FOR THE SOUTH ATLANTIC REGION February 2010 South Atlantic Fishery Management Council 4055 Faber Place, Suite 201 North Charleston, South Carolina 29405 (843) 571-4366 / FAX (843) 769-4520 Toll Free (866) SAFMC-10 email: [email protected] National Marine Fisheries Service Southeast Regional Office 263 13th Avenue South St. Petersburg, Florida 33701 (727) 824-5301 / FAX (727) 824-5308 This is a publication of the South Atlantic Fishery Management Council pursuant to National Oceanic and Atmospheric Administration Award No. FNA05NMF4410004 ABBREVIATIONS AND ACRONYMS ABC Acceptable Biological Catch ACL Annual catch Limit ACCSP Atlantic Coastal Cooperative Statistics Program AM Accountability Measure APA Administrative Procedures Act AUV Autonomous Underwater Vehicle B A measure of stock biomass either in weight or other appropriate unit BMSY The stock biomass expected to exist under equilibrium conditions when fishing at FMSY BOY The stock biomass expected to exist under equilibrium conditions when fishing at FOY BCURR The current stock biomass CEA Cumulative Effects Analysis CEQ Council on Environmental Quality CFMC Caribbean Fishery Management Council CPUE Catch per unit effort CRP Cooperative Research Program CZMA Coastal Zone Management Act DEIS Draft Environmental Impact Statement EA Environmental Assessment EBM Ecosystem-Based Management EEZ Exclusive Economic Zone EFH Essential Fish Habitat EFH-HAPC Essential Fish Habitat - Habitat Area of Particular Concern EIS Environmental Impact Statement -
Draft Updated Reference List of Marine Habitat Types
UNITED NATIONS UNEP(DEPI)/MED WG.431/6 UNITED NATIONS ENVIRONMENT PROGRAMME MEDITERRANEAN ACTION PLAN 24 April 2017 Original: English Thirteenth Meeting of Focal Points for Specially Protected Areas Alexandria, Egypt, 9-12 May 2017 Agenda item 6: Updating of the Reference List of Marine Habitat Types for the Selection of Sites to be included in the National Inventories of Natural Sites of Conservation Interest in the Mediterranean Draft Updated Reference List of Marine Habitat Types for the Selection of Sites to be included in the National Inventories of Natural Sites of Conservation Interest in the Mediterranean For environmental and economy reasons, this document is printed in a limited number and will not be distributed at the meeting. Delegates are kindly requested to bring their copies to meetings and not to request additional copies. UNEP/MAP SPA/RAC - Tunis, 2017 Note: The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of Specially Protected Areas Regional Activity Centre (SPA/RAC) and UN Environment concerning the legal status of any State, Territory, city or area, or of its authorities, or concerning the delimitation of their frontiers or boundaries. © 2017 United Nations Environment Programme / Mediterranean Action Plan (UN Environment /MAP) Specially Protected Areas Regional Activity Centre (SPA/RAC) Boulevard du Leader Yasser Arafat B.P. 337 - 1080 Tunis Cedex - Tunisia E-mail: [email protected] The original version of this document was prepared for the Specially Protected Areas Regional Activity Centre (SPA/RAC) by Enrique Ballesteros, SPA/RAC Consultant with contribution from, Ricardo AGUILAR (OCEANA), Hocein BAZAIRI, Doug EVANS (ETC/BD), Vasilis, GEROVASILEIOU, Alain Jeudi DE GRISSAC (GFCM consultant), Pilar MARIN (OCEANA), Maria del Mar OTERO (IUCN-Med), Atef OUERGHI (SPA/RAC), Gérard PERGENT, Alfonso RAMOS, Yassine Ramz SGHAIER (RAC/SPA), Leonardo TUNESI. -
Speciation, Evolution and Phylogeny of Some Shallow-Water Octocorals (Cnidaria: Anthozoa)
Speciation, Evolution and Phylogeny of some Shallow-water Octocorals (Cnidaria: Anthozoa) Dissertation zur Erlangung des Doktorgrades der Fakultät für Geowissenschaften der Ludwig-Maximilians-Universität München vorgelegt von Angelo Poliseno München, June 14, 2016 Betreuer: Prof. Dr. Gert Wörheide Zweitgutachter: Prof. Dr. Michael Schrödl Datum der mündlichen Prüfung: 20.09.2016 “Ipse manus hausta victrices abluit unda, anguiferumque caput dura ne laedat harena, mollit humum foliis natasque sub aequore virgas sternit et inponit Phorcynidos ora Medusae. Virga recens bibulaque etiamnum viva medulla vim rapuit monstri tactuque induruit huius percepitque novum ramis et fronde rigorem. At pelagi nymphae factum mirabile temptant pluribus in virgis et idem contingere gaudent seminaque ex illis iterant iactata per undas: nunc quoque curaliis eadem natura remansit, duritiam tacto capiant ut ab aere quodque vimen in aequore erat, fiat super aequora saxum” (Ovidio, Metamorphoseon 4, 740-752) iii iv Table of Contents Acknowledgements ix Summary xi Introduction 1 Octocorallia: general information 1 Origin of octocorals and fossil records 3 Ecology and symbioses 5 Reproductive strategies 6 Classification and systematic 6 Molecular markers and phylogeny 8 Aims of the study 9 Author Contributions 11 Chapter 1 Rapid molecular phylodiversity survey of Western Australian soft- corals: Lobophytum and Sarcophyton species delimitation and symbiont diversity 17 1.1 Introduction 19 1.2 Material and methods 20 1.2.1 Sample collection and identification 20 1.2.2 -
Natural Feeding of the Temperate Asymbiotic Octocoral-Gorgonian Leptogorgia Sarmentosa (Cnidaria: Octocorallia)
MARINE ECOLOGY PROGRESS SERIES Vol. 254: 141–150, 2003 Published June 4 Mar Ecol Prog Ser Natural feeding of the temperate asymbiotic octocoral-gorgonian Leptogorgia sarmentosa (Cnidaria: Octocorallia) Marta Ribes1, 4,*, Rafel Coma2, Sergi Rossi3 1Hawaii Institute of Marine Biology, PO Box 1346, Kaneohe, Hawaii 96744, USA 2Centre d’Estudis Avançats de Blanes (CSIC), Accés Cala Sant Francesc 14, PO BOX 118, 17300 Blanes, Girona, Spain 3Institut de Ciències del Mar (CSIC), Passeig Marítim 37-49, 08003 Barcelona, Spain 4Present address: Institut de Ciències del Mar (CSIC), Passeig Marítim 37-49, 08003 Barcelona, Spain ABSTRACT: Octocorals are common components of sublittoral benthic communities in temperate, tropical and polar areas. However, their natural diets and feeding rates are poorly known. In this study, we examined natural feeding and respiration of the ubiquitous temperate species Leptogorgia sarmentosa (Cnidaria: Octocorallia) in the NW Mediterranean. We measured in situ grazing rate on dissolved organic carbon (DOC), detrital particulate organic carbon (POC) and live particulate carbon <100 µm (i.e. pico- and nanoplankton, dinoflagellates, diatoms and ciliates) using continuous flow incubation chambers. L. sarmentosa captured nanoeukaryotes, dinoflagellates, diatoms, ciliates, as well as detrital POC, but no significant capture of DOC, nor of prey items smaller than nanoeukary- otes (mean 3.6 µm), was observed. Feeding rate on detrital POC and live carbon <100 µm was 402 ± 35 and 67 ± 6 µg C g ash-free dry mass (AFDM)–1 h–1, respectively. Detrital POC and zooplankton— previously studied—were the 2 main food sources, while live carbon <100 µm accounted for less than –1 –1 10% of the total ingested carbon.