<<

Reducing Uncertainty in Conveyance Roughness Review

Project W5A-057 July 2003

DEFRA / Environment Agency Flood and Coastal Defence R&D Programme Roughness Review ByKarenFisherandHughDawson W5A057 DEFRA FloodManagementDivision and ScienceDirectorate ErgonHouse CromwellHouse 17SmithSquare DeanStanleyStreet LondonSW1P3JR LondonSW1P3JH EnvironmentAgency RioHouse WatersideDrive AztecWest Almondsbury BristolBS324UD July2003

R&D ROUGHNESSREVIEW i

Publishing organisation DEFRA c/oRCEG CeresHouse,2SearbyRoad, LINCOLN,LN24DW PeterAllenWilliams, R&DCoordinator,FloodManagementDivision, Tel:01522528297(GTN6209224) Email: peter.allen[email protected]

©CrownCopyright July2003 Allrights reserved. Nopartofthisdocument may beproduced,storedinaretrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,recordingorotherwisewithoutthepriorpermissionoftheDEFRAand theEnvironmentAgency. Statement of use ThisdocumentprovidesinformationforDEFRAandEnvironmentAgencyStaffabout consistent standards for flood defence and constitutes an R&D output from the Joint DEFRA/EnvironmentAgencyFloodandCoastalDefenceR&DProgramme. Contract Statement

R&D ROUGHNESSREVIEW ii

CONTENTS Summary vii

1. Introduction 1

2. Review of literature - methods 2 2.1 Methodsconsideredforroughnessevaluation 2 2.2 Methodstraditionallyusedforvegetatedchannels 8 2.3 Othervegetationroughnessrelationships 12 2.4 Useofroughnesscoefficientsforvegetation 15

3. Review of literature - data 16 3.1 Channelsubstrate 16 3.2 Channelfeaturesandobstructions 16 3.3 Alluvialroughness 20 3.4 Channelirregularities 24 3.5 Tidalreaches 25 3.6 Vegetativefeatures 25 3.7 Vegetationgrowthandmaintenance 27 3.8 Woodydebris 29

4. Review of field data 31 4.1 Dataavailabilityandusefulness 31 Datagaps 33 4.2 Furtherdatacollectionandresearch 33 4.3 Concurrentresearchprojects 34

5. Identification of river types and vegetation morpho-types 36 5.1 RiverHabitatSurveyhydromorphologicalfeatures 36 5.2 RiverHabitatSurveyvegetationmorphotypes 37 5.3 Conclusions 44

6. Roughness advisor 45 6.1 Methodsanddatausedintheroughnessadvisor 45 6.2 Limitationsoftheproposedmethod 47 6.3 Definitionoftypes 48 6.4 Vegetationgrowthandmaintenance 63 6.5 Derivationofroughnessvalues 63

R&D ROUGHNESSREVIEW iii

6.6 UpperandLowerUncertaintybands 68 6.7 Justificationofapproach 68 6.8 Summaryoftestingofsummationmethod 68 6.9 UseoftheRoughnessAdvisorintheConveyanceEstimationSystem 70

7. River maintenance procedures 71 7.1 Basicprinciplesofplantbiologyandmanagement 71 7.2 Theflowingwaterhabitat 72 7.3 Considerationoftraditionalandalternativetechniques 76 7.4 Weedcutting 78 7.5 Indirectcontrol 82 7.6 Techniquesused 85

8. Uncertainty 87

9. Bibliography 88

Tables Table1 Typicalexamplesoftheeffectsofvegetationonwaterflow 9 Table2 Summaryofequationsforfloating/submergedvegetation 10 Table3 Outlineofmethodstodealwiththehydrauliceffectduetogroynes 20 Table4 Grasscoverretardanceclasses(USSoilConservationService,1954) 26 Table5 Listofavailablefielddatasitesandsources 31 Table6 ListofavailablefielddatasitesfromtheRHS 32 Table7 Typesofchannelandlikelyvegetationinthosechannels 38 Table8 DescriptionofRHSvegetationmorphotypes 39 Table9 Generalisedcriticallowervelocityforplantgrowth,typicalmeanvelocityand upperwashoutmeaninchannelvelocitiesforRHSvegetationmorphotypes44 Table10 Valuesofroughnessfordifferenttypesofbedmaterial 49 Table11 Valuesofunitroughnessforirregularitiessuchasbouldersandpoolsand 51 Table12 Valuesofunitroughnessforirregularitiessuchasurbantrashandgroyne fields 52 Table13 TableofroughnessvaluesforaquaticvegetationbyRHSmorphotype 53 Table14 ValuesoftotalchannelresistanceforNorthAmericanchannels 54 Table15 Valuesofunitroughnessformanmadebankmaterials 55 Table16 Valuesofroughnessforbanksidevegetation 56 Table17 Valuesofroughnessforgroundmaterial 57

R&D ROUGHNESSREVIEW iv

Table18 Valuesofroughnessforfloodplainirregularitiesandobstructions 58 Table19 Valuesofroughnessforgrassatdifferentretardanceclasses 59 Table20 Alternativevaluesofroughnessforgrass 60 Table21 Valuesofroughnessforarangeofdifferentcrops 60 Table22 Valuesofroughnessforcleananddirtyhedgerowsonthefloodplain 61 Table23 Valuesofroughnessfortreesandshrubs 62 Table24 CurrentControltechniquesforaquaticandmarginalvegetationbyRHS vegetationmorphotype,withcommentsonconsequencesandrecovery 80

Figures Figure1 ThevariationinManning’snvaluesforbankfulldischargesinEnglishand NorthernIreland 7 1/2 Figure2 Atasitevariationsof(8/ f) withrelativesubmergenceifd/D 84 forfour combinationsofchannelslopeandstandarddeviationofbedmaterialsize distributionforboulderbedrivers(Bathurst,1994) 18 Figure3 Bedforms,ascategorisedbySimonandRichardson(1960) 23 Figure4 DistributionofRHSchannelvegetationtypesandspecies 43 Figure5 Exampleofasandbank 46 Figure6 VariationsinroughnessvalueswithdepthfortheRiverBlackwaterin NorthernIreland 47 Figure7 Exampleofatypicalweedgrowthcurvewithandwithoutweedcutting 79

Appendices ReferenceTablesofdataused 134 Explanationofvariationofroughnesswithdepth 198 FullAbstractsRiverFlow2002 200

R&D ROUGHNESSREVIEW v

LIST OF SYMBOLS

A Channelcrosssectionalarea(m 2) C Chezycoefficient(m 1/2 /s) D Pipediameter(m) d Waterdepth(m) d16 sizebywhich16%byweightisfinerthan(mm) d35 Sedimentsizebywhich35%byweightisfinerthan(mm) d50 Sedimentsizebywhich50%byweightisfinerthan(mm) d84 Sedimentsizebywhich84%byweightisfinerthan(mm) d90 Sedimentsizebywhich90%byweightisfinerthan(mm) f Frictionfactor g Gravitationalacceleration(m/s 2) k ks Roughnessheight(mm) Kva Vegetationcoveragecoefficient N Manning’sroughnesscoefficient nb Roughboundarycoefficient Q Discharge R Hydraulicradius Re Reynoldsnumber Sf Energyslope Sw Watersurfaceslope V Meanflowvelocity(m/s) U* Shearvelocity Dynamicviscosity ρ Densityofwater(kg/m 3)

R&D ROUGHNESSREVIEW vi

SUMMARY Under their joint R&D programme for Flood and Coastal Defence, DEFRA/EnvironmentAgencyarefundingaTargetedProgrammeofresearchaimedat obtainingbetterpredictionsoffloodwaterlevels.Inordertoachievethis,advancesin knowledgeandunderstandingmadeoverthepastthreeorfourdecadesintheestimation ofriverconveyancewillneedtobeintroducedintoengineeringpractise. Theprojectrelatesparticularlytowaterlevelestimation,leadingtoareductioninthe uncertainty in the prediction of flood levels and hence in the flood risk, and consequentlyfacilitatingbettertargetingofexpenditure.Theprojectwillequallybenefit thetargetingofmaintenancebyprovidingbetterestimatesoftheeffectsofvegetation and its management. It is expected that the application of this knowledge from UK engineeringresearchwillhaveaninternationalimpactthroughimprovingthemethods availabletoconsultants. The above objectives will be achieved through two core components of the new Conveyance Estimation System (CES) that will be developed: the Conveyance Generator and the Roughness Advisor. The CES is to be designed so that new knowledgefromaparallelStrategicProgrammeofresearchcanbeintegratedintothe CESinduecourse. ThisreportisthedesignatedoutputforTaskT4oftheTargetedProgrammeofresearch. The Task objective is to gather, validate and catalogue knowledge on the boundary roughness of UK rivers. The information obtained will then be incorporated in the CES, comprising the Roughness Advisor component. The techniques and underlying assumptionsusedbytheRoughnessAdvisorindeterminingtheboundaryroughnessof UKriversaredescribedinthisreport. AreviewoftheinformationidentifiedintheexpertpaperintheScopingStudyofthis projectisprovided.Inadditionawiderrangeofpapersarereviewedincludingpapers thathavebeenpublishedorsourcedsincetheexpertpaperwascompleted. Thereareanumberofkeyreferenceswherethehydraulicdataavailableisextensive. Thesepapershavebeenidentifiedandthedatawithinthepapersformsthebasisofthe roughnessreview.Someofthedatasetsalsohaveassociatedvegetationdataandthisis used alongside the hydraulic data to determine the roughness of vegetated and non vegetatedchannels. The report also incorporates a large body of knowledge related to vegetation in and aroundUKwaterwaysandtheeffectofthisvegetationonwaterflow.Thevariousriver types and vegetation morphotypes have been identified along with any information providedonsubstratecharacteristics. This roughness review document reviews the various methods and techniques of estimating roughness. The approach selected foruse within theroughness advisor is basedonManning’snroughness.A unit roughness isappliedfordifferenttypesacross thechannelandfloodplainandcombinestheminasuitablemannerwithinatype.The combinedroughnessvalueisthenfedintotheconveyancegenerator.Theprocesses

R&D ROUGHNESSREVIEW vii and justifications for selection of this technique and the data used in the roughness advisoraregiven.Datagapsandfurtherresearchneedsaresuggested. In addition to the review of channel and vegetative roughness, information is also incorporated on river maintenance procedures. This includes the basic principles of plantbiologyandmanagement;traditionalandalternativetechniquesofplantcontrol, alongwithadviceonweedcutting. Overallthisroughnessreviewreportprovidesthetechnicalbackgroundinformationfor theRoughnessAdvisor.

R&D ROUGHNESSREVIEW viii

1. INTRODUCTION Thisdocumentgivesthebackgroundtothepapersandinformationaccessed,collated andcollectedaspartoftheroughnessreview,componentT4oftheprojectW5A057 “Reducinguncertaintyinriverfloodconveyance”fundedbytheEnvironmentAgency (EA)andDepartmentforEnvironmentandRuralAffairs(DEFRA). Theactivitiesunderthiscomponentoftheprojectareto: • ReviewinformationidentifiedintheexpertpaperintheScopingStudy(Fisherand Dawson,2001) • Review other existing data sets for sites with significant vegetation and physical features • Identify morphotype groups using the RHS database and include substrate characteristics. AreviewofinformationidentifiedinFisherandDawson(2001),didnotincludeallthe papers in the area of roughness but rather concentrated on the core texts, and those which could be included in the space and time constraints for that document. This documentcoversawiderrangeofpapersincludingpapersthathavebeenpublishedor sourcedsincetheexpertpaperwascompleted.Thisroughnessreviewincludespapers fromthe generalfieldofhydraulicswhichmay notultimatelybeusedbuthavebeen consideredandtheinformationnotusedforreasonswhichwillbegiven. Many of the papers under review have little hydraulic data published and the information is more descriptive. There are some key references where the hydraulic dataisextensive.Thesepapershavebeenidentifiedandthedatawithinthepaperswill formthebackboneoftheinformationintheroughnessreview.Someofthedatasets haveassociatedvegetationdataandthesewillbeusedalongsidethedatafromimportant reviewedpaperstodeterminetheroughnessofvegetatedandnonvegetatedchannels. Thesiteswherethereisnovegetationwillbeusedintheroughnessreviewandthedata from these sites will give a sound basis for prediction of hydraulic roughness in a variety of situations. The data and other associated information from the important papersaregivenon,mainly,singlesheetsinAppendixA.Thesearenotasummaryof thefullreferenceratheraselectionofthedatausedtodevelopthedatabaseofroughness values. Informationisprovidedontheidentificationofrivertypesandvegetativemorphotypes, basedondatacollectedfortheRiverHabitatSurvey(Ravenetal,1998).Thereisdata ontheexpectedriverandplanttypesintheUK,roughnessinformationforthedifferent types,andwhereavailable,dataonsubstratematerials. Inadditiontotheinformationonroughness,thereportalsoaddressestheissueofriver maintenance.Thebasicsofplantbiologyandmanagementaredescribedalongwitha reviewofthevariousmethodsusedtocontrolplantandweedgrowth. This roughness review document reviews the data and papers covered and how they have been used. The methods, data and techniques considered are documented. The processes and justification for selection of techniques and data used in the roughness advisorisgiven.Datagapsandfurtherresearchneededaresuggested.

R&D ROUGHNESSREVIEW 1

2. REVIEW OF LITERATURE - METHODS This literature review (Sections 2 and 3) forms part of the requirements for the roughness review and roughness advisor in the Environment Agency/DEFRA funded projecton“ReducingUncertaintyinFloodConveyanceEstimation”.Thisprojectwas developedinresponsetoworkfromanEPSRCfundednetwork.Severalexpertpapers werewrittenfromthatnetworktolookatthestateoftheartinroughnessestimation which included a review on vegetation, Fisher and Dawson (2001). This literature review extends the previous work and investigates a wider body of knowledge, in additiontothetechniquesmentionedinthepreviousreview.Thisreviewwillextend andupdateapreviousextensivebibliographyofDawsonandCharlton(1988)whichis incorporated in the annotated Appendix A. An international conference in 1989, Manning Centennial meeting, brought together many Manning ‘n’ practitioners and researchers,asdootherannualortriennialsymposiaforhydraulicengineers.However freshwater ecologists use other journals particularly the European Weed Research SocietytriennialsymposiumonAquaticWeedstopublishdatarelevanttothisstudy.

2.1 Methods considered for roughness evaluation 2.1.1 Introduction Awiderangeoftechniqueshasbeenconsideredforuseintheroughnessadvisor.These include: Chezy Inthepast200yearsconsiderableresearchhasbeenundertakenintotheresistanceto flow.Earlyequationswereempirical,fittingonlythedatafromwhichtheyhadbeen derived. Chezy (1768) was the first to derive a more generally applicable equation, relatingflowvelocitytothechannelcharacteristics: 2/1 2/1 V =CR Sf (1) where C= Chezy’scoefficient(m 1/2 /s) R= hydraulicradius=area/wettedperimeter Sf=energyslope DarcyWeisbachfrictionfactor In the 19 th century Darcy and Weisbach produced an equation for pipes flowing full whichwassimilartoChezy’sequationtakingtheform: 1/2  2g  1/2 1/2 V =  D Sf (2)  f  where D= pipediameter(m) f=frictionfactor

Byreplacingthepipediameterwiththehydraulicradiusthisbecomes(asumingD=4R):

R&D ROUGHNESSREVIEW 2

2/1  g8  /1 2 2/1 V =  R Sf (3)  f 

Thisequationisincommonusetodayandtheonlysignificantdevelopmenthasbeenin theselectionoftheappropriatevalueoffrictionfactorf. Blasius,NikuradseandrelationshipwithReynoldsnumber VanMises(1948,1951,1953),intheearly20thcentury,analysedtheexperimentaldata ofotherresearchworkersandidentifiedthesignificantparametersforthefrictionfactor to be the Reynolds number and the roughness ratio, k s/D where k s is the roughness heightandDisthepipediameter.Blasiusderivedanequation,relatingf,thefriction factor,totheReynoldsnumber(forsmoothpipes). .0 316 f = (4) Re 4/1 In the 1930s Nikuradse (1933) carried out experiments on a series of pipes . The experiments covered a wide range of Reynolds number and examined not only the effectsofvariationintheroughnessratiobutalsocomparedtheroughnessofpipesof differentdiameterswiththesameroughnessratio. Nikuradse revealed the relationship between friction factor and Reynolds number, whichisdefinedinthreephases. 1. FrictionfactorindependentofpiperoughnessandsolelyafunctionoftheReynolds numberlaminarflowregionand‘smooth’turbulentflow 2. Friction factor solely dependent on the roughness ratio and independent of the Reynoldsnumberviscouseffectspredominant;fullyroughturbulentflow 3. In the transition region between the smoothturbulent pipe law and the rough turbulentpipelawthefrictionfactorgraduallydepartsfromthevaluegivenbythe smooth pipe law falling to a minimum value as the Reynolds number increases beforerisingtotheroughturbulentvalueathighvaluesoftheReynoldsnumber. Thelimitsofthetransitionzonearegivenby ρU k 3≤ * s ≤ 60 (5) whereU *=shearvelocity. Outsidetheselimitstheflowiseithersmoothturbulentorroughturbulent.Theworkof Nikuradsewasnotpracticalforengineeringuseasitdidnotusestandardengineering variables such as pipe diameter, flow and hydraulic gradient. In the 1940s Moody developed a plot of friction factor against Reynolds number for commercial pipes followingtheworkofColebrookandWhite(1937,1939).Theresultwasthefamiliar frictionfactorversusReynoldsdiagram,knownastheMoodydiagram.

R&D ROUGHNESSREVIEW 3

ColebrookandWhitepipeflow Colebrook and White (1937, 1939) extended the work of Nikuradse by carrying out experimentsonpipeswhichhadbeenartificiallyroughenedbysandoftwodistinctand differentsizes.The resultsagreedwithNikuradseinthesmoothturbulentandrough turbulent regions but some of their experiments showed a different form of friction factorversusReynoldsnumberrelationshipinthetransitionzone.Thefrictionfactor gradually fell until it reached the rough turbulent value in contrast to falling to a minimumvalueandthenrisinguptotheroughturbulentvalue. BasedonthetheoreticalworkthathadbeendonebyPrandtl(Prandtl,1904)andvon Kármàn (1934), Colebrook and White derived an equation which fitted the data for commercial pipes in the transition zone. At low Reynolds numbers the Colebrook WhiteequationapproachesthesmoothturbulentlawandathighReynoldsnumbersit approachestheroughturbulentlaw. 1  k 2.51  = 2log s +  (6) f  3.7D Re f  Becauseofitscomplexity,theColebrookWhiteequationwasslowtofindfavourbut this disadvantage has been overcome by the development of charts and tables (HRWallingfordandBarr1998,volumes1and2). Manning’sequation InriverengineeringManning’sequationisusuallyusedtorepresentchannelresistance andisgivenbytherelationship: R 2/3 S 1/2 n = f (7) V where n= Manning’sroughnessparameter(s/m 1/3 ) R= hydraulicradius(m) Sf=energy slope [note that in practice, where flow is approximately uniformthewatersurfaceslopeS wisoftenusedinplaceofS f] V= meanflowvelocity(m/s) Theequationprovidesameansofestimatingdischargeforsteadyuniformflowinopen channelsfrom: AR 2/3 S 1/2 Q = f (8) n where Q= discharge(m 3/s) A= channelcrosssectionalarea(m 2) ThemaindifficultyinusingManning’sequationisestimatingaccuratelyavalueofthe roughnessparametern.Eachchannelexhibitsitsowncharacteristicsandtheroughness parameterisdependentonthesizeandshapeofchannel,thebedsubstrate,thedifferent

R&D ROUGHNESSREVIEW 4 featureswithinthechannele.g.vegetation,boulders,andthedepthofwaterwithinthe channel.Fieldobservationshaveshownthat,atagivencrosssection,theManning’sn varieswithdepth. EquatingtheChezyandManningequationsgives: R 6/1 n = (9) C EquatingtheDarcyandManningequationsleadsto: 2/1 6/1  f  n = R   (10)  g8  Plottingthefrictionfactoragainstk s/Dforflowintheroughturbulentregionindicates that: 3/1 f ∝ (k s / R) (11) In terms of the ColebrookWhite equation, the range of relative roughness values in whichthisappliesisgivenby: R 7≤ ≤130 (12) k s InthisrangeManning’snisrelatedtotheroughnessheightinmetresby: 6/1 n = .0 038ks (13) 2.1.2 Visual comparison with photographs Barnes (1967) states that “Familiarity with the appearance, geometry and roughness characteristics will improve the engineer’s ability to select roughness coefficients for other channels.” Similarly Hicks and Mason (1991, 1998) states that “Values of roughness coefficient estimated using the ‘visual comparison’ approach can be employedintheirownrightinhydrauliccalculations;alternatively,andpreferably,they canbeusedtoeitherverify,orasbasevaluesforestimatesofroughnesscoefficients obtainedbymorequantitativemethods”. There areanumberofsources fromwhichphotographic evidenceof riversandtheir associatedhydraulicroughnesscoefficientscanbeobtained.Chow(1959)isprobably the most familiar of these sources and although the channels in Chow are all from Americaandthephotographsareblackandwhite,theycoverawiderangeofchannels andalistoftablesisalsosuppliedwiththephotographswhichprovideagoodinitial source of roughness values. The tables are given in Appendix 1. The photographic methodofestimatingManning’snwasadoptedbytheUnitedStatesGeologicalSurvey. Photographs of river channels of known resistance were presented by Barnes (1967),

R&D ROUGHNESSREVIEW 5 withabriefdescriptionandsummaryofthegeometryandhydraulicparameterswhich definethechannel.HicksandMason(1991)providesimilardetailsofchannelsinNew Zealand. Alltheabovereferencesareagoodsourceofdata,ifnootherinformationisavailable. Aglobalestimateofroughnesscanbedeterminedusingthesesourcesbutcaremustbe takenasroughnessvaluesgivenarenotapplicableforarangeofdischarges. Fieldmeasurement The most effective method for determining the Manning’s n roughness coefficient within a river is by measurement. This may involve field survey over an extended periodoftimebutwillenablethemostaccurateassessmentoftheroughnesscoefficient to be determined. At a number of sites, field measurements have been undertaken. Figure1showsthevariationofmeasuredManning’snvaluesforbankfulldischargesin English and Northern Ireland rivers with the indication of the range of values recommendedbyChow(1959)forthesetypesofrivers. MeasuredRoughnessatdifferentflowsforeightsiteswithintheSevernTrentRegion Assessmentoftheroughnesscoefficienteitherfromsiteinspectionorreferencebooksis frequentlybasedonengineeringjudgement.ThiswasrecognisedbythethenSevern TrentWaterAuthority(STWA)whoin1984commissionedastudytoproduceadirect measureoftheManning’snforarangeofflowsuptobankfullatsixteenopenchannel sites in theSevern Trent Region already functioning as accurate flow measurement sites. Data from 66 measurements of bankfull discharge, water surface slope and channel characteristicsatsixofthesitesweremadeavailablebytheSevernTrentRegionofthe National Rivers Authority (1991). The sites had channel widths at bankfull ranging between20mand80m,bankfullhydraulicradiibetween1mand3.5m,watersurface slopesbetween1in300and1in3000andbankfulldischargesfrom20cumecsto350 cumecs. Eight sites in the SevernTrent region are given in Appendix A for which roughness coefficients have been determined at bankfull flow. The pictures, crosssections, hydraulic characteristics and a description of the channels are given and they can be usedtoestablishtheroughnesscoefficientsforsimilarchannels.

R&D ROUGHNESSREVIEW 6

Figure 1 The variation in Manning’s n values for bankfull discharges in English and Northern Ireland rivers

R&D ROUGHNESSREVIEW 7

MeasuredRoughnessatvarioussitesforarangeofflowsanddepths Hydraulic field data collected from several river sites along the River Blackwater catchmentinNorthernIrelandhaveprovidedvaluableinformationontherelationship between Manning’s n and discharge and depth for a range of flows and depths. The informationcanbeusedtoestablishtheroughnesscoefficientsofsimilarchannels. DatacollectedbytheInstituteofHydrologyrelatingtoverificationworkonthehabitat simulation model PHABSIM has been analysed and graphs showing Manning’s n roughnessagainstflowforarangeofinbankflowconditionshavebeenestablishedfor twosites:RiverWeyandMillchannel. Butler et al (1978) and Richards and Hollis (1980) show details of the variation of Manning’snwithdischargefortwourbanstreams,andforanumberofgaugingstation positionsonScottishriversrespectively.Theurbanstreamshavetypicalcrosssections foreachsitewiththemeasuredManning’snroughnessvaluesforarangeofdischarges buttherearenotypicalcrosssectionsorphotographsgivenfortheScottishrivers. Cowan’smethod An alternative to Chow’s method of estimating Manning’s n involves the use of a procedure,aspresentedbyCowan(1956)alsoknownastheSoilConservationMethod (USSoilConservationService,1963).Thismethodinvolvestheselectionofabasic value of Manning’s n for a uniform, straight and regular natural channel. The basic valueisthenadjustedfortheeffectsofsurfaceirregularities,shapeandsizeofchannel crosssection,obstructions,vegetationandflow conditionsandthemeanderingofthe channel.Bythismethodthevalueofnmaybecalculatedby: n=(n 0+n 1+n 2+n 3+n 4)m 5 (14) n0=basevalueforastraight,uniformchannelinnaturalmaterials. n1=valueaddedton 0tocorrectfortheeffectofsurfaceirregularities. n2 =valueforvariationsinshapeandsizeofthechannelcrosssection. n3 =valueforobstructions. n4 =valueforvegetationandflowconditions. m5 =correctionfactorformeanderingofthechannel. AdescriptionofthedifferentfactorsisgiveninTableA17inAppendixA.

2.2 Methods traditionally used for vegetated channels 2.2.1 Introduction The growth of plants in river channels is dependent on many factors, e.g. Leonov (1966).Theliteratureonroughnessduetovegetationmustbeconsideredinthelightof the fact that vegetation growth is dependent on factors such as light, water quality, temperature and sediment size in addition to location and type of channel and may producearangeofeffectsaswaterplants,largeandsmall,aretobefoundinallflowing waters(Table1).Theirsizesrangefromthelargeandobviouswhichcanbeexpected tomodifytherateofflowofwaterstothesmallestwhichgrowonmeasuringflumes and may even enhance flow by smoothing the water flow over the ‘rough’ concrete

R&D ROUGHNESSREVIEW 8 surfaces.Theprincipalfactorsthatmayaffectflowconditions,theprogressiveseriesof structuralchangesthroughwhichageneralisedplantpassesandthephasesoffloware summarisedbyHydraulicsResearch(1985)priortoaseriesofflumetrials.

Table 1 Typical examples of the effects of vegetation on water flow Reducewatervelocityandraisewaterlevels. Moderatethefloodhydrograph Increase,progressively,thefloodingoroverbankspillparticularlyduringsummerwhen aquaticvegetationmaybeatitsmaximum(i.e.increasefloodrisk). Encourage the of suspended sediment which may have to be removed to maintainadequateflowdischargecapacity;thisissupplydependentandseasonal. Changethemagnitudeanddirectionofcurrentswithinachannelcausinglocal orreducingerosion,dependingonthelocation,extentanddensityofthevegetation. Interferewiththeuseofwaterforconveyance,navigation,fishingandswimming. Plantsandflowmaythenbeinvolvedinarangeofinteractionswhichvaryseasonally. Differentspeciesofvegetationcanchangeinformandhabitandtheseareinfluencedby manyfactors.Typicalresponsesofspeciesgroups(seeRHSvegetationmorphotypes, Chapter5)includeaspectssuchas: • Heightoftheemergentvegetationrelativetodepthofflowanditsvelocityreedsin channel,grasscoveredortreecoveredplain. • Diameter,shape,surfacetexture,specificgravityi.e.floatation,ofplantstemsand leaves. • Flexibilityorstiffnessofstemsorofwholeplantstands(affectingthedeflectionand frequencyofvibrationofastem). • Formresistance,waterapproachangleanddimensionsofplantstand. • Distributionofstemswithintheplantstand,theirarealornumericdensity,andthe degreeofstemcompactioncausedbyincreasingvelocityandtheresultingchangein stand permeability (i.e. the tendency of water to flow round rather than through stands),and • Distributionofplantstands,theirfrequencyandpatternperunitareaofwatercourse. 2.2.2 Visual comparison with photographs Traditionallyoneofthemethodsusedfordeterminingtheroughnessofachannelwith vegetation has been using photographic evidence of rivers linked with roughness, as mentionedpreviously. Freshwaterecologistshavenormallyusedmoredetailedmethods.Thesearebasedon anassessmentoftheareaoccupiedbyvegetation,eitherinthewatercolumnormore often at the surface i.e. ‘cover’, either by mapping or by determining presence or absenceatnumerouspointse.g.Dawson(1974),Hametal.(1981).Suchmethodsare discussedintheIBPhandbook(VollenweiderandWestlake,1980). 2.2.3 Empirical methods Many of the methods developed for determining the impact of vegetation on the roughness of the channel are based on data collected on a particular river over one seasonoranumberofseasons.Muchofthisdataisveryvaluableinallowingthelarge variationsinroughnesswhichvegetationcancausetoberecognised.

R&D ROUGHNESSREVIEW 9

2.2.4 Qualitative relationships Some studies, Powell (1978) Dawson and Robinson (1984), have provided useful qualitative data on the seasonal behaviour of the vegetation and roughness. Powell (1978)measureddataontheRiverBainoveratenyearperiodwherePotamogetonwas thepredominantvegetation.Althoughdetailedvegetationmeasurementswerenottaken thehydraulicsofthechannelweremeasuredindetailovertheseasons.Theroughness changed substantially with discharge variations and the roughness reached a peak in July.FromthemeasurementsthatPowellcarriedoutthecomplexrelationshipbetween roughness and vegetation can be seen as the roughness also varies substantially with depth(ordischarge). 2.2.5 Semi-quantitative relationships Otherstudieshaveshownsomeotherinterestingeffects.Theseincludethediffering impacts which vegetation can have for different sizes of channel and the percentage increases in roughness when vegetation is present, Brooker et al (1978), Bakry et al, (1992),WattsandWatts(1990).Stephensetal(1963)undertookastudyonflatwater course in the US which suggested that floating vegetation can raise the value of Manning’sntomorethantwiceitsclearchannelvalue.Forsubmergedvegetationthe figurecanbeashighastwentyfold!ShihandRahi(1982)discoveredthatduringthe growingseasonthevalueofnincreasedby300%.Pitlo’sresearchoncanalsinthe Netherlands (Pitlo 1978, 1979, 1982) showed that increases in roughness during the growingseasondependedonthesizeofthechannel.InasmallcanaltheManning’sn valuealmostdoubledwhilstinalargecanaltheincreasewas14%. The semiquantitative method, which is regularly used by engineers and scientists to determine the roughness of a vegetated river channel, is the US Soil Conservation Service Method (1963). As mentioned previously, the roughness is built up from a number of factors, channel shape, irregularity, substrate, obstructions, vegetation and . 2.2.6 Quantitative relationships ThisrelationshipbetweentheManning’snroughnessandtheproductofthevelocityV and the hydraulic radius R and the coverage of vegetation K va is a common theme through many of the studies undertaken. A number of the studies are mentioned in Table 2 and the relationships between the factors of roughness, velocity, hydraulic radiusordepthandvegetationcoveragearegiven. Table 2 Summary of equations for floating/submerged vegetation Authors VR (m 2/s) Discharge Q Area Equation range (m 3/s) (m 2) Pepper(1971) 0.58to8.46 2.4 K n = 0.06 + 0.17 va VR Wessex(1987) 0.24to1.3 15 43 K n = 0.032 + 0.027 va Vd Wessex(1987) 0.15to1.1 15 43 K n = 0.041+ 0.022 va Vd Wessex(1987) 0.15to1.1 15 43 K n = 0.029 + 0.022 va Vd

R&D ROUGHNESSREVIEW 10

Authors VR (m 2/s) Discharge Q Area Equation range (m 3/s) (m 2) Marshalland 0.24to1.3 0.2 1 K n = 0.1+ 0.153 va Westlake(1990) VR Larsenatal 0.025to0.15 0.1 0.7 K n = 0.057 + 0.0036 va (1991,1990) VR Hydraulics 0.04to0.11 4 3.5 K n = 0.035 + 0.0239 va Research(1992) VR Pepper(1970)measuredManning'snvaluesontheRiverOuseloveraperiodofayear andalsomadeameasureoftheweed growth.Theresultsshowastrongcorrelation betweenManning'snandtheratioofweedvolumetowatervolumeinthetestreach. MarshallandWestlake(1990)measuredwatervelocitiesaroundvegetationinachalk stream.Arelationshipbetweenroughness,velocity,anddepthandvegetationcoverage canbefoundfromtheirdata. Therehavebeensomestudiesundertakenwherenoobviousrelationshipbetweenflow resistance and vegetation biomass has been determined. Dawson (1978a) made measurementsintheshallowupperBerestream,atributaryoftheRiverPiddle(), andrelatedflowresistancetobothcoverandbiomass.Subsequentreexaminationof thedatainmoredetaildidnotfindanyclearrelationshipwithcoverasitvariedbya factorofthreewhereasaseasonal,slightlycyclic,butclearrelationshipwasfoundwith biomass.ExperimentalstudiesinflumesconfirmgoodVRtonrelationshipsforarange ofbiomassforseveralcommonspeciesbutalthoughfieldmeasurementsweremade,the seasonalchangeinplantmorphologywasnotapparentlyundertaken.Discussiononthe relationship of cover and biomass lead on to the bulk ratios e.g. Pepper (1971) and blockagefactorse.g.Dawson&Charlton(1988),asmethodofassessingplantvolumes, whereasstandstructuremaybeofmoreimportance,Dawson(1979). Thismethodisbasedontheassumptionthatforaparticularvegetationtypethereisa uniquerelationshipbetweentheManning'snroughnesscoefficientandtheproductof themeanareavelocity(V)andhydraulicradius(R),regardlessoftherelativevaluesof V and R. There is little scientific justification for the nVR approach, other than it seemsto“fit”manysituationsinEuropeandfurtherafield,Bakry(1992).Kouwen et al (1977)showedthatforthesamevegetationtypeandheight,plotsofManning'snversus VR do not fall on a single line and hence this empirical approach may be seriously flawed. The practical relationship between roughness n and the product VR is unsatisfactory.Theempiricalrelationshipsarenotidealinthatvelocityiscalculated usingacoefficientwhichitselfdependsonthevelocity.ThesamevaluesofVRmaybe obtainedfromdifferent valuesof VandRand therelationshipisnotindependentof slope, Smith et al. (1990). It is obviously not correct to assume that the Manning’s roughnessshouldbethesameforarapid,shallowpartlysubmergedflowandaslow, deep completely submerged flow, which have the same VR product. Kouwen and Li (1980)furtherclaimedthatthenVRmethodisinvalidwhenthevegetationisshortand stifforwhentheslopeissmallerthan0.05,whichisencounteredinmanyUKrivers pronetofloodinundation.

R&D ROUGHNESSREVIEW 11

2.3 Other vegetation roughness relationships Thoseroughnessrelationshipsdescribedabovearethemethodstraditionallyusedand onthewholearebasedonempiricaldata.Inmorerecentyearstherehavebeengreater movesintotheuseofnumericalmodelstodescribetheinteractionsbetweenvegetation and water flows. The following sections outline how the roughness is assessed by different relationships, which try to describe the nature of the vegetation and its interactionwithflowinamorescientificratherthandescriptiveorempiricalmanner. 2.3.1 Roughness Coefficient as a function of flow depth There have been a number of studies in the recent past where the way in which the roughnessvariesthroughtheverticalcolumnhasbeeninvestigated.Thesestudieshave includedchannelswithnoorlittlevegetationwheretheroughnesshasbeendominated bythebedformorplanform,Negrietal.(1999).Otherstudieshaveshownhowthe vegetationandphysicalcharacteristicscaninfluencethevariationsinroughnessinthe verticalplane,FisherandKnight(2002).Insituationswherevegetationispresent,the amountofplantsubmergedoremergingandplanttypearebothimportantparametersin definingtherelationshipbetweenroughnesscoefficientandflowdepth.Temple(1987) observed that the roughness coefficient tends to be constant for deeply submerged vegetation.Wuetal.(1999)concludedthat,underlaboratoryconditions,Manning’sn decreasedwhentheplantwasemergentbutwhentheplantiscompletelysubmergedthe Manning’s n significantly decreased tending to an asymptotic constant. Wilson and Horritt(2002)alsoobservedanasymptoticrelationshipbetweenroughnessanddepth forafullysubmergedgrasscanopyandWuetal.(1999)havefurthershownthatthe asymptoticconstantisafunctionofthevegetationheight.Otherworkcarriedoutatthe RiverBlackwater,HampshirehasprovidedextensivedataonthevariationofManning’s nroughnesscoefficientwithseasonality(Wilson&Sellin1999,Sellinetal.,2001),and similar work on the River Cole in Birmingham, Fisher and Knight (2002). Other approaches along a similar route show the relationship between roughness and other parameterssuchasdischarge,GreenandGarton(1983). 2.3.2 Force-Equilibrium Approach and the Drag Force Approach Ree(1958)andPetrykandBosmajian(1975)addressedtheproblemthattheManning’s friction coefficient is a function of flow depth and vegetation density. The latter researchers used a forceequilibrium approach where they postulated that the gravity forceisequaltotheboundaryshearandthedragforcesontheemergentvegetation.For conditions where the energy losses due to vegetation dominate, Manning's n is proportionaltothesquarerootoftheplantdensityandthedragforceincreasesasthe square of the area mean velocity. However FathiMaghadam & Kouwen (1997), through their experimental work on nonsubmerged pine and cedar saplings and branches,foundthattherelationshipbetweendragforceandflowvelocityisprobably linear.ThiswasalsoobservedbyWilsonandHorritt(2002)foraflexiblegrasscanopy and this is possibly due to these plants’ flexibility when subject to shear. Other researchershaveusedexperimentaldatasetstovalidateadragforceapproach.James et al. (2001)showedthatthereisadirectrelationshipbetweenstemdragandvegetation resistance. Rahmeyer et al. (1996) showed that nonrigid features increase the streamlining effect, reducing the drag coefficient and the momentum absorbing area. Thishighlightsthesignificanceoftakingtherigidityofthefeatureintoaccount.Knight (1988)assessedtheenergylossesassociatedwithfriction,eddies,andformincluding vegetationandcombinedthem.Querner(1994)takesasimilarapproachbutbecauseof

R&D ROUGHNESSREVIEW 12 momentum,sumstheforcesinthelongitudinaldirectionandequatesthemtozeroand usesanestimateforthedragcoefficientforvegetationfromLiandShen(1973)orvan IeperenandHerfst(1986). 2.3.3 Relative Roughness Height Approach Ree (1949), Kouwen, (1989), Kouwen and Li, (1980), have advocated the roughness height approach originally developed for flow in pipes lined with rigid forms of roughness,forrepresentingtheflowresistanceofsubmergedvegetation.Thedeflected roughnessheightisrelatedtotheundeflectedheightofthegrass,localboundaryshear, flow depth and the MEI (is the product of the stem density M, stem modulus of elasticityE,andthestemareassecondmomentofinertia I).Thiswasdefinedfrom laboratory experiments over flexible plastic strips of vegetation where MEI was a measurable parameter. In natural vegetation the parameter MEI is more difficult to define andquantify,andTemple(1987)undertooklaboratory experimentsongrasses correlatingMEItoundeflectedvegetationheightandfoundalargedisparitybetween growinganddormantgrass.

2.3.4 Turbulent Structure Morerecentworkhasfocusedondetailedexaminationoftheflowfieldandturbulence structurewithinaplantcanopy.Thesestudieshaveinvolvedmodellingvegetationasan array of rigid cylinders of the same height and diameter at regular spacing (Pasche, 1984,Tsujimoto et al., 1991,Dunn et al. ,1996,MeijerandvanVelzen,1999,Nepf, 1999). For example Nepf (1999) has tested a physicallybased model which links vegetationformdrag,turbulenceintensityandturbulentdiffusionandusesRaupachand Shaw’s (1982) spatial and temporal averaging approach to account for the heterogeneousnatureoftheflowfieldandtopresenttheproblemina1Dcontext.For bothrigidandflexiblevegetationtypesinemergentconditions,theReynoldsstresses withintheflowarenegligibleandthestreamwiseturbulencefluctuationsarefoundtobe small. However when the vegetation becomes submerged, a horizontal shear layer formsinthesurfaceflowregionabovethecanopyandwhichalsopenetratestosome depthwithintheplants.TheReynolds’stressprofilereachesapeakattheinterfaceand decays within and above the canopy. It seems that this characterises the flow irrespectiveofthevegetationbeingrigidorflexible(Tsujimoto et al., 1992,Dunn et al., 1996,NepfandVivoni,1999,Wilson et al .,2002).Wilson et al. (2002)examinedthe effectoftwoformsofflexiblevegetation,withfoliageplantsandtheequivalentplant withoutfoliage,ontheturbulencestructure.Theadditionoftheplantfoliageatthetop of the stems inhibits the turbulent mixing between the two flow regions, the canopy layerandthesurfaceflowlayer,andshiftstheturbulentstresspeaktoalevelabovethe canopytopsurface.Theswayofthevegetationaffectstheturbulenceinflows,Murota et al .(1984).Hino(1981)investigatestheecologicaleffectsofturbulence.Organised vorticesaboveshortflexibleplantswerestudiedin3Dbothvisuallyandintermsof velocities. This showed the intensity and stress was highest just below the top of vegetationlayer(Ikeda&Kanazawa,1996). 2.3.5 Boundary of vegetation There has been much effort made to understand the fundamental principles of momentumexchangeattheboundarybetweenvegetatedandnonvegetatedareas,Nepf andVivoni(1999),Dittrichetal(1999),FukuokaandFujita(1990).Inthelatterpaper theauthorsquantitativelyclarifytheinfluenceofthelateralvelocitydifferencebetween flow in a vegetated and nonvegetated area. The laboratory experiments lead to an

R&D ROUGHNESSREVIEW 13 expressionformomentumtransferrepresentedbyaboundarymixingcoefficient,which indicatesthedegreeofmixingbetweentheflowinsideandoutsidethevegetation.On thistheme,FukuokaandFujita(1993)havedevelopedanequationofmomentumthat incorporatesincreasesinresistancecausedbydifferentconfigurationsofvegetationina riverchannel. FlowinadeepopenchannelwithvegetatedbankswasinvestigatedbyHasegawaetal (1999).Theprinciplesresultingfromthatresearchshow: • Where there was comparatively deep water with high vegetation density on the bank,largescaleeddieswhichusuallydevelopalongthevegetationboundarywere notfound. • Nearthevegetationboundary,stronglydeformedvelocitydistributionsincludingthe maximumvelocity,occurredatonethirdwaterdepthfrombed. • Nearthevegetationboundary,themainflowvelocityinthenonvegetationareais reduced. • TheresistanceforceincreasesduetothedifferentcomponentsoflateralReynolds stress on the vegetation boundary, the momentum transport and the base shear stress,inthatorder. 2.3.6 Higher-Dimensional Modelling Approaches Morecomplexmethodsformultidimensionalflowproblemshavebeendevelopedby BurkeandStolzenbach(1983),Nakagawa et al. (1992),ShimizuandTsujimoto(1994) andLopezandGarcia(1997)usingatwoequationturbulenceclosureapproach.This wasfirstintroducedbyWilsonandShaw(1977)tomodelatmosphericflowsoverplant canopies.Amodifiedkεturbulenceclosuremodelwasused,introducingdragrelated sink terms into the momentum as well as into the turbulent transport equations. Laboratory experiments, conducted at Kanazawa University, Japan (Tsujimoto et al. , 1991)havebeenusedtovalidatethemodel. Shimizu and Tsujimoto (1994) calibrated their model by adjusting two additional weightingcoefficientsthatappearbyintroducingthevegetativesinkintotheturbulence equations,toreproduceobservedmeanvelocitiesandReynoldsstresses. LopezandGarcia(1997)numericallymodelledsimilartestcasesandmodifiedthesame weighting factors of the kε model but reported calibrated values which differed by about500%fromthoseofShimizu andTsujimoto (1994) . MorerecentlyLopezandGarcia(2001)againtestedthekεmodelandcomparedthek ω turbulence formulation (Wilcox, 1988) and no appreciable difference was found betweenthenumericalperformancesofeitherturbulencemodel. AconstantC D,thefrontendorformresistancevalueof1.13,wasusedbyDunn et al. , 1996inthedragforcesinkterminthemomentumequationsandnomodificationswere madetothefivestandardconstantsofthekεmodel.Howevervaluesfortheweighting coefficientsforthedragrelatedsourcetermsforthekand εequations(C fk =1.0andC fε =1.33)werefoundagaintobeinconsistentwiththosepreviouslyreported. Toeliminatethecalibrationfromthevalidationprocedure,FischerAntze et al. (2001) developedasimilardragforceapproachbutonlyintroducedsinktermsintotheNavier

R&D ROUGHNESSREVIEW 14

Stokes equations and hence made no modification to the kε model. The turbulence closurethususedthestandardvaluesfortheweightingcoefficients(afterRodi,1980) and a C D equal to unity. The model was used to simulated rigid and emergent vegetation in simplesection and compound section channel arrangements (experimentallyconductedbyTsujimoto et al., 1991andPasche,1984respectively)and good agreement was found between the computed and observed streamwise velocity distributions. Nao et al. (1996)werethefirstwhohaveusedahigherorderanisotropicclosure,the Reynold'sStressmodel(RSM),tosimulatetheflowthroughrigidsubmergedvegetation elements.Howeverthesehigherorderturbulenceapproachesareoutsidetherealmof practicalityforapplicationwithinthefield. Thefunctionalrelationshipsandnumericalmethodsoutlinedherein,withtheexception of Klassen and Van Der Zwaard (1974) and Klassen and van Urk (1985), have been based on experimental investigation at a laboratory scale with simplified models of plantcanopiesandhavenotyetbeenupscaledandtestedatfieldscale.Someofthese methodsinvolvethequantificationofparametersthatarenonmeasurablewithinnatural vegetation and parameters (e.g. deflected height, flexural rigidity) and which are difficult to characterise both in the laboratory and field. Furthermore, higher dimensional numerical approaches where modifications have been made to the turbulencetransportequationshavehighlightedinconsistenciesinweightingcoefficient values.

2.4 Use of roughness coefficients for vegetation Roughness coefficients are used in many different places especially when the water levels for a particular discharge are required. The roughness impacts on the stage dischargerelationshipandthepresenceofvegetationcanincreasetheroughnessandthe waterleveltherebysubstantiallychangingthestagedischargerelationship,Darbyand Thorne(1996),GurnellandMidgley(1994),Turneretal,(1978)andBenovitskyetal (1990). Withinchanneldesigntherehasbeenashifttowardsriverrestorationorrehabilitation, which requires environmentally sensitive design. The roughness characteristics and velocitydistributionsneedtobepredictedmoreaccuratelyinorderfortherequirements forfloraandfaunatobedetermined.Inadditionroughnessvariationswillallowthe water levels for flood alleviation to be predicted more accurately. The use of environmentallysensitivedesigncancauseaconflictofinterestbetweenecology,flood alleviation, economics and geomorphology, Dawson and Brabben (1991), Brookes (1988), Hey et al (1994). More work is required in this area to try and define the hydraulic characteristics of environmentally sensitive designs, Ferguson et al (1998), Fisher(2002).

R&D ROUGHNESSREVIEW 15

3. REVIEW OF LITERATURE - DATA

3.1 Channel substrate Themainsourceofinformationontheroughnessofchannelsubstratehasbeenfound traditionallyinChow(1959).Themainunderstandinghasbeenthatthegreaterthe relativesizeofthebedmaterialthehighertheroughnessfactor.Anumberofdifferent publicationshaveshownpicturesofdifferentriverswithavarietyofsubstrates,Hicks andMason(1991)andBarnes(1967)inparticular.Thesepublicationsarefordifferent countries, New Zealand and US, and give the roughness for the river at a particular momentratherthanjustthevalueforthesubstrate.Intheriversselected,however,the substratewouldhavebeenthedominantfactor. 3.1.1 Roughness, sediment and channel shape and size The relationship between roughness and sediment size and distribution of sediment has beenstudiedandthebestrelationshipscanbeshowntobebetweenroughnessandthed 84 sediment size (the sediment size equal to or exceeding that of 84 % of the stream bed particlesbyweight)ord w (thesizeobtainedbyassigningaweightof0.1tod 16 ,aweightof 0.3ord 50 andaweightof0.6tod 84 ),Limernos(1970).Resistancetoflowisintimately relatedtobedconfigurations:ripples,,,chutes,pools,Knoroz(1959).A relationship between stream power, diameter of bed material and bed configuration has been developed by Simons and Richardson (1966). Haldar et al (1981) developed a relationshipbetweentheroughnesscoefficient,thehydraulicradiusandthematerialsize. The resistance in fully developed turbulent flow at a constant depth increases with the squareofthemeanvelocitywhentheboundaryconditionsremainunchanged.However,in naturalriversthisisnotalwaysso,especiallyinsinuouschannelswhenthefreesurfaceis disturbedduetothechannelcurvature,Leopoldetal(1960). 3.2 Channel features and obstructions 3.2.1 Boulders Theuseoflargescaleroughnessinenvironmentalchannelsisgenerallyforthecreation ofrockpoolstoimprovethespawningandnurseryareasforfish.Thesizeofsediment isofasimilarorderofmagnitudetoorgreaterthanthedepthofflowofthechannelin which it is placed. However, largescale roughness of this magnitude in a natural channelisusuallyonlytobefoundinsteepstreams.Standardequationsforsmallscale roughnessdonotapplytolargescaleroughness.Locally,theflowisnonuniformwith zonesofseparation,acceleration,anddecelerationaroundtheroughnesselements. ResearchbyBathurst(1978)hasshowntheflowresistanceforchannelswithlargescale roughnesstobeafunctionofchannelshape,roughnessspacingandrelativeroughness. ThompsonandCampbell(1979)relatedresistancesolelytorelativeroughness.Both approaches are presented as a means of estimating the resistance of largescale roughness,howevertheuseoftheColebrookWhiteformulawithk s =3*d 90 ork s =3*d 85 isrecommended . Thedeterminationofthesizeofmaterialonthebedofastreamisbasedonananalysis oftherelativeareacoveredbyparticlesofgivensizesafterWolman(1954).

R&D ROUGHNESSREVIEW 16

Caution,however,mustbeexpressedinproposingboththemethodofdeterminationof bed material size and estimation of roughness coefficient. The former due to the artificial frequency distribution generated when largescale roughness elements are introduced into an environmental channel; the latter as the resistance equations have beenderivedfromchannelswithsteepslopeslinedwithcoarsebutrelativelyuniform bedmaterial. Bathurst,LiandSimons(1981)investigatedtheeffectsoflargescaleroughnessonthe resistanceequationwherethebouldersarethesameorderofmagnitudeasthedepthof flow. They discovered from flume experiments that flow resistance of largescale roughness depends on the form drag of the elements and their location within the channel. The flow processes are functions of Reynold’s number, Froude number, roughnessgeometryandchannelgeometry.Theequationsproducedaresemiempirical withabasictheoreticalequationbutwithoutafullmathematicalquantificationofthe functions. Figure2showsexamplesofobservedvariationsinflowresistancebutthefielddatais notavailableinsufficientquantitiestomakeagoodcalculationofresistancefromthe complexrelationships.ThereisasemilogarithmicrelationshipfromHey(1979)given below: 1  8  2  aR  = .5 75log     (15)  f   5.3 d84 

But as the vertical logarithmic velocity relationship breaks down when there are boulderspresentthisequationdoesnotapplyexceptatrelativesubmergencesofless than1.5,ThorneandZevenbergen(1985).Athigherrelativesubmergencesthesemi logarithmic relationship significantly overestimates the flow resistance coefficient as seeninFigure2.

R&D ROUGHNESSREVIEW 17

1/2 Figure 2 At-a-site variations of (8/ f) with relative submergence if d/D 84 for four combinations of channel slope and standard deviation of bed material size distribution for boulder-bed rivers (Bathurst, 1994)

Bathurst(1985)suggestsanempiricalapproachwiththeresistancecalculatedfromthe followingequation: 1  8  2  d  = .5 62log + 4     (16)  f  d84 

This is for channel slopes in the range 0.44% and d/d 84 <10. As this equation is representativeratherthanforindividualsitesittendstounderestimateresistanceatlow flowsandoverestimateresistanceathighflows. Jarrett(1984)givesanotherempiricalequationwhere: .0 38 − .0 16 n = .0 32S f R (17) for channel slopes of 0.24%. Again this represents the average line through an envelopeofvaluesfromarangeofsitesratherthanindividualsites.Bothoftheabove equationsfromBathurst(1985)andJarrett(1984)cangiveerrorsof30%. Morerecently Bathurst(1996)hasmeasuredinthefieldthedragforce onindividual bouldersontheriverbedwhichshowedmuchhighervaluesofdragcoefficient,0.36, thanthosemeasuredinthelaboratory,1.11.5,forcubes.Moretestsarerequiredtotest theconditionsinwhichthemethodcanbeusedbeforethismethodcanbetransferred andusedinamorenaturalenvironment.

R&D ROUGHNESSREVIEW 18

Valuesofroughnesscoefficientsforgravelandcobblesurfaceswererelatedtosurface coverandReynold’snumberbyGilleyetal(1992)inalaboratoryenvironment.The diameterofthecobblesextendedto25cm,whichcouldbeerringintothesmallboulders region.Thisdatacouldbeusedforsmallbouldersandisrelatedtothecoverageofthe cobblesinadditiontotheReynold’snumber. Macroroughness simulated using marbles was investigated by Dubois and Schleiss (1999), in order to determine the relationship between the velocity and the variable parameters,suchastheobjectsize,slopeofthesurface,andtheflow.Thishasledtoa new relation for head loss for shallow flows over macroroughness that is valid for laminarandturbulentflows. The presence of woody debris within a channel can have a significant effect on the resistancetoflow.Thedebriscanreducetheaveragevelocity,andlocallyelevatethe water surface profile. The significance of the debris is scale dependent with the hydraulic effects typically being drowned out in a larger flood or large river, Gippel (1995). Shields and Gippel (1995) produced a simple technique for predicting the frictionfactorforriverchannelswithvaryingamountsoflargewoodydebris.Intwo riversstudiedthe removalofdebrisreducedthefrictionfactorby2030%increasing banktopflowcapacityby520%. 3.2.2 Groynes Muchworkhasbeencarriedouttooptimisethedesignofgroynesforthepurposeof providingbankprotection,seeforexampleJansenetal(1979),McCollumetal(1987), Bhargava and Singh (1981), Ahmad (1951) and Miller et al (1983). Guidelines were developedbySeed(1997)onthegeometryofgroynesforrivertraining.Thisworkhas concentratedoninvestigatingtheeffectofvaryingthelength,crestheight,angleand spacingofgroynesontheirefficiencyasbankprotectors. No work has been identified which investigates the effect of current deflectors and groynesontheoverallhydraulicperformanceofthechannel.Proceduresareproposed belowforanalysingtheeffectofgroynesonthehydraulicsofthechannel.Theseare based solely on knowledge of river hydraulics from work done at HR Wallingford. Theseproceduresshouldbeusedwithextremecautionuntiltheyarevalidatedagainst bothlaboratoryandfielddata. The hydraulic effect of groynes on the channel will depend on two factors. Firstly whether there is a single groyne or whether there are a number of groynes, and, secondlythesizeofthegroynerelativetothechannel.

R&D ROUGHNESSREVIEW 19

Table 3 Outline of methods to deal with the hydraulic effect due to groynes Water level in Groyne width as Suggested approach relation to a function of groyne channel width Waterlevelabove Singlegroyne, Under these circumstances any hydraulic thegroynecrest length<20%of impactofthegroynewillbelocalisedandwill thechannelwidth haveaminimaleffectontheoverallhydraulics of the channel. Suggested approach is to considerthisasaboulderobstructionwiththe appropriateobstructionlevelof<20%. Singlegroyne, Under these circumstances the effect of the length>21%,< groyne on the channel hydraulics will be 50%ofthe significant.Itissuggestedthatthegroynebe channelwidth treatedasalowweir,whichextendsacrossthe AND complete width of the channel. Therefore it Singlegroyne, cannot be considered as a roughness unit and length>50%of maybeaffectedbybackwaterandabackwater thechannelwidth calculationisrequired. Multiplegroynes Underthesecircumstancesthechannelshould betreatedasacompoundchannel.Thelimit ofthelowflowchannelshouldbetakenasthe outerlimitofthegroyneandtheelevationof the upper stage the crest level of the groyne. The conveyance should be calculated in the conveyancegeneratoraccordingly. Waterlevelbelow Singlegroyne Treatasanareaofzeroconveyance. groynecrest Multiplegroynes Thezoneofthechannelbetweenthe groynes willbedominatedbyrecirculatorymotionand will contribute little to the conveyance of the crosssection.Thelimitofthechannelshould betakenastheouterlimitofthegroyne,and the crosssection amended to take account of theseeffectsintheconveyancegenerator. 3.3 Alluvial roughness 3.3.1 Introduction In channels in which sediment on the bed is mobile, the bed of the channel may be deformedbytheflowresultinginsocalled‘bedfeatures’.Thesebedfeaturescanaffect thehydraulicroughnessofthebedandsoinfluencetheflowinthechannel.Thebed featuresarethemselvesdependentupontheflowandvaryinnatureandmagnitudewith the flow. Thus in those situations where bed forms can occur the problem of determiningthehydraulicroughnessbecomesintertwinedwiththatofdeterminingthe flow.

R&D ROUGHNESSREVIEW 20

Animportantaspectofalluvialresistanceisthewaythatitvarieswithflowconditions. As flow conditions vary the size and shape of bed features may vary, leading to significant variations in hydraulic roughness. For fixed roughness elements it is commonly found that the effective roughness reduces with increasing discharge. In alluvialchannelsanincreaseindischargemayleadtoanincreaseinthesizeandshape ofbedfeatures.Thischangeinthebedfeaturesmayleadtoincreasedformlossesand hence increased roughness. Thus in alluvial channels it is quite possible for the hydraulicroughnesstoincreasesubstantiallywithdischarge,incontrasttothenormal behaviour of fixedbed roughness elements. This type of behaviour is by no means universal, for some flow conditions bed features may reduce in size with increasing discharge. This reduces form losses and leads to more rapid reductions in hydraulic roughness than one would expect for fixedbed channels. In situations where a component of the hydraulic roughness arises from alluvial resistance it is important, therefore,tobeabletopredictthevariationofalluvialresistancewithflowconditions. 3.3.2 Description of bed forms Bed forms occur on differing spatial scales ranging from tens of millimetres to thousandsofmetres,withthedifferentscalesofbedformshavingdifferentproperties. The physical mechanisms responsible for the formation of such bed forms are not completelyunderstoodbut,presumably,differentphysicalmechanismsareinvolvedfor thedifferentspatialscales. Definitions of the various bed forms are given below. As was indicated above, bed formsarisefromarangeofphysicalmechanismsand,asaresult,behaveinavarietyof different ways. Unfortunately the terminology that has developed does not always distinguish precisely the different possible types of behaviour. Perhaps the most obviousexampleisoftheuseoftheterm‘bars’.Thiscanbeused,asinalternatebars, todescribeasystemthatismobileandprogressesdownstream,or,asinpointbars,to describe stationary features determined by the channel plan form geometry, or to describe transitory features which appear and disappear in braided rivers. Thus unfortunatelytheterm‘’doesnotgiveapreciseindicationofthenatureofthebed featurealludedto. Foragivenflowconditionthetypeofbedfeaturethatwillbedevelopedonthebedalso dependsuponthenatureofthesedimentonthebedandinparticularitssize. • Ripples: Ripplesaresmallbedformsthatareusuallylessthan0.3mlong,inthe directionofflow,andlessthan0.03minheight.Inlongitudinalsection,ripplesvary from triangular to sinusoidal in shape and their size is not dependent upon flow depth. • Dunes: Dunes are intermediate in size, between bars and ripples. Their upstream slopeisveryshallowandtheirdownstreamslopeisclosetotheangleofreposeof the bed material. Their height is depth related, typically 10% of the depth. Any surfacewavesthatoccurareoutofphasewiththedunes,thatis,minimumwater surfaceelevationsoccuroverthecrestsofthedunes. Theflowoverdunesfrequentlyseparatesjustdownstreamofthecrest,resultingina recirculationzonedownstreamofthe.Theflowreattachestotheupstream face of the next dune downstream. This separation and reattachment can be

R&D ROUGHNESSREVIEW 21

importantinboththeenergydissipationandhenceresistanceinducedbythedune andalsocanhaveimportantimplicationsforthemovementofpollutants. • Antidunes: Antidunesoccurusuallyinsupercriticalflowandformaregular,almost sinusoidal, train of bed forms. Individual antidunes migrate upstream whereas sediment movement is high and in the downstream direction. A train of surface wavesoccursinphasewiththeantidunes.Undercertaincircumstancesthesewaves breakintheupstreamdirection. • Bars: Bars are major bed forms sometimes covering the full channel width and havinglengths,inthedirectionofflow,usuallyinexcessofthechannelwidthand heights comparable with the mean depth of flow. Point bars are deposits on the insideofchannelbendsandalternatebarsemanatefromtheleftandrightbankof thechannelinsequence.Alternatebars,orpartsofthem,havealsobeenreferredto as unit bars, linguoid bars, side bars, transverse bars, crosschannel bars and diagonalbarsandriffles. • Alternate bars: Inotherwisestraightreachesofriversasequenceofbarsmayform, known as alternate bars. Each bar is attached to the bank, with successive bars attached to opposite banks. As a result, the low flow channel follows a sinuous coursefromonebanktotheother. • Plain bed / transitional bed: When flow conditions are in transition from subcritical to supercritical the bed forms are confused but mainly small in magnitude.Thebedmaybedevoidofbedformsoritmaydisplayanarrayoflow amplituderipplesanddunesoramixtureofallthree. • Pool - sequences: Thedevelopmentof alternatingareasofdeep(pool)and shallow (riffle) flow is characteristic of channels with coarse bed material from approximatelyafewmillimetresupwards.Poolsarefrequentlyassociatedwiththe outsideofbendswhileontheinsideofthebendsandextendingdownstreampoint barsareoftenfound. • Steps and step pool sequences: In steep, particularly small streams the bed is formedbyasequenceofsteps,oftenwithassociatedpools,theheightofthestep being in excess of the normal water depth. The forming the steps are normallytoolargetobemobilisedbytheflow.Thisformofbedfeatureiscommon intheheadwatersofmanyuplandUKrivers. Thelengthscalesofripplesarerelatedtothesedimentsize,thelengthscalesfordunes arerelatedtotheflowdepthwhilethelengthscalesforbarsisrelatedtothechannel width. Bars (excluding point bars), ripples and dunes all move slowly in the downstreamdirection.Flowconditionsareusuallysubcritical. SimonsandRichardson(1960)firstcategorisedbedformsasshowninFigure3.

R&D ROUGHNESSREVIEW 22

Figure 3 Bed forms, as categorised by Simon and Richardson (1960) Inpracticebedfeaturesmaytakealongtimetodevelopand,innaturalstreams,where the flows vary continuously, the bed features are rarely in equilibrium with the instantaneous flow. However, it is useful to interpret the Simons and Richardson categories in terms of the relationship between certain types of bed feature and the correspondingsteadyflow. Atlowflows,wherethetractiveshearonthebedislessthanthatrequiredtoinitiate movementofthesediment,thereisnocorrelationbetweentheflowandthebedforms. Atflowsthatarehighenoughtocausemodestsedimenttransportrates,thebedforms areeitherripplesordunes.Athigherflowswashedoutdunesoraplainbedsituation occurs.Atflowswhichgenerateveryhighsedimenttransportratesantidunesmayoccur in sand bed channels. The chutes and pools indicated by Simons and Richardson are mainlyrestrictedtosomesteepgravelriversandtodaywouldbereferredtoaspoolsand riffles. 3.3.3 Methods of prediction In general there are two classes of prediction for alluvial resistance. One class of methodspredictsthesizeandshapeofbedfeaturesandthenusesthistodeterminethe hydraulic resistance, see for example van Rijn (1984). Another class of methods predictsthehydraulicresistancebuttheydonot,however,defineexplicitlywhatbed forms are present. Instead, they predict resistance based on the physics of sediment movementintermsofsedimentandflowproperties,seeforexample,Brownlie(1983), Engelund(1966and1967)andWhiteetal(1982). Information on estimating roughness values for the alluvial resistance of poolriffle sequencesiscontainedinSection3.4. 3.3.4 Development of bed forms Whenbedformsdevelopfromaplanebedthereisnormallynochangeinaveragebed level. Thus the volume of sediment above theaverage bed level in the crests of the featuresiscompensatedbythevolumeofthetroughsbelowtheaveragebedlevel.This

R&D ROUGHNESSREVIEW 23 hasimplicationsforthespeedofdevelopmentofbedfeatures.Forbedfeaturessuchas dunes and ripples to develop then all that is needed is for the appropriate volume of sedimentwithinthebedfeaturetoberearrangedonthebed.Thisvolumeisnormally quitesmallincomparisonwiththetotalvolumeofsedimenttransportandsochangesin the size of bed features occurs rapidly, for example, during a flood event. The re arrangementofsedimentonthebedstilltakessometimeandsoiftheflowischanging rapidlythenitmaybethattheequilibriumbedformisneverachieved. Inalaboratorythetimetogofromaflatbedtothefullydevelopedduneheightcanbe of the order of 1 hour while the development of dune length takes of the order of 2 hours(WijbengaandKlaasen,1981andKlaasenetal,1986).VanUrk(1982)reported thatonthelowerRhinethetimelagbetweenflowandduneheightwas4days,witha longerperiodfordunelength. 3.3.5 Spatial variation of alluvial resistance within a cross-section Thebedformthatdevelopsdependsataparticularlocationonthebeddependsuponthe local flow depth and velocity. Where conditions vary significantly across a cross sectionitispossiblethatthetypeandsizeofbedfeaturesmayvaryacrossthecross section.Thusthehydraulicroughnessmayvaryacrossthecrosssection. 3.3.6 Conclusion Theinformationdetailedinthissectiononalluvialroughnessisprovidedasaguideto understandingwhatalluvialroughnessis.Thisreviewhasnotattemptedtodevelopthe roughnessparameterstocharacterisealluvialroughnessintermsofManning’snasthe underlyingunderstandingofbedfeaturesisanareaforfurtherresearch.However,some useful information has been obtained for pools and riffles and these bed features are treatedseparatelyinthefollowingsection.Formoredetailedinformationonalluvial roughness characterisation and estimation see ‘Sediment transport and alluvial resistanceinrivers’,EAR&DReport(inpreparation). 3.4 Channel irregularities 3.4.1 Pools and riffles Numerousresearchstudieshavebeenundertakenintopoolandrifflesequencesinriver channels with the emphasis on the morphology and sediment characteristics of the bedform,e.g.Leopoldetal(1964),Richards(1976),KellerandMelhorn(1978),Milne (1982)andHeyandThorne(1986).Lessemphasishasbeenplacedonunderstanding andpredictingthenaturallocationandspacingofrifflesandpools,e.g.Sephton(1983) andHigginsonandJohnston(1989). Poolsandrifflesinariverchannellocallycausethechannelslopetodeviatefromthe averagechannelslopeforareach.Thisresultsinmarkedchangesfromsteeptoshallow longitudinal slopes. At low river flows this change in profile can lead to shallow cascadeflowoverrifflesleadingtodeepertranquilflowinthepools. Higginson and Johnston illustrated the problems associated with determining the roughness coefficient of a pool riffle sequence using the average channel slope for a reach of river. At low river flows the calculated value of Manning's n changed markedlybothwithdischargeandposition.Iflowflowsareimportantinthedesignof

R&D ROUGHNESSREVIEW 24 a channel this pronounced variation in roughness coefficient would need careful consideration. However,researchbyHigginsonandJohnstoninNorthernIreland,byRichards(1976) ontheRiverFoweyinCornwallandPimpertonandKarle(1993)hasshownthatasthe discharge increases these changes become less marked. At higher flows, such as bankfullconditions,thebedformationhaslittleornoeffectontheManningcoefficient indicatingthatuniformflowmaybeassumed. A major design criterion for environmental channels or improvement of existing channelsistheabilityofthechanneltoconveyfloodflows.Determinationoftheflood conveyanceofachannelassetoutinthisreportisdependentuponknowledgeofthe roughnesscoefficientatbankfullflow. Data collected at ten sites on the River Blackwater (University of Ulster, 1995) was analysedtogivearangeofroughnessvaluesforpools,rifflesandnurseryareas.The rangeofvaluesgiveniswideinrangeandisdependentonthedischargeanddepthat which the roughness coefficient is measured. At low discharges there is a great discrepancybetweentheroughnessvaluesalongthereach.Thedataisalsorelevantto boulderswithinchannels. 3.4.2 Other irregularities Bendsarealsoirregularitieswithinthechannel.Theresistanceduetobendsisdealt withintheConveyanceEstimationSystemandnotwithintheroughnessadvisor. In nonprismatic channels there is a resistance due to the form loss which is not incorporated into the conveyance calculation. This form of roughness has not been addressedinthisreportduetoalackofdataavailabletomakeanyusefulcontributions tothedatabase. 3.5 Tidal reaches Intidalchannelstheroughnessvaluesarechangingmuchmorerapidlyovera12hour period as the tide ebbs and flows and the water level changes. Knight (1981) demonstrated this with measurements in the Conwy where the Manning’s n roughnesscoefficientsvariedsignificantlywithstage.Overa4mrangetheManning’s roughness values varied from approximately 0.03 to 0.11. A later study, Wallis and Knight(1984),showedthreemaintrendsinthedata–astrongstagedependence,aflow directionaldependenceduetofloodorebbdominatedbedformsandahighvariability withlocationalongtheestuaryespeciallywheresandbankswereexposedatlowwater. 3.6 Vegetative features 3.6.1 Grass cover ExtensivetestsundertakenongrasscoverPalmer(1946),Ree(1949),ReeandPalmer (1949) resulted in a Handbook of Channel Design, US Soil Conservation Service, (1954).

TheresultoftheworkhasbeentodefineaseriesofrelationshipsbetweenManning’sn andtheproductVR,whereVisthemeanflowvelocityandRisthehydraulicradius. The relationship is expressed as a family of curves, each curve defining the other

R&D ROUGHNESSREVIEW 25 principal variable, the physical characteristic of the vegetation. The main physical characteristicisjudgedtobetheheightbutotherfactorssuchasdensityanduniformity areinfluentialandavaluejudgementhastobemade.Acceptingthatthevegetationis anorganiccoverofalmostendlessvariability,thenVRrelationshipgivessoundresults in the majority of field cases, Stephens et al (1963), and experimentally, Kao and Barfield(1978).Table4givesguidanceonretardancecategories.

Table 4 Grass cover retardance classes (US Soil Conservation Service, 1954) Stand Average Length Retardance Longerthan30inches A 11into24in B Good 6into10in C 2into6in D lessthan2in E Longerthan30inches B 11into24in C Fair 6into10in D 2into6in D lessthan2in E GreenandGarton(1983)giveequationsforthecalculationoftheManning’sroughness coefficientineachoftheretardanceclasses.Otherpublicationsshowasimilartrendin roughnesscharacteristicswithgrass,Chen(1976),Fisher(2002),GrafandChun(1976). 3.6.2 Trees and Shrubs Individualtreesorstandsoftreescanresultinasignificantheadloss.Therehavebeen anumberofpublicationswherethishasbeeninvestigated. PetrykandBosmajian(1975)theoreticallyanalysedflowthroughtreesandshrubs.In carryingoutthisanalysistheymadethefollowingassumptions: • thevelocityissmallenoughtopreventalargedegreeofplantbending; • thevegetationisrelativelyuniformlydistributedinthelateraldirection; • largevariationsinaveragevelocitydonotoccuracrossthechannel; • themaximumflowdepthislessthanorequaltothemaximumheightofvegetation; and • largevariationsinflowvelocitydonotoccurovertheflowdepth. LiandShen(1973)presentananalysisofflowthroughtallvegetationbyconsidering thedragduetocylindersintheflow.Thisstudy isnotofdirectapplicabilitytothe estimationofflowresistanceduetovegetationbutitdoesdrawsomeconclusionswhich are of relevance. The most important of these is that staggered patterns of tall vegetation (trees) are much more effective in reducing the flow than any other configurationwiththesamenumberoftallvegetation.OtherstudiesincludeKomora (1981).

R&D ROUGHNESSREVIEW 26

KlassenandVanDerZwaard(1974)carriedoutlaboratoryexperimentstoinvestigate theeffectoforchardsandhedgesontheroughnesscoefficientofvegetatedfloodberms. The analysis of Klassen and Van Der Zwaard considered hedges which were not submerged by the flow. Klassen and Van Urk (1985) extended this work by investigating the resistance of drowned hedges. They concluded that in order to calculatetheflowthrough/oversubmergedhedges,themethodofKlassenandVanDer Zwaardshouldbeusedforflowthroughthehedge.Theflowoverthehedgeshouldbe estimatedusingashortcrestedweirequationwithadischargecoefficientequalto1.0. There are some excellent publications in different countries for the practical managementoftreesandshrubson:TechnologyResearch Centre,(1994) andEnvironmentAgency(undated). 3.6.3 Floodplains Thereareseveralmethodsfordeterminingtheeffectsoftreesandgrassesthatcanbe usedonthefloodplains.Freemanetal(1998)producedanimprovedmethodologyfor the determination of roughness values for shrubs and woody vegetation. Pasche et al (1983)andPascheandRouve(1985)usedroughnesselementsinlaboratorytestsand investigated the flow characteristics on a vegetated floodplain. Pasche and Rouve (1985)gaveparticularattentiontotheproblemofnonsubmergedfloodplainroughness. Weltzetal(1992)developedareferencetableof“effectiveroughness”coefficientsfor shallow overland flow with a description of site characteristics. There was no trend apparent in effective roughness coefficient associated with type of vegetation or soil texture.Thorntonetal(2000)producedapredictiveexpressiontopermittheestimation oftheapparentshearstress,averagevelocity,anddepthinboththemainchanneland floodplainandtheblockagecausedbythefloodplain. 3.7 Vegetation growth and maintenance Partoftheissueinassessingandcontrollingvegetationisthedifficultyinpredictingthe typesofvegetationwhichwillbepresentintheriverfromseasontoseasonandyearto year.Fox(1992)givesarecentgeneralreviewofaquaticplantgrowthseasonalityand ecologicalinteractions.Vegetationmaintenanceisanimportantissueforflooddefence (Robson 1968, Westlake 1968, Westlake and Dawson 1982). The regrowth of vegetation after cutting has been investigated and some semiquantitative and descriptiveadvicecanbedeterminedfromthisresearch(e.g.Dawson1989). Themaximumbiomassreachedforsomespeciesinunmanagedwatersmaybelessthan inwaterswheretheweediscutregularly,andmaybebelowthelevelatwhichcutting becomes necessary. If weed could be removed earlier in the year, well before the maximum is reached, this may reduce the initiating biomass, delay the time of the maximumandthereforelowerthemaximumbiomassachieved(Dawson1978a).The cycleofcuttingandrapidregrowthissimilartothatobservedwiththetypicalEnglish lawn.If,however,tallerplantsandaslightlyhigherstandingcropcouldbetoleratedthe vegetationcouldreachaselflimitingmaximumbiomass. Regularplantremovalcontinuallysynchronizesthegrowthofindividualplants,causing the times of each plants maximum biomass to coincide over the whole population, Dawson(1978b).Intheunmanagedsituation,thenaturalandsomewhaterraticdecline inthestandingcropcreateslessfavourableconditionsforregrowthintheautumn.By

R&D ROUGHNESSREVIEW 27 contrast, the removal of plant material in summer allows regrowth in the autumn, producing a higher and betteradapted overwintering plant population. This leads to rapidandmoreadvancedgrowthinthefollowingseason,resultinginahigherbiomass atfloweringtimes.

ForemergentvegetationHaslam(1978)states: • Urtica dioica regrowsquicklyduringthegrowingseasonandthereisnolongterm effectofcutting; • Glyceria maxima and Typha angustifolia regrowquicklyduringthegrowingseason butnextyear’scropisreducedby30%; • Phragmites communis regrowth is quick after cutting during the period of rapid growth(inspringandearlysummer),andtherearenolongtermeffects; • Cuttinginlatesummermeanslittleregrowthandasubstantiallylowercropinthe followingyear. Forsubmergedandfloatingvegetationthisadvicehasbeengiven: • no cutting required during the winter as these plants dieback either partially or completely; • cuttingmayberequiredanytimebetweenlatespringandearlyautumnwhenthe plantsgrowthickly; • EarlygrowingspeciesinSouthernEnglandsuchas Ranunculus mayneedcuttingin April,Haslam(1978); • Spring cut of Ranunculus during its growing period may in fact stimulate further growthratherthancontrolit,Westlake(1968); • Springcutof Callitriche toremoveestablishedbedswouldbeverybeneficialinits controlduringthegrowingseason,Soulsby(1974); • Lategrowing species such as Sagittaria sagittifolia may not become dense until earlyJuly,Haslam(1968); • Guidelines given by Haslam and Wolseley (1981) indicate that for floating or submergentweedstheusualtimeforrecoveryaftercuttingis24weekstoreplace theareacover,longertoreproducethesamebiomass; • Cutting in late summer leads to little regrowth of strongly seasonal species (e.g. Potamogeton pectinatus )althoughnonseasonalspecies(e.g. Callitriche )insuitable temperaturesareunaffectedbythedateofcutting. Theimpactofmaintenanceonthewaterlevelshasbeendemonstratedonacompound channeloftheRiverRoding,UniversityofBristol(1988).Stagedischargerelationships were produced with and without vegetation on the berms. The stage discharge relationship for the cut berm (Manning’s n values 0.05 to 0.06) gives a bankfull discharge of 40m 3/s, whilst for the uncut berm (Manning’s values 0.05 to 0.09) the bankfulldischargeis25m 3/s. Hearne and Armitage (1993) investigated the implications of the annual macrophyte growthonhabitatinrivers.Duringtheinvestigationtheyhighlightedsomeimportant issues:

R&D ROUGHNESSREVIEW 28

• Thedepthinnarrowchannelsismoresensitivetochangesinmacrophytebiomass thanwiderchannels • Theinfluenceofmacrophytesondepthandvelocityisnotasgreatwithsteeper gradients • Thedischargerequiredtomaintainaconstantdepthreducesbyuptoathirdinthe chalkstreamsmonitoredasmacrophytesbecomeestablished. ExperimentalworkjointlyundertakenbyHRWallingfordandtheCentreforAquatic Plant Management (CAPM) investigated the hydraulic impact of vegetation and the impactofcuttingElodaandPotamogetonanditssubsequentregrowth,Smailes(1996). Theresultsshowed: • differenceintheregrowthratesforthedifferentplants;and • differentroughnesscharacteristicsforthedifferentplants. Fisher (1995) assessed the impact of cutting aquatic vegetation on the hydraulic performanceontworivers,CandoverBrookandtheRiverKennet.Theresultsfrom these two sites are site specific but they do give an indication of the likely scale of hydraulicimpactofariverofasimilarsize,shapeanddischargecapacity.Eventhough the results may not necessarily be transferable to other rivers the techniques and proceduresusedcanbeappliedtootherriversites. MeasurementstakenontheWinterbournestreamduringthesummershowedveryhigh valuesofManning’sn,uptovaluesof1.3inthereachthatwasalmost100%choked withvegetation.Thevegetationwascutdownthecentreofthechannelby30%,then 60%andthen100%ofthevegetationwasremoved. Therearesomegeneralprinciplesthatcanbeappliedtovegetationmaintenanceandthe quantitativeimpactithasontheperformanceonriverchannels,Fisher(1996): • Cuttingthevegetationdownthecentralpartofthechannelishydraulicallymore efficientthancuttingthesamepercentageamountfromoneside; • Cutting80%ofthechannelvegetationgivesalmostthesamehydraulicbenefitsas cutting100%ofthevegetation; • Theaboveisgenerallytrueformostchannels.Forchannelswithahigh width/depthratioe.g.of>10,cutting65%ofthechannelvegetationgivesalmost thesamehydraulicbenefitsascutting100%ofthevegetation.Forchannelswitha smallwidth/depthratioe.g.<2thedifferencebetweencutting66%and100%of thevegetationwoulddoublethepercentagereductioninwaterlevel.

TheEnvironmentAgencyintheUKpublishesguidelinesonaquaticweedcontroland the function and management of water plants (e.g. Environment Agency 1998). In addition they offer guidelines on river maintenance, which investigate the impact of maintenanceonfloraandfauna,Wardetal(1999).

3.8 Woody debris Largewoodydebrishascreatedgreaterhabitatandisincorporatedintoenvironmentally sensitivedesign.Hydraulicallydebrisactaslarge roughnesselementsthatprovidea variedflowenvironment,reduceaveragevelocityandlocallyelevatethewatersurface

R&D ROUGHNESSREVIEW 29 profile, Gippel (1995) and Linstead (2000). The impact of the woody debris on roughnesscoefficientshasbeeninvestigatedresultinginamethod,ShieldsandGippel (1995)whilstLinstead(1999)analysesthefrequencyandeffectsofsuchdebrisforthe UKusingdatafromtheRHSsurvey(etal1998).

R&D ROUGHNESSREVIEW 30

4. REVIEW OF FIELD DATA 4.1 Data availability and usefulness Fromtheliteraturetherearesomepaperswherevaluabledatasourceshavebeenused following in the steps of Manning’s summary (1895). The data from these current papers that have been selected and used in the roughness advisor is detailed in the alphabeticallyarrangedtablesinAppendixA.Thesetableshavebeenreferencedbefore intheprevioussectionsbutthetablesgiveashortsynopsisofthepaperandthedataor figures which have been used to generate data for the roughness advisor. The data givenisnotanexclusivesetofthedatabutitisthedatathatisconsideredasbeing usefulforthisproject. In addition to the data from the literature, data from field study sites to which the authorshavehadaccesshasalsobeenused.Thisdatahasbeencollectedforresearch studiesorPHABSIMstudiesorforverificationpurposesformodels.Table5showsthe fielddataavailable,thetypeofdataandthesourceofthedata. Table 5 List of available field data sites and sources Individual readings or River and site Source of data over a season RiverSevern,Bewdley Oneday HRWallingford/EA RiverDerwent Oneday HRWallingford/EA RiverTrent Oneday HRWallingford/EA RiverAvon Oneday HRWallingford/EA RiverIlamatManifold Oneday HRWallingford/EA RiverTanat Oneday HRWallingford/EA RiverVrynwy Oneday HRWallingford/EA RiverSevern,Montford Oneday HRWallingford/EA Bawn’sBurn,NI One/twoseasons UniversityofUlster/MAFF Abelsbridge,RiverBlackwater,NI One/twoseasons UniversityofUlster/MAFF LisdoartMill,RiverBlackwater,NI One/twoseasons UniversityofUlster/MAFF LisdoartBridge,RiverBlackwater, One/twoseasons UniversityofUlster/MAFF NI ForthillBridge,RiverBlackwater,NI One/twoseasons UniversityofUlster/MAFF CaledonBridge,RiverBlackwater, One/twoseasons UniversityofUlster/MAFF NI OmaghRoad,RiverBlackwater,NI One/twoseasons UniversityofUlster/MAFF Burn'sBridge,RiverBlackwater,NI One/twoseasons UniversityofUlster/MAFF OonaRiver,NI One/twoseasons UniversityofUlster/MAFF RiverFury,NI One/twoseasons UniversityofUlster/MAFF LiveryHill,RiverBush,NI One/twoseasons UniversityofUlster ConagherBridge,RiverBush,NI One/twoseasons UniversityofUlster StranocumBridge,RiverBush,NI One/twoseasons UniversityofUlster Clontyfinnan,RiverBush,NI One/twoseasons UniversityofUlster Stracam,RiverBush,NI One/twoseasons UniversityofUlster Mossside,RiverBush,NI One/twoseasons UniversityofUlster DougheryWater,RiverBush,NI One/twoseasons UniversityofUlster RiverNoe,RiverBush,NI One/twoseasons UniversityofUlster UpperDerwent Severalflowconditions UniversityCollegeWorcester/EA PHABSIMdata RiverTavy Severalflowconditions UniversityCollegeWorcester/EA

R&D ROUGHNESSREVIEW 31

Individual readings or River and site Source of data over a season PHABSIMdata RiverCole,Birmingham Severalflowconditions UniversityofBirmingham RiverTame,Birmingham Severalflowconditions UniversityofBirmingham RiverCole,Swindon Severalflowconditions HRWallingford RiverBlackwater,Hampshire Severalflowconditions UniversityofBristol/EA RiverThamesBuscottoReading DataMiningexercise(seereport) RiverMedway DataMiningexercise(seereport) RiverEden DataMiningexercise(seereport) RiverCherwell,BanburytoOxford DataMiningexercise(seereport) RiverTeme,KnightontoBransford DataMiningexercise(seereport) Bridge RiverCam DataMiningexercise(seereport)

ThesesiteshavebeenlinkedwithRHSsiteswhosedetailsaregiveninTable6 Table 6 List of available field data sites from the RHS National grid National RHS site no. Distance Relative Relative reference grid ref. (nearest) from position to hydraulic nearest RHS site resistance RHS site (US/DS) Cole SP172879 6732 1564.16 DS 6.2 Cole SP175876 6732 965.91 DS 6.2 Cole SU234935 1111 1736.72 DS 3.9 Blackwater SU882549 4233 694.10 US 7.6 Blackwater SU878568 14000 1384.65 DS 3.9 Jaggers SK162867 23364 1289.51 DS 0.2 Jaggers SK162863 23364 905.12 US 0.2 Noe SK146859 381 542.02 US 7.6 Ashop SK141895 355 2416.92 DS 2.1 Ashop SK164876 355 6041.21 US 2.1 Alport SK156864 23364 238.08 DS 0.2 Alport SK162863 23364 905.12 US 0.2 Tavy1 SX546822 21703 67.78 US 0.5 Tavy1 SX532804 20599 326.78 US 0.8 Tavy2 SX531803 22234 158.71 US 2.3 Tavy2 SX509784 20646 280.79 US 0.3 Tavy3 SX482743 21705 1050.21 DS 1.2 Tavy3 SX466717 21536 461.39 US 2.5 Tame SP029927 692 2331.89 DS 4.8 Tame SP030925 692 2062.39 DS 4.8 ThamesB SU23009810 13105 694.52 US 2.2 ThamesR SU71807410 7176 1243.38 US 2.6 MedwayCH TQ51704050 13721 572.47 US 0.9 Medway_coll TQ52184128 10800 1.89 DS 1.7 Edenpen TQ55201437 1395 1270.91 DS 2.5 CherwellBan SP45804100 6945 5763.46 DS 14.0 CherwellOxfd SP52100610 1078 2213.51 DS 1.1 Teme SO290724 6762 3758.16 US 0.5 Knighton TemeBransBr SO803533 6849 3104.88 US 2.7 Cam TL46605060 6866 158.78 DS 13.6

R&D ROUGHNESSREVIEW 32

Data gaps The gaps in data which have been identified whilst undertaking this review can be summarisedbythepointsbelow. • Fielddataonvariationswithroughnesswithdeptharelackingandthisareaneeds furtherexploration; • Dataontemporalvariationsofvegetationislacking; • There is extensive data on some kinds of vegetation but the information on the impactof,particularly,emergentvegetationisverysparse; • Furtherdataisrequiredontherelationshipbetweencoverage,biomassandblockage ofdifferenttypesofvegetationandtheroughnesscoefficient; • Some types of floodplain vegetation e.g. clumps of hedges and their impact downstreamneedstobemorewidelyexplored; • Alternative methods for estimating roughness need to be more widely considered andbackedupwithfielddata,especiallyroughnessduetovegetatione.g.blockage ofvegetation,dragcoefficients,turbulencemodelling. Theelementswhichneedtobemeasuredtogainabetterunderstandingofroughness areasfollows: • Topographicdataincludingaccuratemeasurementofwatersurfaceslope; • Flowandleveldataoveragoodrangeofinbankandoutofbankconditions; • Detailsofvegetationincludingtype,coverage,blockage,biomass,andsketchesof locationsboththroughtheverticalandlateralaxes; • Details of growth patterns of vegetation through the season and after different cuttingpatternsinsubsequentseasons; • Detailsofhowthegrowthofvegetationisaffectedandhowthevegetationmoves withthewaterflowsincluding“waving”standsoffloatingvegetation. 4.2 Further data collection and research Furtherdatacollectionisessentialespeciallyonthedifferentvegetationtypes.Thelinks between the growth of vegetation, its coverage, blockage, biomass and the form resistanceofthevegetationneedsmuchgreaterresearchwhichwillrequireextensive fielddatacollectionprogrammes. Research into the area of floodplain vegetation and the interaction between different vegetationtypesisrequired.Thiswouldinclude: • Seasonalvariationsinfloodplainvegetation • Impactofhedgesandfences,andtheirdifferentorientation,onheadlossesacrossa floodplain • Downstream influences due to turbulence of different types of vegetation e.g. wooded areas, shrubs, and mixed vegetation. This would include extent of influence,influenceonothervegetatedareaswithinthe“wake”oftheobstruction, andinfluenceunderdifferentflowconditions • Buildingandothermacroroughnesselementsonthefloodplain

R&D ROUGHNESSREVIEW 33

• Investigationofrelationshipbetweenslope,grainsizedistribution,sizeofchannel andtheresistanceofachannelusingfielddata. Many of the methods developed more recently have investigated the force balances withinavegetatedchannel.Scientificallythismethodismorerobustthantheuseofthe empiricallydevelopednVRrelationship.Mostoftheworkwithinthisareahasbeen undertakeninthelaboratoryusingrodstorepresentvegetation.Theideasshouldnow bedevelopedwithin2Dmodels,fielddatacollectedtoverifylaboratoryexperiments, andfieldtrialsundertakentodevelopexistingmethodsusingrealriverdata. Twodimensional models are increasingly being used in this area especially to understandthefundamentalmechanismsbehindtheinteractionsofflowandvegetation. Models have been used effectively in describing and understanding the lateral momentum transfer across vegetation in different locations within the channel. Data collectedinthefieldasdescribedabovewouldbeusefulforverificationandcalibration of these models. Links with sediment movement and the ability of sediment to be trappedwithinvegetatedregionscouldbeexploredusing2Dmodellingtechniques. Manning’s equation is used internationally for predicting roughness values in non vegetatedandvegetatedchannels.Itisdifficulttodeterminetheroughnessotherthan bymeasurementandthevalueschangewithdepth.Itmaybethatwecanfindamore appropriatewayofdescribingtheroughnessofthechannel.Itwouldbedifficulttotry andchangeauniversalconceptandinternationalculturebutitmaybethatweneedto investigateamoreappropriateindexfortheimpactofvegetation Theresistanceofachanneltoflowisduetoanumberofdifferenttypesofresistance including skin friction and form friction. This review has concentrated on these two aspects,astheyarethemostsignificant.Theskinfrictionisduetothebedsurfaceand theformfrictionduetoanyobstructionssuchasbouldersorvegetation.TheManning’s n roughness coefficient is a measure of the “total” roughness of the channel and includeselementsoftheskinandformfriction.Thisreportseparatesoutthedifferent typesoffrictionfromthe“total”roughnessvaluesgivenintheliterature.Thishasnot beenaneasytaskandhasoftenbeenbasedonexperienceratherthanonexactresearch thatshowshoweachpart,skinorform,contributestothewhole.Theresearchinthis areaisneededtodemonstratehowtheoverallor“total”roughnessismadeupfromthe constituentparts. 4.3 Concurrent research projects Thereareanumberofcurrentresearchprojectsintheareaoffloodplainvegetationthat willprovideimprovedinformationonroughness.Asinformationfromtheprojectshas not yet been reviewed and published it has not been included in this present review. However, some information on two of the relevant EC funded research projects is provided below and it is expected that the results of these and other projects will be includedinfutureupdatesoftheroughnessreportandroughnessadvisor. 4.3.1 ECOBAR2 Project TheECfundedECOBARprojectiscurrentlyexamining: • Thelinkbetweenhydrologyandbiodiversityonfloodplains;

R&D ROUGHNESSREVIEW 34

• Theresistanceofwoodyvegetationonfloodplains; • Socioeconomic and institutional issues which influence biodiversity and river restoration. The project has so far shown that judicious afforestation of the catchment and flood plain has flood defence benefits. Further work is being undertaken to assess the consequences of allowing such vegetation to develop. This involves a field measurementprogramme,twodimensionalmodelling,andflumeexperiments. AgroupatCambridgeUniversityintheDepartmentofGeographyandtheDepartment of Plant Sciences coordinates the project. The lead contacts are Professor Keith RichardsandDrFrancineHughes.Theprojectwebsitecanbefoundat: http://wwwflobar.geog.cam.ac.uk/members/cambridge.html 4.3.2 RIPFOR Project The EC funded RIPFOR project – ‘Hydraulic, sedimentological and ecological problemsofmultifunctionalriparianforestmanagement’isacollaborationbetweena numberofEuropeanuniversitiesandinstitutionsincludingtheFreieUniversitaetBerlin, UniversityofAgriculturalScienceViena,andtheUniversitaetKarlsruhe. The project is concerned with the optimisation of Riparian Forest Management, with specialemphasisonhydraulicandsedimentaryproblemsoccurringinfloodplains.The influence of riparian forest vegetation on the overall flow field and sediment transportation/ deposition is being studied. Guidelines will be worked out for the implementation of new floodplain forests and the management of existing ones: retention of high , protection of river banks, improvement of water quality, habitatsforplantsandanimals,recreationalareasforthelocalpopulation. Theworkisbeingperformedinanumberofstagesincludingfieldstudies,laboratory studies, numerical and physical modelling, and ecological fieldwork. Further informationcanbefoundontheprojectwebsiteat: http://www.geog.fuberlin.de/~ripfor/project.htm

R&D ROUGHNESSREVIEW 35

5. IDENTIFICATION OF RIVER TYPES AND VEGETATION MORPHO-TYPES Rivers and streams which are similar in their physical characteristics and their vegetationcanbeassociatedusingthenationaldatasetobtainedthroughthenational survey of river habitats (River Habitat Survey, Raven et al 1998). This national assessmentincludesdataoninchannelandbanksideaquaticvegetationtogetherwith floodplainlanduses.Dataisalsoavailableonphysicalparameters,substratesandin channelsedimentorerosionfeaturessuchassandbarsorerodingcliffs.Intheabsence of surveys for reaches on which hydraulic planning or assessment is required, this supporting data can be used to predict the likely type of vegetation or other features typical of the reach under consideration. It is able to do this through the detailed surveys that were performed and an extensive analysis of the common geomorphologicalparametersforsimilartypesofstreamorriverandmorphologically similarvegetationgroup.ThisdataismadeavailableintheRoughnessAdvisorasthe basisforadviceintheabsenceofasitesurvey. 5.1 River Habitat Survey - hydromorphological features The physical habitats of British rivers have been sampled on the stratified basis of random500mriversegmentsfromwithinall10by10kmgridsquareswithintheUK. Surveys recorded some 25 items in crosssection separated at 50m intervals. This includedthepredominanceofflowtypes,bankandbedsubstrates,fluvialfeatures,and any modifications. This was combined with the morphological types, aquatic vegetation, the structure of bank vegetation, and land use, together with an overall assessment of the 500m reach of the general habitat features within 100m, including channelfeatures,managementandadjacentlanduse.Threesitespergridsquarewere choseninEnglandandWalesandthesurveywasundertakenin199496(totalling4530 sites).Twositesper gridsquareweresurveyed inNorthern Irelandfor199596(246) andonesitepergridsquarewassurveyedinScotlandovertwoyears199596(778). Comparisonswerepresentedonaonesitepersquarebasis.However,sincetheinitial survey additional surveys have continued on a regular basis although they have been targetedatparticularschemesandinvestigationsandtherearenowsome18,000surveys availableforreferenceonanationaldatabase. GroupingandclassificationofthephysicalhabitatsoftheriversofBritainduringthe developmentofRiverHabitatSurvey(RHS)wasconsiderednecessaryasaframework uponwhichtoassociatetheprobabilityandfrequencyofoccurrenceoftheirrespective characteristics or typical natural physical habitats, in contrast to the results and consequences of modification. Following several attempts using a range of modern multivariate and principal component analyses and various combinations of data, a systemwasselected(Jeffers1998).Thuscurrentclassificationisbasedupondatasets foreachRHSsiteobtainablenationallyfrommapswhichincludetheposition,altitude, gradient,deepandsurfacegeology.Thesearesurrogatesfortheavailability,quantity andtimingofdeliveryofwater,andforstream powerfromvariablessuchasstream size, height of and distance from source. Analysis of the main drivers and their derivationfromavailabledata,mainlythemapderiveddata,wasanalysedtogivean awareness of the errors and limits of predictability within each classification system. Therelativeadvantagesandusefulnessoftheclassificationsysteminthedevelopment ofcomparativesystemsforhabitatmodificationandhabitatqualityisstillundergoing

R&D ROUGHNESSREVIEW 36 developmentforgeneralapplications,suchasforqualityclassificationusewithinthe EUWaterFrameworkDirective. Inaddition,twoindiceshavebeendevelopedallowingclassificationofthemodification ofachannelandalsothequalityofnaturalfeaturesineachreach.OneistheHabitat ModificationIndex.Thisisatransparentcountofthenumbersofmodificationstoeach bank or the channel at each of the 10 ‘spot’ transects or in the absence of any modifications recorded then it is a check on the occupance of modification from the assessmentofthefull500m.TheHabitatQualityIndex(HQA)anditsbandedHabitat QualityAssessment(HQA),iscurrentlybaseduponsubjectiverulesoftheoccupanceor absenceoffeaturestypicaloftheparticulartypeorclassofriver.Thesetwoindicesare ofuseforassessinganyengineeringworkundertakeninasection.Theycanbelinked withtheassessmentofnationallyfundedchannelmodificationandmaintenance,which were called the MAFF Capital Works Schemes, undertaken between 1930s1980 and mappedbyBrookesatal(1983).Thushistoricandprobablyongoingschemesthathave affected channels and changed them from near natural, with the associated typical changestovegetationetc,canbeincorporatedinchannelredesignschemes.Thereis scope to incorporate further developments to separate the renaturalisation of higher energy channels from those of lower or relatively stable channels especially those in clayandsomelowlandareas. 5.2 River Habitat Survey - vegetation morpho-types Vegetation was assessed by the RHS survey as the presence or extensiveness of vegetationmorphotypesatthetimeofsurveyi.e.latespringorearlysummer,in10 regularlyspacedtransectsof10minwidth.Vegetationcoverwhenpresentrepresents >1% cover of the streambed in the 10m broad transect across the channel whilst extensivecoveris>33%.Thedistributionofvegetationmorphotypesareexpectedat thenationallevelwhilstmostgroupsarereasonablywellrepresentedbytype. Therearetenbroadvegetationmorphotypesofaquaticandmarginalplantspeciesof similarformorfunctionintheriverorripariancorridor.Thesegroupsarenotthose withsimilarmorphologicalcharacterasdescribedintextbooksandusedfortaxonomy (Table8).Forexample,rootedplantselongateinformwithfinelydivideorelongate leaves living mainly submerged and rooted in the main river bed in medium or high water flows are grouped together, but separated from those with, for example, broad leaveswhichfloatatornearthewatersurfaceinslowerflowsbutareotherwiserooted inthemainchannel.InRHS,thepurposeoftherecordingistoprovideinformationon therangeoffunctionalhabitats,whichthevegetationmaybeprovidingforinvertebrates and other animals (this is especially important in rivers with limited structural diversity). In the absence of surveys for a particular river reach, the prediction of the likely morphotypeofvegetationtypicalofthereachisachievedusingthePCArelationshipof geomorphological driving variables (above) to determine the nearest 100 sites in this PCAspacenearesttheactualsurveysiteforthat10by10kmsquare,andtallythemean numbersofeachmorphotypeofvegetationwhenpresentorextensive.Thisisrepeated foreach10by10kmsquaretogivetheprobabilitiesforeachvegetationmorphotype group (as a percentage for each group) for all 10 by 10 km squares in the UK and

R&D ROUGHNESSREVIEW 37 incorporated in the Roughness Advisor. The southwest corner of the regular 10km divisionsoftheNGRmapisusedtomarktypicalvaluesforthatgridsquare. Initially, a complementary way of investigating the effects of vegetation had been proposed based upon a tabular system which would enable the presence of different types of vegetation known or likely at a particular site based on the RHS data and possiblylinkedtochanneltype(Table7). Thetypesofvegetation“a”to“i”aredetailedfurtherinFigure4.Thesecategoriesof thetypesofvegetationfrequentlyfoundindifferentchanneltypesdidnothavesucha high probability as the aforementioned method but normally reproduced the broad picturewherebyparticularvegetationcombinationsweremorecloselyassociatedwith somerivertypesandnotwithothers.Cleardivisionsarenotapparentandweredifficult toincorporateinthetable.Althoughmorerivertypescouldbeaddedintothesetables andmoredominanttypesrepresentedbyshadingindarkercolours,theuseofthePCA methodwasclearerandclosertothebestestimate,althoughitismorecomplex. Table 7 Types of channel and likely vegetation in those channels

Vegetationtype Channeltype a b c d e f g h i

Steepstreams Mountain rivers Chalkrivers Lowlandriffle dominated Vegetationtypes: a. liverworts,mosses,orlichens b. emergentbroadleavedherbs c. emergentreeds,sedges,orrushes d. rootedfloatingleaved e. freefloating f. amphibious g. submergedbroadleaved h. submergedfineleaved i. filamentousalgae

Futuredevelopmentscouldextendthepredictivepotentialtostreamandriversize,as thereissufficientdatainthedatabasetoenablethisanalysis An area for further research is to look at combining the vegetation database with a chemicaldatabasetolookattheeffectsofwaterquality.

R&D ROUGHNESSREVIEW 38

Table 8 Description of RHS vegetation morpho-types Proposed channel Description of vegetation type Occurrence Relative vegetation [based on RHS Manual with examples of type in Hydraulic morpho of typical species] UK Resistance types present/ extensive 0 NoneOR Novegetationpresent Notvisible Submergedplantsnotvisibleinvery turbidwater. ORchannelnotvisible(e.g.culvert) 1 Freefloating Plantsfreefloatingatorunder,thewater 2 0.3 surface.Ofteninthemarginsorless commonlyacrosschannelsinveryslow flowingornearstaticwatercourses.Not rootedtothechannelbedandeasily washedoutbutmayaccumulateon instreamstructuresrestrictingflow. ExamplesincludeDuckweeds (Lemna spp.),Frogbit( Hydrocharis), Hornwort (Ceratophyllum) andWaterSoldier (Stratiotes). 2 Filamentous Obviousareasoffilamentousalgaeither 32 3 algae attachedtochannelbedorattachedor coatingaquaticplants.Ofteneasily washedout.Ofteninnutrientrichwater. Littleknownabouthydrauliceffectson restrictingflow,butalgalfilmsmay possiblysmoothboundariesandenhance flow. ExamplesincludeBlanketweed (Cladophora), MolePelt( Enteromorpha) etc. 3 Mosses Smallerplantsattachedtolargermore 32 3 stablesubstratesinchannelandtypicalof instreambouldersinhigherenergy streams.Alsoonmoreverticalshaded banksinslowerflowingstreams. Examplesincludemosses(e.g. Fontinalis) ,liverworts(e.g. Scapania ) andlichens(e.g. Collema ).

R&D ROUGHNESSREVIEW 39

Proposed channel Description of vegetation type Occurrence Relative vegetation [based on RHS Manual with examples of type in Hydraulic morpho of typical species] UK Resistance types present/ extensive 4 Amphibious Rootedatedgeofriver,oronthebank. 8 0.4 Shootsorleavestrailinto,oracross,the water.Morecommoninslowerflowing streamcptreeroots. Examplesinclude AmphibiousBistort (Persicaria amphibium), CreepingBent grassorFiorin( Agrostis stolonifera), Sweetgrass( Glyceria fluitans), Marsh Foxtail( Alopecurus geniculatus), Water Forgetmenot (Myosotis scorpioides). 5 Emergent Emergentnarrowleavedmonocotyledons 22 4 Reeds (reeds,sedges&rushes)rootedbelow water.Normallyonchannelmarginsand adjacentwetlands.Ofteninundatedin floods.Occasionallyoverhangingin deeperwater. ExamplesincludeBranchedBurreed (Sparganium erectum), Reedmace (Typha), NorfolkReed( Phragmites), ReedSweetgrass( Glyceria maxima), Sedges( Carex spp.),Rushes( Juncus spp.)andBulrush( Schoenoplectus spp .). 6 Floating Plantswithfloatingsurfaceleaves only 3 1 leaved androotedinthechannelbed.Typified rooted bywaterliliesindeeperslowermore turbidrivers.Canrapidlyincrease hydraulicresistanceforsmallincreasesin flow.Examplesinclude either broad leavede.g.YellowWaterLily( Nuphar lutea), BroadleavedPondweed (Potamogeton natans) or linearorstrap likeleavede.g.UnbranchedBurred (Sparganium emersum).

R&D ROUGHNESSREVIEW 40

Proposed channel Description of vegetation type Occurrence Relative vegetation [based on RHS Manual with examples of type in Hydraulic morpho of typical species] UK Resistance types present/ extensive 7 Emergent Broadleavedorherbaceousplantswith 17 2 broadleaved leavesandflowerstypicallyfoundrooted inshallowerlowlandrivers.Growoutof thewaterabovenormalwaterlevels predominantlyinthesummerand autumn.Extendingoutwardsfromthe channelmarginsormorecentrallyinthe mainchannelifshallow,andalso colonisingothersubmergedplants.More ofteninmanagedchannelsornutrient richwaterswithmeanflowslessthan 0.5m/s. Examplesinclude.Fool’sWatercress (Apium nodiflorum) andWater speedwell( Veronica spp.). 8 Submerged Vegetationwithunderwaterleavesno 5 1 broadleaved morethanfourtimeslongerthantheyare broad.Rootedinthemainriverbed. Somepartoftheplant,orsomeleaves, mayreachthesurfacebutthemajorityis submerged.Typicalofdeeperwaterwith or slowormoderatewaterflowandastable riverbedwhichmaybeoverlainby organicmaterial.Thesechannelsare oftenmanaged.Examplesincludethe submerged‘cabbage’leavesofYellow Waterlily( Nuphar lutea) ,Perfoliateand severalotherbroadleavedpondweeds (Potamogeton perfoliatus, lucens, alpinus etc .) ,CanadianPondweed(E lodea canadensis ),Starworts( Callitriche). Submerged Submergedplantswithnarrow, 12 3 linearleaved unbranched,laminarleaves (blade/strap/beltshaped)thatareeither totallysubmergedorhavejusttheirtips orupperpartsfloatingonthesurface, whilerootedinthemainriverbed.The mosttypicalexamplesareUnbranched Burreed( Sparganium emersum )andthe underwatervariationsintheleavesof Arrowhead( Sagittaria) ,Bulrush (Schoenoplectus spp.)andFlowering Rush( Butomus umbellatus ).

R&D ROUGHNESSREVIEW 41

Proposed channel Description of vegetation type Occurrence Relative vegetation [based on RHS Manual with examples of type in Hydraulic morpho of typical species] UK Resistance types present/ extensive 9 Submerged RootedsubmergedplantswithfineAND 38 8 fineleaved branched leaves.Ofteninlargestands elongatedindirectionofflow. Predominantlygrowinginspringand summer.Typicaloflowlandstreams withmoderateorhighflowsinsummer. Examplesincludethefeatheryleavesof Milfoil( Myriophyllum spp.),tough,short andsparsebranchingofHornwort (Ceratophyllum) ,andtheelongatestems ofmostcrowfoot( Ranunculus )species andFennelPondweed.( Potamogeton pectinatus) .

R&D ROUGHNESSREVIEW 42

Figure 4 Distribution of RHS channel vegetation types and species a)liverworts,mossesorlichensb)emergentbroadleavedherbs;c)emergent reeds, sedges or rushes; d) rooted floatingleaved; e) freefloating f) amphibious; g) submerged broadleaved; h) submerged fineleaved; i) filamentousalgae;o=present5%,•=33%extensive Plant biomass changes not only seasonally, but also following flood events. It is therefore important during redesign to establish at the planning stage if the velocity excessabovethedesignlevelisexceeded.Ifitis,thenthisvelocityshouldoccurata timeoftheyearthatproducesonlyaminimaleffect.Alternatively,anotherspecieswith a higher velocity tolerance may be present and would cope with the conditions. Conversely,intermittenthigherthannormalvelocitiescouldbeusedasatechniqueto controlbiomassalthoughpracticalproblemscouldarisewiththisscenarioaswellasthe obviousecologicalones. General values have been given for the environmental effects or tolerances of water (Butcher1933,Westlake1975,Lejmbach1977),forspecificstudiesonstressedmixed communities of instream rooted morphotypes (BarratSegretain 2001), and for a comparison of broad morphogroups (Biggs 1996). The largest data set however has been made available by further analysis of data on aquatic macrophytes collected concurrently by CEH during several thousand RHS surveys. This dataset has been partlyanalysedtodeterminethevelocityrequirementsandtolerancesforexamplesof

R&D ROUGHNESSREVIEW 43 thespeciesineachRHSvegetativemorphotypegroup.Theanalysisindicatesthata rider should be applied to the use of seasonal data on hydraulic roughness following largerfloodevents(Table9).Dataforindicativelevelsofthecriticallowervelocityfor plant growth, typical mean velocity and upper washout mean inchannel velocity, shouldbeappliedwhentestingsuchscenariosbecausetheremaybemajorchangesin overallchannelresistance. Table 9 Generalised critical lower velocity for plant growth, typical mean velocity and upper washout mean in-channel velocities for RHS vegetation morpho-types Manning’s n roughness RHS vegetation morpho-type values lower mean Washout Notvisible 0 5.0 5.0 Freefloatingplantstypicallyalgaeorduckweeds 0 0.1 0.6 Filamentousalgaeattachedshallownutrientrichwaters 0 0.2 0.5 Mossesetc,attachedtobedorbanks 0 0.5 2.0 Trailingbanksideplants 0 0.3 0.6 Emergentreeds,rushes,flagandlargegrasses 0 0.05 [0.3] [abovegroundparts] Floatingleavedrooted,typicallywaterlilliesindeeper 0 0.1 0.3 slowerwaters Emergentbroadleavedrootedplants,likewatercressor 0 0.3 0.5 waterparsnip Submergedbroadleaved,Pondweeds(0.61.2m) 0 0.2 0.5 Submerged fineleaved, chalk streams, shallow water 0.2 0.35 0.75 crowfoot,pondweeds0.20.6m mediumdepthrivers0.61.2mdeep,regular 0.2 0.35 0.75 management mediumdepthrivers>1.2mdeep,somemanagement 0.2 0.4 0.8 5.3 Conclusions For more precise determination of hydraulic resistance, exact procedures should be established to record the position and extent (density) of larger inchannel plants, as plantsmayvaryfrommomentintheirpositioninthewatercolumn.Similarly,anexact methodologyshouldbeestablishedforthedepthandpositionofvegetatedboundaries forsmallerplantse.g.algaeinassimilarwaytothatforlargesedimentse.g.boulders.

In the future, issues such as the effects of mixed species may need to be refined for somestreamorsmallerrivertypes.Forinstance,mixedspeciesofsimilarmorphotypes and mixed stands of different morphotypes of vegetation seasonally overgrow each other(e.g.waterCrowfootandWaterCress)andinfluenceeachotherspotentialgrowth andthushydraulicresistanceandmanagementrequirements(Dawsonatal1978).

R&D ROUGHNESSREVIEW 44

6. ROUGHNESS ADVISOR 6.1 Methods and data used in the roughness advisor The method adopted in the roughness advisor is to give unit roughness values for different components in different types across the channel and to combine them in a suitable manner within a type. The combined value is then fed into a conveyance generatorwhichdividesthesectionrepresentingareachintopanels,usestheroughness givenineachtype,andaddsinfactorsforturbulence,secondarycurrentsandsinuosity, especiallyattheinterfacesbetweenthechannel,bankandfloodplainzones. Fromtheliteraturewecanseethattherearemanydifferenttechniqueswhichhavebeen developedforthedeterminationofroughnesscharacteristicsinchannels.Manyofthe approachesintheliteraturehavebeendevelopedforaparticularaspectofriverchannels or floodplains, for example vegetation, boulders, or largescale roughness elements. Thereareoneortwomethodswhichtryandcoverandcombinealldifferentaspectsof roughness(Chow1959,andCowans,1956).Thesemethodsgiveandcombinevalues ofroughnesswithvaluesforthecontributionswhicharemadebyfeatureswithinthe channel and floodplain. Many of the measured values of roughness given in the literature are combined values of roughness. Trying to disaggregate the combined roughness values into unit components due to different features such as substrate, vegetationetcisadifficulttask.SinceCowansandChow,thentherehavebeenmany more studies which give us greater insight into the roughness of different features especiallyvegetation. Theapproachwithintheroughnessadvisorforselectionof unit roughness valuesisvia alargedatabaseofroughnessvaluesbasedonManning’snroughness.Thevaluesof roughness for the database have been extracted from various sources in the literature andthisisexplainedinmoredetailinSection2ofthereport.Thevaluesextractedfrom theliteraturearegiven asanupperandlowervaluealso.Themid,upperandlower valuescovertherangeofroughnessvaluesexpectedwithinthesenaturalsystems. For a channel reach, the three roughness types bed, bank and floodplain have been established. Within each type there can be subdivisions to account for differences acrossthetype.Eachtypewillbegivenadescriptionwithusersabletoaddtheirown descriptions.Withineachtypeorpanelsubdivisiontheroughnesswillbe“madeup” fromthedifferent components .Forthebedandbanktypes the three components are material, irregularities and vegetation . The components for the floodplain will be similar with bed material being replaced by ground material. The three components have different properties which can be selected and these give a description of the channel,andthemid,loweranduppervaluesofroughnessforthatroughnessproperty. For each component a photograph will be shown to illustrate the component. For examplewhenthecomponentwasasandbankthepictureshowninFigure6wouldbe displayed:

R&D ROUGHNESSREVIEW 45

Figure 5 Example of a sandbank Aroughnesstypemaybedividedintodifferentpanelswithdifferentroughnessvaluesif therearedifferentfeaturesacrossthereach.Forexample,thesepaneldivisionsmight be where there are areas of clear channel where the substrate is the only roughness influencingparameterandthensectionswherethereisvegetationwhichiscontributing totheroughnessvalue. Inthesituationwherethereisamixedpopulationofvegetationpresenttheusermay splittheroughnesstypeintopanelsattheboundaryofthevegetationtypeandassign differentroughnessvaluestothedifferentpanels.Ifthevegetationismixedwithno clearboundarylaterally,theroughnessvalueforthedominantvegetationtypewillbe selected. Eachmidroughnessvaluegivenisnominallyforadepthofwaterof1mwithinthat channel.ThishasbeenselectedasbeingarepresentativedepthforchannelsintheUK. The roughness within the channel varies with depth. In general, and from the data collected, the roughness increases as the depth decreases according to a power law relationshipalongthelinesof depth = a(roughness)b (18) whereaandbareconstants. FromManning’sequationandthedatacollectedinthefieldwegettherelationship

n1 nd = 3 (19) d 2 where n 1 is the roughness value at a depth of 1m, and n b is the boundary roughness coefficient. Thismeansthatthevaluesofaandbintheaboveequationare:aisthevalueofthe roughnessat1mraisedtothepowerof2/3andbis(2/3).AppendixBgivessomeof thebackgroundanddatatothevariationinroughnesswithdepth.

R&D ROUGHNESSREVIEW 46

Theupperandlowervaluesofroughnessarealsovariedinthesamemannerwithdepth. Thevariationoftheroughnessvalueswithdepthhavebeencheckedagainstmeasured data and Figure 6 shows the result for a reach of the River Blackwater in Northern Irelandwithcobblebedriverwithboulders.

6

5

4

3

depth (m) depth 2

1

0 0 0.05 0.1 0.15 roughness mid lower upper Figure 6 Variations in roughness values with depth for the River Blackwater in Northern Ireland The values of roughness used in the roughness advisor are given in the following sections. These are divided into the four components of bed material, manmade, irregularitiesandvegetation. The values given for each component in a type are unit roughness values and are thereforetobecombined.Theapproachtobeusedforcombiningtheroughnessisa root mean square approach where the unit roughness values can be combined by the squarerootofthesumofthesquaresoftheunitroughnessvalues. n 5.0  2  n = ∑()n i  (20)  i=1  The combined value for a zone or a panel within a zone will be termed the local roughness .Forexampleifwithinatype,orapanelwithinatype,thereisagravelbed riverwith50%bouldercoverage,thevaluesofroughnessforagravelbedriverandfor an “irregularity” of 50% boulder coverage will be combined to give an overall roughnessvalueforthatzone.

6.2 Limitations of the proposed method The method in the roughness advisor is to give unit roughness values for different components in different zones (bed, bank and floodplain) across the channel and to combinetheminasuitablemannerwithinazone.Thecombinedvalue,whichiscalled the zone roughness, isthenfedintoaconveyancegenerator.Theconveyancegenerator dividesthesection,representingareach,intopanels,usestheroughnessgivenineach zone or subzone, and accounts for turbulence, secondary currents and sinuosity especiallyattheinterfacesbetweenthechannel,bankandfloodplainzones.

R&D ROUGHNESSREVIEW 47

Thecombinationofthe unit roughness valueswithinazoneisstillunderdiscussion andadecisionisrequiredonthemethod(s)tobeused.Thevariousoptionsareoutline here. Severalmethodsofcombiningunitroughnessvalueshavebeenconsidered (i) directadditionof‘n’values

n = n1 + n2 ..... + nn (21) ThisissimilartotheCowan’smethod(Cowans,1956),wherethedifferentunitvalues from contributions such as substrate, vegetation, irregularities, obstructions are summed.Thismethodhasmeritsinthatitissimpletounderstandandapply.Thereare differingopinionsonwhetheritoverorunderestimatesthecombinedroughness.This may depend on the depth of water in the channel or the size of channel under investigation.Itmaybepossibleto“adjust”theunitroughnessvaluestoovercomethis problem. (ii) Theunitroughnessvaluescanbecombinedbythesquarerootofthesumofthe squaresoftheunitroughnessvalues n 5.0  2  n = ∑()n i  (22)  i=1 

(iii) Methodbasedontheroughnessbeinginverselyproportionaltothevelocity,and thefrictionlossbeingrelatedtothevelocitysquared

1  n 1  =   (23) ∑ 2  n  i=1 ni 

Thefielddatafromtheliteratureandcollectedbytheauthorsorsourcesknowntothem calculatesa zone roughness valueoran engineering roughness value.Thedatahas beendisaggregatedtogiveunitvaluesandthenmustbesummedagainaccordingtoone ofthemethodsabove. The first method gives roughness values which under estimate at low flow and over estimate at high flows. It gives equal weighting to each roughness element. It was decidedtodiscardthefirstmethod.Thesecondmethodgivesmoreprioritytothemost dominant roughness element and gives good matching with measured values – see Section6.6.Methodthreegiveshighorlowvaluesifmoreextremeroughnessvalues areincluded.ThereforeMethodii)waschosenforcombiningunitroughnessvalues. 6.3 Definition of types 6.3.1 Bed type

Material Thevaluesforthechannelsubstrateroughnessarebasedondataandinformationfroma wide range of references. The data from these references has been extracted and collated into a consistent pattern in which all the values given in the references lie withintheupperandlowerbounds.Thedatabaseofroughnessvaluesisgivenbelowin

R&D ROUGHNESSREVIEW 48

Table10.Thissectionwilldescribefromwherethedatahasbeenextractedtoproduce thesevalues. Table 10 Values of roughness for different types of bed material Channel substrate Manning’s n roughness values (with d 50 values) Mid Lower Upper Bedrock 0.025 0.023 0.028 Cobbles(64256mm) 0.055 0.04 0.07 CoarseGravel 0.035 0.022 0.04 Gravel(264mm) 0.03 0.028 0.035 Finegravel 0.024 0.02 0.028 Sand(0.2mm) 0.012 0.01 0.016 Sand(0.3mm) 0.017 0.015 0.022 Sand(0.4mm) 0.02 0.017 0.025 Sand(0.5mm) 0.022 0.018 0.027 Sand(0.6mm) 0.023 0.02 0.03 Sand(0.8mm) 0.025 0.023 0.032 Sand(1.0mm) 0.026 0.024 0.033 Coarsesand(12mm) 0.028 0.026 0.035 Silt 0.022 0.02 0.025 Clay 0.02 0.018 0.023 Peat 0.02 0.018 0.023 Earth 0.02 0.018 0.023 Firmsoil 0.02 0.018 0.023 Concrete 0.02 0.018 0.022

ThevaluesinChow(1959)formthebackboneofthesubstratevalueschosen.These values are given in the reference sheet in Appendix A. The values given are wide ranging especially for different finishes of concrete and these could be used in the roughness advisor if a more detailed description were required. Cowans (1956) also gaveadescriptionofthebedsubstrateandvaluesforthosesubstratescanbefoundin thereferencesheetinAppendixA. Butleretal(1978),showarangeofroughnessvalueswithdischarge(seeAppendixA) inanurbanchannelwithavarietyofsubstrate.Therangeofroughnessvalueswhenthe depthwouldhavebeenataround0.15marefrom0.02to0.06,dependingonthetypeof substrate.ThelowervaluesfitwellwithintheboundsinTable10,althoughthevalue of0.06ismuchhigher duetoinfluencesofotherroughnessfactorsandirregularities withinthechannel.Thevaluesinthispaperarehigherasthedepthintheoriginalstudy was much lower than the 1m depth for which the substrate values given above are intended. Barnes(1967)givesawiderangedifferentrivertypesforriverchannelsintheUSA. Roughness values range from 0.024 to 0.075 for rivers with different substrates and obstructions/irregularities.TheBarnesreferencesheetinAppendixAshowsthevalues and the descriptions for the channels in this reference. In a similar way Hicks and Mason(1991)givevaluesforriversinNewZealandwhicharegiveninthereference sheetinAppendixA.

R&D ROUGHNESSREVIEW 49

Limernos(1970)measuredroughnessandbedmaterialsizeinelevennaturalstreamsin California. This was to test the hypothesis that the value of Manning’s roughness coefficientmayberelatedtosomecharacteristicsizeofstreambedparticlesandtothe distributionofparticlesize.ThereferencesheetforLimernosinAppendixAshowsthe Manning’snroughnesscoefficientandthed 50 particlesizeforthestreambedparticles. Inadditionthetypeofsediment(sand,graveletc)hasbeenaddedtoshowthevalues fromLimernoscomparewiththosetobeusedintheroughnessadvisorgiveninTable 10.ThevaluesgivenintheLimernosreferenceshowthatinsomeinstancesthedata wouldfitwellwiththatsuggestedinTable10.Forsiteswheretheroughnessvalues measuredbyLimernosarehigherthanthoseinthetable,theriversmayhavehadsome boulders or other elements of roughness such as irregularities, which are not defined withinthepaper. Hey and Thorne (1986) obtained data from 62 stable gravel bed river reaches in the United Kingdom. The data was used to derive equations relating reach average and rifflevaluesofwidth,meanandmaximumdepth,slope,velocity,sinuosity andriffle spacingtobankfuldischargeandbedandbank materialcharacteristics.Someofthe channelshadsomevegetationonthebankswhichwasclassifiedintypes1to4with type1beinggrassybankswithnotreecover,type2being15%tree/shrubcover,type3 being 550% tree/shrub cover and type 4 being over 50% tree/shrub cover. The reference sheet for Hey and Thorne, showing the data, can be found in Appendix A wherethesedimenttypehasbeenaddedaccordingtothed 50 typemeasured.

Irregularities Thesevalueswhichareincludedinthiscomponentarethosefeatureswhichareinthe channelnaturallyandcauseanobstructiontotheflow.Boulderscanbeinthechannel becausetheyhavebeenplacedtherebymansothevaluesforbouldercoveragewillalso appearinthemanmadesection.Thiscomponentalsoincludespoolsandriffleswhich cause variation in the flow in a longitudinal direction and therefore have a variation fromatypicalflowpatternintermsofroughness. Therehavebeenvarioussourcesofdataforirregularitiesinchannelsduetoboulders. TherearemanyexampleswithinHicksandMason(1991)andMason(1967),andthe UniversityofUlster(1995)ofchannelswithbouldercoverage.Cowans(1956)givesa contributiontotheoverallroughnessvalueduetoboulders.Bathurst(1978)hasshown theflowresistanceforchannelswithlargescaleroughnesstobeafunctionofchannel shape,roughnessspacingandrelativeroughnessandThompsonandCampbell(1979) related resistance solely to relative roughness. The data from these papers has been collatedandvaluesdeterminedfortheactualcontributionduetheboulderobstruction ontheoverall,combinedroughnessvalue. Itisthe unit roughness valueduetothe coverageofboulders,whichhasbeenincludedinTable11below.

R&D ROUGHNESSREVIEW 50

Table 11 Values of unit roughness for irregularities such as boulders and pools and riffles

Range of unit roughness values Type of Description irregularity Mid Lower Upper

Exposed 020%ofbedcovered 0.017 0.005 0.03 boulders 2150%ofbedcovered 0.037 0.015 0.055 Over50%ofbedcovered 0.045 0.02 0.06 Poolsandriffles 0.02 0.01 0.03 ThevaluesforpoolandrifflesequencesgiveninTable11havebeendeterminedfrom the following papers: Higginson and Johnston (1989), Richards (1976) on the River FoweyinCornwallandPimperton,Karle(1993)andUniversityofUlster,(1995). Valueshavealsobeensuggestedasguidanceforirregularitiessuchasripple,dunesand antidunes.ThedatasourceforthesevaluesisSimonsandRichardson,1961. Inadditionthevaluesinthiscomponentarethosefeatureswhichareinthechanneldue tohumaninterferencesandcauseanobstructiontotheflow.Thetypesofobstruction areurbantrashandgroynesofavarietyoftypes,Table12.Thedatafordetermining thesevaluesinvirtuallynonexistentbutmuchworkhasbeendoneonoptimisingthe designofgroynesforthepurposeofprovidingbankprotection.SeeforexampleJansen etal(1979),McCollumetal(1987),BhargavaandSingh(1981),Ahmad(1951),and Miller et al (1983). Guidelines were developed by Seed (1997) on the geometry of groynes for river training. This work has concentrated on investigating the effect of varyingthelength,crestheight,angleandspacingofgroynesontheirefficiencyasbank protectors. The values given in the roughness advisor have been determined from knowledgeofthehowgroynesperformandtheimpactonanobstructionontheoverall roughnesswhencomparedwithdataonlargescaleroughnesselements.

R&D ROUGHNESSREVIEW 51

Table 12 Values of unit roughness for irregularities such as urban trash and groyne fields

Range of unit roughness values Type of obstruction Description Mid Lower Upper

UrbanTrash Low 0.01 0.007 0.015 Med 0.035 0.035 0.05 High 0.045 0.035 0.06 SingleGroyneswith <20%channelwidth 0.015 0.01 0.02 waterlevelabove 21%to50%ofchannelwidth Treataslowstoneweir

>50%channelwidth Treataslowstoneweir Single Waterlevelabovegroynecrest Zero conveyance – very Groyne highroughnessvalue Multiplegroynes Treat as a compound channelinCES

Alluvial roughness Values of ‘n’ for alluvial roughness are presently not included in the Roughness Advisor.Adviceisprovidedtotheuseriftheywishtoincludesuchinformationintheir modelandtheyarereferredto‘Sedimenttransportandalluvialresistanceinrivers’,EA R&DReport(inpreparation).

Vegetation ‘n’hydraulicresistancevaluesforaquaticvegetationhavebeengroupedintotheRHS morphotypegroupingassupportingdatabothonnationaldistributionandbyphysical dimensionisavailable.Thesegroupsarealsosufficientlydetailedtomatchthevariation and the numbers of studies available i.e. current knowledge. Seasonal data is incorporatedintheRoughnessAdvisor. Filamentousalgaewhenattachedinshallownutrientrichwatersmaybeconsideredto reduce the resistance, if the correct standard methodology for depth measurement is used (e.g. Dackombe & Gardiner 1982). Such effects on bed roughness for larger substrateshavebeenanalysedbyNikora(2001),converselyNikoraetal(1998)report thatthepresenceofperiphytoni.e.finenonvisuallyfilamentouslayermayincreasethe bulk flow resistance by 2050% which may relate to increased flow heterogeneity shownfromturbulenceanalysis.

R&D ROUGHNESSREVIEW 52

Table 13 Table of roughness values for aquatic vegetation by RHS morpho-type Manning’s n roughness values Aquatic vegetation by RHS morpho-type minimum mean maximum None orIFnonevisibleCheckpredictionfromRHS dataset 1. Free-floating plants typicallyalgaeorduckweeds mediumdeepdrainagechannel 0.01 0.03 0.04 [d=1.12.5m,v=0.10.6ms] 2. Filamentous algae attachedshallownutrientrich waters d=0.050.5m,lowvelocities 0 0.015 0.05 Mosses etc,attachedtobedorbanks d=~1m 0 ~ 0.03 Trailing bank-side plants d=0.53+m 0 0.05 0.1 Emergent reeds ,rushes,flagandlargegrasses 0.02 0.15 0.2 Floating-leaved rooted , typically water lillies in deeperslowerwaters 0.03 0.10 0.14 Emergent broad-leaved rooted plants , like water cressorwaterparsnip 0.05 0.15 0.5+ Submerged broad-leaved ,Pondweeds(0.61.2m) d=0.061.2m,v=.2.9m/s 0.02 0.1 0.2 Submerged fine-leaved shallow rivers, (chalkstreams),watercrowfoot,pondweeds d=0.20.6mdeep,v=0.2.0.7m/s 0.02 0.3 0.45+ Submerged fine leaved -medium depth rivers regularmanagement d=0.61.2mdeep,v=0.3.0.8m/s 0.021 0.1 0.249 Submerged fine leaved medium to deep rivers somemanagement d=>1.2mdeep,v=0.31m/s 0.01 0.08 0.12

A range of hydraulic resistances for total channel resistance for North American channelshasbeenreportedandisincludedforcomparisonwithdataderivedfromthe roughnessadvisor,Table14

R&D ROUGHNESSREVIEW 53

Table 14 Values of total channel resistance for North American channels Additionalhydraulic resistanceas Channel Depth Velocity Source(s) Manning’snvalues Comments description m ms 1 Min Mean Max

Vegetallining 0.30 0.5 extreme Chow1982 rangeaid T5.6 todetermine maximum permissible velocities Grasslined 01 intermittent 0.03 0.06 N.American Aken& channels grasses Higler intermittent 2001 flows Chen& Cotton Rangefrom VR 0.04 0.4 longterm Gwinn& cuttore relationship changes Ree1980 establishment with encroachme ntofbushes Excavatedor dredged channels Chow1982 (RS& deep sluggish T5.6Ca4 realigned) 0.022 0.027 0.033 &b2 A.earth, deep sluggish 0.025 i)shortgrass, deep sluggish 0.030 0.030 0.040 Chow1982 few 0.035 0.035 0.060 T5.6C.b3 plants 0.050 Chow1982 ii)dense T5.6C.c2 aquatic iii)busheson banks B.Non Chow1982 maintained T5.6C.e1 1weedsand full 0.050 0.080 0.120 4 brushuncut depth i) dense weeds normal 0.040 0.050 0.080 high as flow flood 0.045 0.070 0.110 depth clean iia) flood 0.080 0.100 0.140 bushesonsides iib)brushon sidesiii) densebrush C.natural Chow1982 streams T5.6 normal 0.030 0.035 0.040 (<30m),low normal 0.035 0.045 0.050 D1.a28

R&D ROUGHNESSREVIEW 54

Additionalhydraulic resistanceas Channel Depth Velocity Source(s) Manning’snvalues Comments description m ms 1 Min Mean Max

slope deep sluggish 0.050 0.070 0.080 1.fewplants deep 0.075 0.100 0.150 2.someplants pools 3.weedy 4.veryweedy or floodways withtreesand bushes 6.3.2 Bank type

Material Thevalues giveninsection6.3.1for bedmaterialforthechannelzone arethebasic valuestobeusedintheroughnessadvisorifthereisjustabasicsand,silt,clayetcbank material. Therangeofmanmadebankmaterialsisveryextensiveandthefollowingtablecovers awiderangeof unit roughness values.Foreachbankmaterialaunitroughnessvalue representingmid(M),lower(L),andupper(U)likelyvaluearegiven.Themidvalue representstheaverageunitroughness,whiletheupperandlowervaluesprovidealikely rangeofunitroughnesses. Table 15 Values of unit roughness for man-made bank materials Bank Rock Boulder Earth Clay Sheet piling material Mid,lower, M L U M L U M L U M L U M L U upper n values 0.025 0.023 0.028 0.033 0.03 0.038 0.02 0.018 0.023 0.02 0.018 0.023 0.028 0.025 0.03 Bank Grass Bushes Trees Stone Block Hazel material hurdles

Mid,lower, M L U M L U M L U M L U M L U upper n values 0.035 0.03 0.04 0.045 0.038 0.05 0.045 0.04 0.05 0.035 0.03 0.04 0.025 0.02 0.03 Bank Gabion Concrete Rip rap Wood piling material

Mid,lower, U M L U M L U M L U M L upper n values 0.038 0.035 0.04 0.018 0.015 0.022 0.04 0.037 0.043 0.028 0.025 0.03

R&D ROUGHNESSREVIEW 55

Bank Matting Masonry Brick Fibrerolls material without vegetation Mid,lower, U M L U M L U M L U M L upper n values 0.023 0.019 0.027 0.025 0.017 0.03 0.015 0.012 0.018 0.022 0.018 0.026 Irregularities ThevaluestobeusedforirregularitiesonthebankarethosethatarefoundinTables11 and12insection6.3.1 Vegetation Table 16 Values of roughness for bankside vegetation Hydraulic Description Floodplain resistance and equivalent vegetation Depth m Manning’s n Comments & source(s) RHS land-use type value classes ‘97/’03 Min Max BANKSIDE barestream BE banks stableearth SC clifftostream withsome mosses vegetated VP&VS point&/or sidebars vegetated MI islands bankside A.12year,dormant 0.01 0.025 moderate Chow1982, bushes B.1yearbushy,in 0.025 0.05 lydense p1072(c) leaf 0.025 0.05 Chow1982, C.1yearinleaf 0.05 0.1 p1073(c) D.Iyeardense Chow1982, leafybushes 0.05 0.1 p1073(b) E.leafybushes, Chow1982, trees,etc p1074(b) Chow1982, p1074(c) unmanaged channels treeseedlings 0x34 .005 e.g.willow Chow1982, submerged heightdeep .01 whips p1071(b) 0x23 0.01 moderately Chow1982, heightdeep 0.025 densecover p1072(b) marginal WT wetlands artificialopen OW water(natural/ artificial)

R&D ROUGHNESSREVIEW 56

6.3.3 Floodplain type Thefloodplaindatahasbeendividedintounitvaluesinasimilarmannertothevalues forthechannel.Thecontributingfactorsarefromthegroundmaterial,justasthebed material in the channel, but with more categories such as ploughed fields etc, irregularities, obstructions and vegetation. There is much less information on the roughness of floodplains and especially the contribution to roughness of individual items such as buildings or different crops. However the tables which have been developedfortheroughnessadvisorcontainthesetofcomprehensivedataasgivenin theliterature.

Material Thevaluesusedforthegroundmaterialareessentiallythesamevaluesthatareusedin thechannelandaregivenbelowinTable17

Table 17 Values of roughness for floodplain ground material Channel substrate Roughness values Mid Lower Upper Bedrock 0.025 0.023 0.028 Cobbles64256mm 0.055 0.04 0.07 CoarseGravel 0.035 0.022 0.04 Gravel264mm 0.03 0.028 0.035 Finegravel 0.024 0.02 0.028 Sand,0.2mm 0.012 0.01 0.016 Sand,0.3mm 0.017 0.015 0.022 Sand,0.4mm 0.02 0.017 0.025 Sand,0.5mm 0.022 0.018 0.027 Sand,0.6mm 0.023 0.02 0.03 Sand,0.8mm 0.025 0.023 0.032 Sand1.0mm 0.026 0.024 0.033 Coarsesand12mm 0.028 0.026 0.035 Silt 0.022 0.02 0.025 Clay 0.02 0.018 0.023 Peat 0.02 0.018 0.023 Earth 0.02 0.018 0.023 Firmsoil 0.02 0.018 0.023 Concrete 0.02 0.018 0.022 Bareploughedsoil 0.025 0.022 0.028 Therearesomeadditionstothattablefordifferenttypeoflandcoversuchasploughed fields with furrows running parallel, perpendicular or at an angle to the river. The valuesgivenarebasedonthosegiveninChowandfromtheexperienceoftheauthors and other individuals contacted. Turner and Chanmeersi (1984) give values for bare soil,barecropstemsandadensecropofwheat,thesevaluesaregiveninthereference sheetinAppendixAandthevaluesforbaresoilhavebeenincorporatedintoTable17. Weltz, Arslan and Lane (2000) give values of hydraulic roughness coefficients for native rangelands, which are given in Appendix A. Although the vegetation is not representative of the flora found in the UK, the values for bare soil given have been usedinderivingthevaluesfoundinTable17.

R&D ROUGHNESSREVIEW 57

Arcement and Schneider (1989) give base values of Manning’s n taken from Chow (1959),andBensonandDalrymple(1967)andAldridgeandGarrett(1973).Thedata given in Appendix A show that from the two sources the values for base n do not necessarily agree. The values have been evaluated and used in deriving the values foundinTables16and17.

Irregularities Irregularities on the floodplain will involve irregularities due to undulations in the ground form, hollows and depressions in the floodplain, and ridges due to ploughed fields.Therehasbeenlittleinformationfoundonanyroughnessfactorsduetothese types of irregularities so a table has been assembled, Table 18. This table contains estimated data for different irregularities based on experience and knowledge of floodplainsandfromdataobtainedfromAcementandScheider(1989)whomodified datafromAldridgeandGarrett(1973). The main obstructions on the floodplain will be structures such as walls, fences, buildings,andbridges.“Soft”obstructionssuchashedgeswillbedealtwithunderthe sectiononvegetation.Behindsuchobstructionslocalareaofnonflowwillbefound, whichmaybeclassifiedasadeadzone.Thelocationofthedeadzonewilldependonthe alignmentoftheobstructiontotheflow.Theobstructionwillcauseabackwatereffect andaccountshouldbetakenofthiswhenperforminghydrauliccalculations. Table 18 shows the unit roughness values which should be combined with the unit roughnessvaluesfromTables17to23inthewaydescribedinsection6.1togivevalues ofroughnessforthefloodplain. Table 18 Values of roughness for floodplain irregularities and obstructions Roughness values Irregularities Mid Lower Upper Ridgesonploughedfield 0.0017 0.0015 0.002 Undulationsonfloodplain 0.002 0.0015 0.0025 Minorirregularities–afewdipsandsloughs 0.003 0.001 0.005 Moderate irregularities more rises and dips with 0.008 0.006 0.01 somesloughsandhummocks Severe irregularities – floodplain irregular in 0.015 0.011 0.02 shape, many rises and dips/sloughs visible. Irregular ground surfaces in pasture land and furrowsperpendiculartoflow. Roughness values Obstructions Mid Lower Upper Negligible Few scattered obstructions which 0.002 0.001 0.004 include debris deposits, stumps, exposed roots, logs, piers or isolated boulders that occupy less than5percentofthecrosssectionalarea. Minor Obstructions occupy less than 15 percent 0.0045 0.004 0.005 ofthecrosssectionalarea. Appreciable Obstructions occupy from 15 0.025 0.02 0.03 percentto50percentofthecrosssectionalarea.

R&D ROUGHNESSREVIEW 58

Vegetation Grasscover Extensive tests undertaken on grass cover (Ree, 1949 and Ree and Palmer, 1949) resulted in a Handbook of Channel Design in 1954, (US Soil Conservation Service, 1954). The result of the work has been to define a series of relationships between Manning’s n and the product VR, where V is the mean flow velocity and R is the hydraulic radius. The relationship is expressed as a family of curves, each curve definingtheotherprincipalvariable,thephysicalcharacteristicofthevegetation.The mainphysicalcharacteristicisjudgedtobetheheightbutotherfactorssuchasdensity anduniformityareinfluentialandavaluejudgementhastobemade.Thefamilyof curvesandclassificationofretardanceclassesaregiveninAppendixA

Green and Garton (1983) give equations for the calculation of Manning’s roughness coefficientineachoftheretardanceclasses.TheseequationsarepresentedinAppendix A. The equations relating Manning’s n and VR developed by US Soil Conservation Service (1954) and Green and Garton (1983) are widely used and appear to be very consistentwithotherstudiesundertaken,HRWallingford(1992)andKouwen(1992). Itissuggestedthereforethattheformofroughnesstakenforgrassedfloodplainfollow thecurvesandformulae.Theformulaeandvalueshavebeenincorporatedintoatable linkingtheretardanceclassandVRorVdvalues,whicharegivenbelow. Table 19 Values of roughness for grass at different retardance classes n values for Retardance class VR (m 2/s) A B C D E 0.025 0.3995 0.31961 0.218 0.118 0.057 0.05 0.359 0.23622 0.126 0.078 0.043 0.075 0.3185 0.1686 0.095333 0.064667 0.038333 0.1 0.278 0.1366 0.079 0.058 0.036 0.2 0.1575 0.0929 0.0535 0.044 0.03 0.3 0.120333 0.073733 0.045 0.039333 0.0275 0.4 0.10175 0.06415 0.04075 0.037 0.02625 0.5 0.0906 0.0584 0.0382 0.0356 0.0255 0.6 0.083167 0.054567 0.0365 0.034667 0.025 0.7 0.077857 0.051829 0.035286 0.034 0.024643 0.8 0.073875 0.049775 0.034375 0.0335 0.024375 0.9 0.070778 0.048178 0.033667 0.033111 0.024167 1 0.0683 0.0469 0.0331 0.0328 0.024 The Technology Research Centre in Japan gives an alternative for grass cover. The relationshipisfordifferenttypesofgrassandtheroughnessisafunctionoftherelative heightofthewaterdepth(h)andgrassheight(h v).Thetableforthevaluesisshownin thereferenceforTechnologyResearchCentre(1994)inAppendixA.Thevaluescan beusedasanalternativetothetableabovewhentheproductVRisdifficulttoestimate. Thevaluesaregiveninthefollowingtable:

R&D ROUGHNESSREVIEW 59

Table 20 Alternative values of roughness for grass Manning’s n roughness values Description Average Lower Upper Stiffgrassheighthv=1.8mh/hv=1.4 0.1 0.08 0.12 Grasslandheighthv=1.0mh/hv=2 0.08 0.07 0.09 Stiffgrassheighthv=1.8m,h/hv=2.5 0.047 0.04 0.055 Grasslandheighthv=50cm,h/hv=5 0.04 0.035 0.045 Grasslandheighthv=1020cm,h/hv=16 0.026 0.022 0.028 Flat golf course with turf several cm high, 0.021 0.018 0.024 h/hv=90

AdifficultywithapplyingtheVRmethodisthat‘V’and‘R’arederivedforachannel sectionandnotalocalvalueasappliedintheconveyancegenerator.

Crops Thereareanumberofpublicationsthathavedetailsoftheimpactofcropsindifferent phases of growth. Smith et al, 1990 give stage discharge relationships for different cropsincludingdifferenttypesofgrass,wheatandsorghumunderdifferentconditions. ThesevaluesarebasedondatafromothersourcessuchasTurnerandChameersi(1984) whicharedetailedinAppendixA.GilleyandKottwitz(1994)giveDarcyWeisbach friction factor values for different crop types: corn, cotton, sorghum, sunflowers and wheat,bothparallelandperpendiculartotheflow.Thevalueshavebeenconvertedto Manning’snroughnessvaluesinAppendixAandaddedtothetablebelow.Petrykand Bosmajian(1975)lookedatflowcharacteristicsforwheat,sorghumandforarangeof fieldsiteswithavarietyofvegetationtypesonthefloodplain.Thevaluesforwheatand sorghumareaddedtothetablebelow. Table 21 Values of roughness for a range of different crops Crop description Roughness values Mid Lower Upper Wheatin15cmofwater 0.06 Wheatin20cmofwater 0.07 Wheatin30cmofwater 0.075 Wheatin40cmofwater 0.096 Wheatin50cmofwater 0.113 WheatStemsin10cmofwater 0.035 Wheatstemsin15cmofwater 0.04 Wheatstemsin24cmofwater 0.05 Wheatstemsin33cmofwater 0.053 Wheat,withdensityof1.2stalksperm,in30cm 0.11 0.1 0.125 ofwater Sorghum,withadensityof0.3stalksperm,in 0.06 0.04 0.11 30cmofwater Corn,rowsparalleltoflow 0.11 0.036 0.24 Cotton,rowsparalleltoflow 0.06 0.008 0.14 Sorghum,rowsparalleltoflow 0.12 0.019 0.26 Soybeans,rowsparalleltoflow 0.095 0.05 0.21

R&D ROUGHNESSREVIEW 60

Crop description Roughness values Mid Lower Upper Sunflower,rowsparalleltoflow 0.115 0.046 0.25 Corn,rowsperpendiculartoflow 0.05 0.012 0.134 Cotton,rowsperpendiculartoflow 0.045 0.017 0.082 Sorghum,rowsperpendiculartoflow 0.047 0.015 0.093 Soybeans,rowsperpendiculartoflow 0.08 0.037 0.149 Sunflower,rowsperpendiculartoflow 0.07 0.012 0.120 Wheat,rowsperpendiculartoflow 0.075 0.015 0.13 Hedges KlassenandvanderZwaard(1974)carriedoutlaboratoryexperimentstoinvestigatethe effect of orchards and hedges on the roughness coefficient of vegetated flood berms. ThedatafromthepaperisshowninAppendixA. TheanalysisofKlassenandvanderZwaardconsideredhedgesthatwerenotsubmerged by the flow. Klassen and van Urk (1985) extended this work by investigating the resistance of drowned hedges. They concluded that in order to calculate the flow through/oversubmergedhedgesthemethodofKlassenandvanderZwaardshouldbe usedfortheflowthroughthehedge.Theflowoverthehedgeshouldbeestimatedusing ashortcrestedweirequationwithadischargecoefficientequalto1.0. AsaresultsofthisresearchandthevaluesshowninAppendixAundertheKlassenand van der Zwaard reference, the values for roughness due to hedges on the floodplain, perpendiculartotheflowaregiveninthetablebelowwherethehedgeseparationisin thestreamwisedirection. Table 22 Values of roughness for clean and dirty hedgerows on the floodplain Hedgerow Manning’s n roughness coefficient for clean or dirty separation (m) hedgerows with varying flow depths 0.25m 0.50m 1.00m 1.50m 2.00m Clean Dirty Clean Dirty Clean Dirty Clean Dirty Clean Dirty 50 0.038 0.072 0.045 0.089 0.053 0.091 0.054 0.086 0.051 0.080 100 0.032 0.053 0.032 0.064 0.042 0.067 0.042 0.063 0.041 0.060 250 0.029 0.040 0.031 0.045 0.029 0.045 0.032 0.045 0.032 0.041 500 0.028 0.035 0.028 0.036 0.029 0.037 0.027 0.036 0.029 0.034 1000 0.027 0.031 0.027 0.032 0.027 0.031 0.025 0.029 0.027 0.027

TreesandShrubs Chow(1959)hassome roughnessvaluesassociatedwithtrees andshrubs,which are summarisedintheTable23.PetrykandBosmajian(1975)theoreticallyanalysedflow throughtreesandshrubsandgavesomeexamplesfromfieldsites,AppendixA.There are a number of other sources of data from field sites including: Kouwen and Fathi Moghadam (2000) and (1997) for coniferous trees and nonrigid, nonsubmerged vegetation,ArcementandSchneider(1989)and(2002)withexamplesofdifferenttypes oftreesonfloodplain,andTechnologyResearchCentre(1994)withdetailsoftreesin

R&D ROUGHNESSREVIEW 61 differentpatterns.AlltherelevantdatafromthesepapersaredetailedinAppendixA and the data has been combined to develop the table below which gives more generalisedinformationratherthanspecifictreedensitiesandtypes.Theexceptionis for coniferous trees where there is more detailed data from Kouwen and Fathi Moghadam(2000). Table 23 Values of roughness for trees and shrubs

Manning’s n values Description Average Minimum Maximum

Small amounts of vegetation – supple trees saplings e.g. 0.005 0.0001 0.05 willow Scatteredbrush 0.02 0.015 0.03 Lightbrushandtreesinwinter 0.02 0.015 0.03 Lightbrushandtreesinsummer 0.025 0.015 0.05 Mediumtodensebrushinwinter 0.04 0.02 0.07 Mediumtodensebrushinsummer 0.045 0.01 0. Densewillows,summer 0.1 0.07 0.13 Clearedlandwithtreestumps,nosprouts 0.01 0.005 0.015 Clearedlandwithtreestumps,heavygrowthofsprouts 0.025 0.015 0.04 Moderatetodensebrush.Depthisbelowbranches 0.06 0.05 0.1 Heavystandoftimber,afewdowntrees,littleundergrowth, 0.07 0.05 0.13 floodstagebelowbranches Heavystandoftimber,afewdowntrees,littleundergrowth, 0.15 0.1 0.2 floodstagereachingbranches Coniferous trees Velocity 0.1m/s. Totally submerged, total area coverage by 0.2 trees Velocity 1m/s. Totally submerged, total area coverage by 0.118 trees Velocity 2m/s. Totally submerged, total area coverage by 0.1 trees Velocity0.1m/s.75%submerged,totalareacoveragebytrees 0.22 Velocity1m/s.75%submerged,totalareacoveragebytrees 0.13 Velocity2m/s.75%submerged,totalareacoveragebytrees. 0.12 Velocity0.1m/s.50%submerged,totalareacoveragebytrees 0.28 Velocity1m/s.50%submerged,totalareacoveragebytrees 0.162 Velocity2m/s.50%submerged,totalareacoveragebytrees 0.14 Velocity0.1m/s.25%submerged,totalareacoveragebytrees 0.4 Velocity1m/s.25%submerged,totalareacoveragebytrees 0.235 Velocity2m/s.25%submerged,totalareacoveragebytrees. 0.2 Velocity 0.1m/s. Totally submerged, 75% area coverage by 0.175 trees Velocity 1m/s. Totally submerged, 75% area coverage by 0.1 trees Velocity 2m/s. Totally submerged, 75% area coverage by 0.087 trees Velocity0.1m/s.75%submerged,75%areacoveragebytrees 0.2 Velocity1m/s.75%submerged,75%areacoveragebytrees 0.117 Velocity2m/s.75%submerged,75%areacoveragebytrees. 0.1 Velocity0.1m/s.50%submerged,75%areacoveragebytrees 0.245 Velocity1m/s.50%submerged,75%areacoveragebytrees 0.145 Velocity2m/s.50%submerged,75%areacoveragebytrees 0.12

R&D ROUGHNESSREVIEW 62

Manning’s n values Description Average Minimum Maximum

Velocity0.1m/s.25%submerged,75%areacoveragebytrees 0.34 Velocity1m/s.25%submerged,75%areacoveragebytrees 0.2 Velocity2m/s.25%submerged,75%areacoveragebytrees. 0.175 Velocity 0.1m/s. Totally submerged, 50% area coverage by 0.14 trees Velocity 1m/s. Totally submerged, 50% area coverage by 0.08 trees Velocity 2m/s. Totally submerged, 50% area coverage by 0.07 trees Velocity0.1m/s.75%submerged,50%areacoveragebytrees 0.16 Velocity1m/s.75%submerged,50%areacoveragebytrees 0.095 Velocity2m/s.75%submerged,50%areacoveragebytrees. 0.08 Velocity0.1m/s.50%submerged,50%areacoveragebytrees 0.2 Velocity1m/s.50%submerged,50%areacoveragebytrees 0.12 Velocity2m/s.50%submerged,50%areacoveragebytrees 0.1 Velocity0.1m/s.25%submerged,50%areacoveragebytrees 0.28 Velocity1m/s.25%submerged,50%areacoveragebytrees 0.165 Velocity2m/s.25%submerged,50%areacoveragebytrees. 0.14 Velocity 0.1m/s. Totally submerged, 25% area coverage by 0.1 trees Velocity 1m/s. Totally submerged, 25% area coverage by 0.06 trees Velocity 2m/s. Totally submerged, 25% area coverage by 0.05 trees Velocity0.1m/s.75%submerged,25%areacoveragebytrees 0.1 Velocity1m/s.75%submerged,25%areacoveragebytrees 0.059 Velocity2m/s.75%submerged,25%areacoveragebytrees. 0.05 Velocity0.1m/s.50%submerged,25%areacoveragebytrees 0.12 Velocity1m/s.50%submerged,25%areacoveragebytrees 0.07 Velocity2m/s.50%submerged,25%areacoveragebytrees 0.06 Velocity0.1m/s.25%submerged,25%areacoveragebytrees 0.2 Velocity1m/s.25%submerged,25%areacoveragebytrees 0.118 Velocity2m/s.25%submerged,25%areacoveragebytrees. 0.1

6.4 Vegetation growth and maintenance DetailedinformationonvegetationgrowthandmaintenanceiscontainedinChapter7. 6.5 Derivation of roughness values This section details the exact approach taken to the selection of the values in the roughness advisor for the different components and which literature, or expert judegmentorfieldtestswereusedinderivingtheunitroughnessvalues. Bed materials Bedrock Unitvaluesusedinroughnessadvisor: Avg Lower Upper 0.025 0.023 0.028 Values derived from literature: Chow(1959), Cowans(1956), Barnes (1967) and adjustedusingexpertjudgementandcheckingagainstHicksandMason(1991).

R&D ROUGHNESSREVIEW 63

Cobbles(64256mm) Unitvaluesusedinroughnessadvisor: Avg Lower Upper 0.055 0.04 0.07 Valuesderivedfromliterature:Chow(1959),Cowans(1956),Barnes(1967),Limernos (1970) and adjusted using expert judgement and checking against Hicks and Mason (1991),HeyandThorne(1986) Tested and checked through backcalculation with data from Heathcote at Sloan Terrace,WaiwakaihoatSH3bridgeandNgunguruatDugmoresRock(NewZealand), HicksandMason(1991). Coarsegravel Unitvaluesusedinroughnessadvisor: Avg Lower Upper 0.035 0.022 0.04 Valuesderivedfromliterature:Chow(1959),Cowans(1956),Barnes(1967),Limernos (1970) and adjusted using expert judgement and checking against Hicks and Mason (1991),HeyandThorne(1986) TestedandcheckedthroughbackcalculationwithdatafromRiverTrentatDrakelow (HRWallingfordcoursedata) Gravel Unitvaluesusedinroughnessadvisor: Avg Lower Upper 0.03 0.028 0.035 Valuesderivedfromliterature:Chow(1959),Cowans(1956),Barnes(1967),Limernos (1970) and adjusted using expert judgement and checking against Hicks and Mason (1991),HeyandThorne(1986) Tested and checked through backcalculation with data from River Main, Northern Ireland,RiverCole,Birmingham,RiverSevern,MontfordBridge,Abel’sBridge,NI. FineGravel Unitvaluesusedinroughnessadvisor: Avg Lower Upper 0.03 0.028 0.035 Valuesderivedfromliterature:Chow(1959),Cowans(1956),Barnes(1967),Limernos (1970) and adjusted using expert judgement and checking against Hicks and Mason (1991),HeyandThorne(1986) Tested and checked through backcalculation with data from Omagh Road, River Blackwater,NI Sand ValuestakenfromliteratureAcrementandSchneider(1989/2002),Barnes(1967) Otherbedmaterial

R&D ROUGHNESSREVIEW 64

ValuestakenfromChow(1959)andmodifiedfromexpertjudgementforunitroughness

Irregularities

Boulders ThevaluesforboulderscombinedwithdifferentsubstratesweretakenfromHicksand Mason(1991),Mason(1967)andCowans(1956)andcombinedintable3.Thesewere allrecordedatdifferentdepthsbutneededtobestandardisedfortheroughnessadvisor andunitroughnessforvaluesatdepthsof1.0m.Expertjudgementwasappliedtothese valuesandplotsofroughnessagainstdepthsusingarelationshipoftheformy=ax b. Atablewasproduced,table11,withtherangeofroughnessvalues,foracombination ofchannelsubstrate andboulders.Therewere somegapsinthedatabutthesewere interpolatedusingexpertjudgement.Theimpactoftheirregularitywasthenseparated outfromtheoverallroughnessandaunitroughnessvaluecreatedasshownbelow.The unit roughness values were then recombined with the unit roughness values for the substrateandtestedforconsistencyagainstUniversityofUlster(1995)data. The unit roughness were refined by expert judgement and checked for consistency testedagainsttheNorthernIrelanddatafromtheUniversityofUlster(1995)byback calculatingroughnessvaluesandcreatingastagedischargerelationshipusingtheCES methodologyandcomparingthiswithmeasuredvalues. Abel’sBridge,RiverBlackwater:020%ofbedcovered OmaghRoad,RiverBlackwaterandRiverMain:2150%ofbedcovered WaiwakaihoatSH3bridge(NewZealand)andRiverFury:>50%ofbedcovered. Poolsandriffles Values of roughness for pool and riffle sequences have been determined from the followingpapers:HigginsonandJohnston(1989),Richards(1976)ontheRiverFowey inCornwallandPimperton,Karle(1993)UniversityofUlster,(1995)andadjustedto unitroughnessvaluesusingexpertjudgement. Otherirregularities Theseareurbantrashandgroynes.Therearenoreferencesfortheroughnessofurban trashsotheseunitroughnessvaluesarebasedonexpertjudgement.Forgroynesthere areveryfewreferencesandnoexamplesonroughnessofgroynessotheunitroughness valuesarebasedonexpertjudgement. Bank material Theunitroughnessvaluesforbankmaterialsrock,boulder,earthandclayweresourced fromthesameliteratureandreferencesasthebedmaterialvalues,seeabove. Values for Stone Block, Concrete, Riprap, Masonry, Brick were taken directly from valuessuggestedinChow(1959). Values for Hazel hurdles, wood piling and fibrerolls were taken from the expert judgement of the advisors based on their work and the general information available withintheliterature.

R&D ROUGHNESSREVIEW 65

Forbanksidebushesandsmalltreesthevalueswithsourceswereusedasdescribedin Table16. Thereislittleinformationonroughnessofbanks.Thebanksmakeuparelativelysmall partoftheoverallcrosssection.ForthesetworeasonsthevaluessuggestedinChow havenotbeenmodifiedbythetechnicaladvisorsandhavebeenuseddirectlyastheunit roughnessvalueswithintheroughnessadvisor. Floodplain Groundmaterial Thevaluesusedforfloodplaingroundmaterialandthesourcesforthesevaluesinthe literature are the same as for bed material. There are number of additional substrate categoriesoffirmsoilandbareploughedsoil.Thesevaluesarebasedonthevalues given in Chow (1959), Turner and Chanmeersi (1984) and Weltz, Arslan and Lane (2000).InTurnerandChanmeersi,thevaluesareforarangeofdifferentdepthsandthe technicaladvisortookthesevaluesandaveragedthem,comparingthemwiththeother sourcesofinformationandmakingsurethattherangeofupperandlowerlimitscovered theentirerangeofvalues.Theseengineeringroughnessvaluesandtherangewerethen modifiedbythetechnicaladvisorstobeunitroughnessvaluesbyloweringthevalues accordingtotheirexperienceandjudgementofhowmuchtheturbulenceandsecondary flowswouldaddtotheunitroughnesstobeequivalenttotheengineeredroughness. The roughness values used were also checked against other sources in the literature Arcement and Schneider (1989), Benson and Dalrymple (1967) and Aldridge and Garrett (1973), which although they did not always agree with values selected were withintherangeofvaluesinthesepapers. Irregularities Theunitroughnessvaluesfordifferentirregularitieswerebasedonexperienceofthe technicaladvisorsandknowledgeoffloodplainsandfromdataobtainedfromAcement andScheider(1989)whomodifieddatafromAldridgeandGarrett(1973). Vegetation Thevegetationonafloodplainhasbeensplitintoseveraldifferentcategoriesduetothe different nature of the types of vegetation and the literature available which is more extensiveperhapsthanliteratureintheothercategories.Thecatetgoriesweresplitinto: Grass; Crops Hedges;and Treesandshrubs. Grass Roughnessvalueswerefoundinanumberofsources:Ree,1949andReeandPalmer, 1949, US Soil Conservation Service, 1954, Green and Garton,1983, HR Wallingford (1992)andKouwen(1992),TechnologyResearchCentre,1994. The roughness data for grass is presented in the literature is related to length, and condition,ofgrassandtheproductofthevelocityandhydraulicroughness.Datawas loaded into a spreadsheet and graphs of the variations between length of grass and productofvelocityandhydraulicradiuswereconsidered.Basedontheliteraturedata

R&D ROUGHNESSREVIEW 66 analysed, equations relating these factors were produced for each grass length in the form y=a+bx c wherey=roughness,xistheproductofvelocityandhydraulicroughnessanda,bandc arecoefficientsgivenfromtheliterature.Therearedifferentconditionsoftheproduct VRandthecoefficientsvarywiththesedifferingconditions. Thesevariationsareincludedintheroughnessadvisorfordifferentlengthsofgrass. Crops The values used in the roughness advisor are based on values in the literature from references: Turner and Chameersi (1984) and Gilley and Kottwitz (1994) who give WeisbachDarcyfrictionfactorvaluesfordifferentcroptypes:corn,cotton,sorghum, sunflowers and wheat, both parallel and perpendicular to the flow. The values have beenconvertedtoManning’snroughnessvalues.PetrykandBosmajian(1975)looked atflowcharacteristicsforwheat,sorghumandforarangeoffieldsiteswithavarietyof vegetationtypesonthefloodplain.Thevaluesforwheatandsorghumwereaddedto theroughnessadvisor.Forthewheattheroughnessvaluesareforwheatindifferent depthsofwater.Theroughnessvaluesgivenforwheatwereplottedagainstthedepthof waterandthenroughnessvaluesweretakenfromtheplotsandusedintheroughness advisorfordifferentdepths. Hedges Datatakenfromtheliterature:KlassenandvanderZwaard,1974andKlassenandvan Urk, 1995. The data was represented in tabular form for dirty or clean hedges, separated along the floodplain for a variety of distances in a certain depth of water. Thesecouldhavebeenrepresentedbyequationsbutwereidentifiedintheroughness advisorbyindividualvaluesforarangeofcircumstancesiethevalueforsayahedgein 1m of water separated by 100m form surrounding hedges has a roughness value of 0.042.Therangeusedistherangeinthetableforcleanordirtyhedgeconditions. Treesandshrubs Thetreeshavebeendividedintoconiferoustreesanddeciduoustreesunderavarietyof conditions. The values of roughness for the deciduous trees were taken from Chow,1959,PetrykandBosmajian,1975,andTechnologyResearchCentre,1994with valuesbeingaveragedfordifferentconditionsandrangesbeingusedfromthevaluesin thesepapers.ForconiferoustreestheroughnessvaluesweretakenfromKouwenand FathiMoghadam (2000). These values were included and analysed in a spreadsheet wheretherelationshipsforconiferoustreesunderdifferentsubmergedconditionsand percentage ground coverage were considered. The values as given in table 23 were combinedusingequationsrelatingroughnesstovelocityintheformofanequation: y=ax 2+bx+c where y is roughness, x is velocity and a, b and c are coefficients based on the data given in Kouwen and FathiMoghadam, 2000 for different submergence and ground

R&D ROUGHNESSREVIEW 67 coverage of trees. These values for roughness were then included in the roughness advisorforthedifferentconditions. 6.6 Upper and Lower Uncertainty bands

The roughness advisor gives a mid value and an upper and lower value of unit roughness. These values demonstrate that there is uncertainty in the estimation of roughnessvaluesduetoanumberofreasons: • Manning’sroughnessvaluesareempiricalsothesiteandconditionsmaynotbe thesameasthosemeasured • Theroughnessvaluesvarywithdepth,higherforlowerdepthsandviceversa. TheunitroughnessvaluesintheRoughnessAdvisorarefordepthsofwaterof 1.0m • Roughnessvaluesareestimatedfromanumberofdifferentsources • Theroughnessvaluesintheliteratureareengineeredroughnessvaluesandthey havebeenadjustedintheroughnessadvisortobeunitroughnessvalues. Thesesourcesofuncertaintycanleadtoroughnessvalueswitharange.Theupperand lowervaluesareintendedtorepresentthatrangeandunitroughnessvaluesareassumed tobewithinthatrange. Theupperandlowerboundsoftheunitroughnessvaluesweretakenfromtherangeof valuesfoundintheliteratureorfromknownmeasuredvaluesforeachcomponentfrom sitesdescribedinAppendixA.Thesourceoftheunitroughnessvaluesarefoundin section6.5. 6.7 Justification of approach Theapproachtakenhasbeendrivenbyadesiretokeeptheroughnessadvisorassimple aspossible.Aconsistentapproachwasrequiredwhichwoulduseallthedataavailable toitsmaximumpotential.Themaximumamountofdatawhichcanbeextractedfrom the literature, field and experimental data is that which is expressed in terms of Manning’s n values in a similar manner to the values expressed in Chow. The advantagesofthisapproacharethat: • DatacanbeextractedfrommanydifferentsourcestoaddtothevaluesinChow • Thedatacanbeexpressedasa unit roughness • The unit roughness valuescanbecombinedtogivea type roughness value • Thetyperoughnessvaluescanbeusedintheconveyancegeneratorwithvaluesof turbulence, secondary flow parameters and sinuosity to give stage discharge relationshipsfromwhichan engineering roughness canbedetermined • TheManning’snvalueiswellknownandwellusedinternationally. 6.8 Summary of testing of summation method ThemeasuredroughnessfromvarioussitesgiveninTable5werecomparedwiththose predictedfromtheroughnessadvisor.InadditionsitesfromBarnes(1967),Hicksand Mason (1991) publications and Chow (1981), were checked against those predicted fromtheRoughnessAdvisor.

R&D ROUGHNESSREVIEW 68

There are some limitations with doing this before having the conveyance generator. Theroughnessadvisorsplitstheroughnessintobed,bankandfloodplainwhereasthe measuredsitesareusuallyfortheentirechannelorchannelandfloodplain.Someofthe roughness elements are contained in the Conveyance Generator, for example the resistanceduetoturbulenceandsinuosity.Realisticallyonlythemeasuredandpredicted values can be checked once the Conveyance Generator has been implemented in the conveyance estimation system (CES) and the stagedischarge relationship can be produced. A depthroughness relationship can therefore be calculated and checked againstmeasureddata. The main points that arose from checking of results from the Roughness Advisor againstmeasureddatawere: • TheroughnessadvisorvaluescheckedwellwithChow. • ForthelargerriversontheSevernTrentsite,themeasuredvaluesfortheSevernat Bewdleywerelowerandoutsidetherangeoftheminimumvalue.Thismaybedue tothefactthattheSevernisdeeperthanthenominal1mfortheroughnessvalues givenintheadvisor.ThemeasuredvaluefortheTanatatLlanyblodwelwerehigher thanthemaximumvalue. • ThecomparisonbetweenvaluesgivenbyBarnesforUSriversandtheroughness advisorwasgenerallygoodwithmostofthevaluesmeasuredbeingclosetothemid valueandatleastwithintherangeofmaxtomin. • The comparison between values measured for the River Tame and the roughness advisorwasgenerallygoodwithmostofthevaluesmeasuredbeingclosetothemid value and at least within the range of max to min. The exception to this was BrookvaleRoadwherethemeasuredvaluesweremuchlessthanthosepredicted. Thisisduetothefactthatthesiteisinanareaofbackwaterfromthebridgewhich meansthewaterisdeeperandtheroughnesslessthanwouldbepredicted.Infact the Manning’s equation does not apply in this region where there is not uniform flow. • ForthedatafromtheRiverBlackwaterinNorthern Ireland,thepredictedvalues, basedonthebedinformationonlyisgenerallylessthanthemeasuredvalues.This isgenerallytobeexpectedastheroughnessvaluesforthebankswillhaveanimpact anduntiltheCESisusedtopredicttheoverall roughnessvaluesthese cannotbe comparedaccurately. • ThecomparisonbetweenvaluesgivenbyHicksandMason,1991,forNZriversand theroughnessadvisorwasgenerallygoodwithmostofthevaluesmeasuredbeing closetothemidvalueandatleastwithintherangeofmaxtomin. Fromthechecksagainstrealdata,themajorityofsitesmatchedwellorwerewithinthe envelopeofmaximumandminimumvalues.Forsitesnotwithinthisenvelopethere was generallya reasonableexplanationwhichcouldbegiven.Untilthesitescanbe fully testedusingtheRoughnessAdvisorandCEStogainapictureoftheengineering roughness or total roughness, which includes contributions to resistance due to turbulence,secondaryflowsandbends,itisdifficulttotestaccuratelythevaluesinthe roughnessadvisor.

R&D ROUGHNESSREVIEW 69

6.9 Use of the Roughness Advisor in the Conveyance Estimation System TheConveyanceGeneratordeterminesthestagedischargerelationshipthroughsolution of the depthintegrated ReynoldsAveraged NavierStokes (RANS) equations. These equations include four calibration coefficients; local friction f, dimensionless eddy viscosity λ,secondaryflowmixingcoefficient Γandmeanderingcoefficient Cuv (details inInterimReport2).Forthelatterthree,modelsareencodedfortheirapproximation. However,thelocalfrictionfactorisbasedonadvicefromtheRoughnessAdvisor. The Conveyance Generator receives the local roughness nvalue from the Roughness Advisor.Thisisconvertedtoanequivalent ks roughnessvalue,throughasimplified formoftheColebrookWhiteroughlaw,associatedwithadepthof1m.Forthecaseof sediment, this ks value is similar to the sediment dimension as defined by Nikuradse (1933) in his analysis of pipe flow. For the case of vegetation, this ks value can be interpretedasanequivalentturbulencelengthscale.Theassumptionisthatthevalueof ksdoesnotvarywithdepth.This ksvalueisthenusedforsolutionoftheColebrook Whiteequationateachdepth,todetermineforthelateraldistributionof f.

R&D ROUGHNESSREVIEW 70

7. RIVER MAINTENANCE PROCEDURES 7.1 Basic principles of plant biology and management Aquaticplantsgrowandinteractwiththeirenvironment.Thedominanceofaparticular species of plant or a plant community results from this interaction but this may be changedfromthenearnaturalconditionasaresultofhumanactivity.Suchactivityhas unforeseenconsequencesandoftenresultsintheneedforcontinuedhumaninpute.g. dredging, to maintain this unnatural condition. Combinations of activities such as discharging waters richer in nutrients than the natural condition in combination with channelmodificationorabstractionelsewhereupstreammaycausecomplexinteractions withunforeseenresults. Aquatic plants have basic requirements for growth, thus any plant, large or small, requireslightandasourceofinorganiccarbonforphotosynthesistobuildthemselves, nutrientstoassistthisandotherlifeprocesses,asuitableenvironmentinwhichtogrow andalsotheabsenceoftoxiccompounds.Thusplantsneed: 1. Lightattheirleafsurfaces,‘nolightnogrowth’.Lightreductionmaybearesultof shade by marginal vegetation, especially trees, by absorption of light passing throughtheriverwaterespeciallybyintermittentlyorfrequentlyturbidwater,orby theovergrowthofleavesbyfilmsofalgae.Thus,thereductionoflightmayprovide asimplemethodforthecontrolofexcessivegrowthofwaterplants(e.g.Dawson, 1989). Conversely, the use of nutrients to suppress plant growth would produce strong adverse reactions in the whole aquatic ecosystem, such as reduced oxygen levels,whichresultinfishkills. 2. Suitable water chemistry, which primarily includes inorganic carbon (carbon dioxideinsolution).Plantspeciesselectionrelatesbroadlytothis.Fastergrowing plantsarefoundinwaterwithhighercalciumlevelsandarethereforemoreoften consideredforaregimeofplantmanagement.Plantsoftendevelopmoreslowlyin acidic waters as the source rocks in the river catchment are more resistance to dissolutionandthusthewaterismorelikelytoreflectprevailingrainfallquality. 3. Availabilityofmacro&micronutrientssuchasnitrateorphosphateandironand othertracemetalswhicharerequiredforhealthyplantgrowth.Theyaregenerally neveralimitingconditioninriversalthoughexcessofsomemetalsmaylocallylimit plantgrowth. 4. Asuitableenvironment(called‘habitat’)isneededforgrowth.Thisincludesastable area of river and suitable substrate for rooting (or attachment) and an acceptable rangeofwaterflowsduringmuchofthegrowthperiod,whichallowsforthenormal growth form of the plant to develop. The absence of toxic compounds such as organiccompoundse.g.pesticides,toxicmetalsetc. As plants grow they interact and modify their environment. The influence of the physical parameters, particularly the seasonal periodicity of water and substrate, is paramount in the selection of which species is potentially dominant in any river situationprovidedasourceoftheplantispresentoravailableasseedorfragmentto colonisetheriverreach.

R&D ROUGHNESSREVIEW 71

7.1.1 Water flow and the vegetation of running waters Thevegetationofrunningwatersispredominantlydefinedanddeterminedbytheeffect and interactions of a single physical factor, water flow, which governs plantform, dominatesthegrowthcontrollingfactorsanddefinesthehabitat.Thus: 1. Veryhighorturbulentflowswilldirectlydeterminethepresenceorabsenceofin streamvegetationandevenlightbecomessubordinatetoitsinfluence. 2. Forhighbutlessextremeflowsaquaticvegetationmaybeconfinedtothemargins andtoislandswhereitisindirectcompetitionwithterrestrialvegetation. 3. Verylowflowsallowthedevelopmentofvegetationcharacteristicofstaticwater bodies,i.e.pondandlakes. Betweenthese extremesofwaterflow,thephysicalandchemicalfactorscancontrol growth, and interact with fluviatile plants to regulate seasonal biomass and to create flowingwatercommunities.Plantsarestillsubjecttothebroadenvironmentallimitsof highandlowtemperature(Whitton,1972).Suchcommunitiescanvaryduringtheyear influenced either by seasonal changes in their physical environment, particularly by waterflow,orbycompetitionbetweenspecies. The plant community at a site therefore reflects the balance achieved between the physicochemical environment and the plants’ tolerance, adaptation to or their modification of these conditions by their presence. The species present within the communityreflectthoseavailableandabletocolonise.Thedominanceofaspeciesmay occurthroughtherapidityofitsdevelopmentduringfavourablegrowthperiodswhich may result in a change of dominant species even seasonally. The spatial variation of fluviatile aquatic vegetation is naturally high and mosaics of plant associations often result, primarily from the turbulent nature of water flows in combination with the immediate or longterm history of its interaction with the bed or underlying rocks. Interactionbyman,particularlymechanical'weed'controlandchannelreconstruction, oftenincreasestheuniformityofthehabitatandreducesthesizeandstabilityofsurface substrates.Suchchangesmayincreasetherecoverytoleranceofthesystemtofrequent butnottocatastrophicevents.Thevegetationwhichresultsismorelikelytobelimited tothemoreinvasiveandfastgrowingplantsandislikelytobelessvariedinitsspecies composition. 7.2 The flowing-water habitat Thephysicalinteractionofplantswiththeenergypossessedbythewaterflowingpast them governs and selects suitable plant species through their vegetative hydraulic resistance.Thusasuccessfulplantmustbeabletoresistthisenergy.Thesize,formand standstructureoftheplant,togetherwiththestrengthofitsstemsandthesecurityofits methodofanchoringtothesubstratum,aremajorfactorsinmaintainingitspresence.In waters with seasonal changes in flow e.g. snow melt or tropical dry season, a herbaceous perennial growth cycle is frequently advantageous. This growth cycle is characterised by dieback of the plant or the shedding of the majority of its shoots to reduce its resistance to flow, thus avoiding the washout of its basal stems and particularlyitsrootsorrhizomes. Thepoweroftheflowingwaterisgovernedbygradientwhichincombinationwiththe surfacerockscreatestheenvironmentintowhichplantsinvadeandfrequentlymodify.

R&D ROUGHNESSREVIEW 72

Such interactions include the moderation of flows through growth that increases the waterlevelsthusreducingfluviatileorstreampowerandthestabilisationofsiltbanks. Howeverthroughthismoderationandencroachmenttheplantmaydestroythehabitat requiredbytheplantitself. Fluviatilehabitatshavegrowthformsbutnotalwaystaxaincommon.Thevarietyof habitatsislargeandrangesfromsourceswithrapidrunoffsuchasmountaintorrents, snowmelt,orconstantlyflowingsprings,throughstreamsandriverswithslow,rapidor alternating flow, to large deep sluggish sometimes turbid rivers of enormous size. Watervelocitiesinsmallerstreamsarefrequentlymoreturbulentandthusappearfaster thanthoseofplacidbuthigherflowlargeriverswithfullydevelopedvelocityprofiles. Thestudiesoffluviatilehabitatshavebeenundertakeninvariouswaysandtovarying degreesofdetaile.g.Haslam&Wolseley(1981),Holmes(1983).Therearecommon factorsbetweenhabitatsbutthegreatvarietyofotherinteractingphysicalandchemical factors are frequently incidental and serve only to confuse fundamental studies of distribution,communityandgrowthcontrollingfactors. However,generalisingabouthabitatscanprovidesomeinsight.Thus,forexample,fast flowscharacterisedbysubstratesofstonesorbouldersarefrequentlycolonisedbythe smallerplants,particularlyBryophytes.Thelatterarecharacterisedbybeingsmallin size,withnumeroustenaciousrhizoidsinmosses,flattenedshootsinliverwortsandthin layers in algae and aquatic lichens. Bryophytes, in particular, are very adaptable to stressandsomemaytoleratefactorssuchaslowlightlevels,dryingoutandfreezing, abrasionbyparticlesortheaccumulationoftoxicmetals(Glyme&Carr1974,Lewis 1973,Wehr&Whitton1986).Smalllowlandstreamsoriginatinginspringsorseepages are,bycontrast,frequentlydominatedbyemergentmacrophytes(Michealis1976).At theotherextremeofthehabitatrange,largeriverswhicharecharacteristicallydeeper with relatively less turbulence, allow the development of higher water velocities and morefrequentlyhavealgaldominatedcommunities.Thisisinpartduetothelengthof time(retentiontime)availablefortheirmultiplicationanddevelopmentbutalsodueto thelowerlightlevelsatthesubstratumthroughphysicalabsorptionandturbidityofthe waterpreventingmacrophytegrowth.Theseasonaldepositionofsiltsorsoftsediments also inhibits colonisation and affects the permanence of macrophytes. Fluviatile macrophyteshavingrhizomesarethuslimitedtothemargins,backwatersorshallows, dependingupontheseasonalflowsandmorphologyoftheriveranditssubstrate. Aparticularfluviatilehabitatisnotlimitedtolargecharacteristicareasbutmayoccur spasmodicallyinotherareas.Thus,theveryhighenergyormountainoustorrenthabitat may occur as in otherwise large sluggish rivers. The fitness of a particular growthformforaparticulartypeofhabitatandtheassociatedfeaturesofthestructure ofthecommunitymayreappearunderrecurringhabitatconditionsalmostirrespective of the particular species present. The habitat is restricted by physical factors, particularlyflow,suchthatathighenergiesonlylargerstonesandbouldersarestable andremainbutatlowenergiesinslowwater,thensedimentmayfillthecrevicesbut unlessdramaticclimaticchangeshaveoccurredbouldersareunlikelytobepresent. Thusinsummary,thevolumeofwaterflowingregulatesfundamentallytheparameters ofwidth,depth,velocityandturbulence,whichincombinationwiththeconstraintsof surface geology determines the permissible vegetationrange. The grouping or classifying of plants can lead to a better understanding of the competitive and other

R&D ROUGHNESSREVIEW 73 interrelationshipsofthespeciesandidentificationofcommongrowthcontrollingfactors through an understanding of the interaction of associated plant groups with their environment. The classification of freshwater macrophyte habitats has produced a varietyofsystemsbutonlytheecologicalzonationdevelopedforfluviatilefreshwater macrophytes by Butcher (1933) and modified by the addition of seasonal changes in dischargeasthefrequencyandseverityofspatesbyWestlake(1975). 7.2.1 Communities, succession and climax Fluviatilecommunitiesreflectwaterconditions.Inthelargelongrivers,planktonicalgal communities develop, but such rivers are also usually deep and subject to particular conditions in smaller rivers, which preclude the establishment and growth of macrophytes (Kofoid, 1908). In shallow, small, running waters the communities are moredependentforhighbiomassuponnutrientconditionsinparticular.Increasingor high nutrientstatus favours epiphytic algal growth or attached algal communities in preferencetoasubmergedmacrophytecommunity,althoughlargerhizomatousplants withsurfaceleavesoremergentstemsmayovercomethis(e.g.Golterman&Kouwen, 1980). 7.2.2 Plant growth and environmental growth controlling factors Fluviatilemacrophytes,incommonwithotherplants,havecertaingeneralrequirements forgrowth.Althoughseveralotherauthorshaveconsideredthegeneralcharacteristics oftheaquaticenvironmentforwaterplants(Gluck1905)itwaslefttoButcher(1933)to reviewthemandtoextendthislineofapproach.Heintroducedmanyofthespecialor particular characteristics of the fluviatile habitat, the fundamental characteristic of which is the normal existence of a continuous flow of water in one direction. Interactions with this flow lead to the selection of a community of plants that can tolerate the prevailing conditions. Butcher also outlined several topics of importance, whichhasbeenthebasisoffurtherstudyforhalfacentury. The maximum biomass or crop, whichfluviatilemacrophytesachieveataparticular site,istheresultofabalancebetweentheconditionsavailableforgrowthsuchaslight, inorganic nutrients and carbon, water temperature and water velocity and the plants' physiological responses at its current state of growth (Westlake 1967,Mitchell 1974, Westlakeetal1998).Theturbidityandlightpenetrationofthewaterhasbeennotedas particularly important (e.g. Ham et al 1981) especially during the early growth of submergedplantsbeforetheyreachthesurface.Plantgrowthalsorequiresthesupplyof severalotherelementsinsuitablechemicalformsinadditiontoinorganiccarbonofan acceptabletype(Ravenetal.1982).Inparticular,themacronutrientsnitrate,phosphate andpotassiumtogetherwithotherminorandtraceelementswhichareoftenavailablein thewaterand/orsediments(Denny1985).Theabsenceoftoxicorgrowthinhibiting compoundsisalsoarequirement. Ifthegeneralgrowthconditionsaremet,thenplants,eitherlargeorsmall,willbeable togrowinthemajorityofaquaticsites.Forexample,inthesmallerriversandstreams fluviatile macrophytes are more likely to be abundant in shallower locations (<3m; Dawson 1976). They may however be limited in their ability to invade, become establishedorremainbecauseofanunsuitablestreambedorwaterflowduringeither the whole or part of the year at particular sites. Invasion is often by turion or by vegetativepropagule,i.e.piecesofplantstemor"root",butlessfrequentlybyseed(e.g. CoffeyandMcNabb1974,Castellano1977,Sastroutomoetal.1979).Theslowflowof

R&D ROUGHNESSREVIEW 74 water may reduce the potential for spread by propagule and favour seed dispersing plants,orplantswhichcanreinvadefromthebanksormarginalareas.Onceestablished, plants may be unable to survive competition with other macrophytes or algae. Many fluviatilemacrophytesoverwinterasburiedstemsorsmallrhizomesasinBatrachian Ranunculacae,orastubersinPotamogetonspp.(Dawson1976,vanWijk1983,Madsen 1986). Planktonic algae are favoured in downstream sections of large rivers as mentioned previously. This is partly due to increasing depth, and partly by limiting large plants through the increase of depth as river channel dimensions increase, but also because sufficient time elapses for the development of an algal population during the downstreampassageofwater. Thelengthoftheperiodavailablefordevelopmentisalsoofimportancetolargeplants forunlesslargefoodreservesareavailable,evenfastgrowingplantshavemodestand finitegrowthrates(Westlake1966).Asplantsincreaseinbulk,selfshadingdevelops and the supply of inorganic carbon and nutrients may become progressively more limited. When considering individual plant biomasses, space for growth and growth strategy may become of paramount importance (Castellano 1977, HowardWilliams 1982). The biomass achieved and annual production in various aquatic sites together witherrorsintheirdetermination,havebeenreviewedagainbyWestlake(1982). Seasonal cycles. Changesinbiomassinthelatewinterorspringareofteninitiatedbya herbaceoustypedevelopmentfromoverwinteringstorageorgans,orbyredevelopment ofoverwinteringstems,toproducetheseasonalbiomasswhichisthenacteduponby the environment. The latter has for decades been discussed by authors e.g. Butcher (1933), who have produced sets of factors which are undoubtedly likely to control plants,particularlyinrivers,butfewhaveproducedquantitativeevidenceonsingleor evenrelatedfactors.Thisworkfollowedadetailedstudyofsectionsontwolowland English rivers and illustrated the importance of several factors to the growth of river plants and the interaction between species and the physicochemical environment. AmongstthefeaturesButcherintroduced,heparticularlyemphasisedthepersistenceof somespeciesofplantsthroughouttheyearwhilstothersdecayintheautumnandalso the impermanence of aquatic vegetation. The constant movement of vegetation to unoccupiedareas,leavingotherareasbarrendemonstratedthelatter. Studiesonfluviatilemacrophyteshaveinvestigatedtheseasonalchangesinthebiomass of the emergent macrophyte Nasturtium officinale (Castellano 1977) and of the submergedmacrophyteRanunculuspenicillatus(Dawson1976a)andtheiryeartoyear interactionsinrelationtodischargecycles(Dawsonetal,1978).Thelatter,withtheir seasonalvariation,isprobablyoneofthemostimportantofthebetweensitevariables governingbiomassdifference.SucharelationshipwasalsodemonstratedbyBrookeret al(1978),whoshowedaninverserelationshipbetweentheflowofwaterintheApril June period and the intensity of plant growth. A more extreme case of discharge variationforashadedsectionofalowlandchalkstreamhasbeendescribedbyHamet al.(1982a).TheaffectedspecieswereofthegeneraRanunculus,BerulaandCallitriche. Limited studies on the growth rate and seasonal cycle have also been undertaken in artificialsystemsindefinedconditionstoestimatetheuptakeofnutrients,forexample

R&D ROUGHNESSREVIEW 75

Eichenberger(1983)estimatedtheseconditionsforRanunculusfluitansandtheeffects ofgrazingbyinvertebrates. Year-to-year variation of either the mean rate of growth or the maximum biomass achievedcanoccur,dependentuponthetimeforwhichthereissufficientlightavailable to the plant because of fluctuations in lightpenetration through the water (Westlake 1966b).Theeffectsofrainfallandturbidityofthewaterareoftenfarmoreprolongedin largeranddeeperstreams.Seasonalboattrafficalsohasasimilareffect(Murphyand Eaton1982). Ifthelightlevelsarebelowthelightcompensationofgrowthbalancepointforextended periods,thengrowthisnotpossibleandthebiomassachievedbythetimeofflowering is reduced. Other species which develop later, or have large overwintering storage organsandshortgrowingseasons,maybecomedominantifthissituationcontinuesfor severalyearse.g.Nupharsppinlargerrivers.Evenunderrelativelysimilardischarge cycles, changes occur, as shown during the 4year monitoring of the biomass of Ranunculuscalcareusinanunshadedsectionofastream(Dawson1976). The Dawson (1976) study showed that the maximum summer biomass in the four seasonsdeclinedtohalfthatinitiallyfound,butthisresultedprimarilyfromtheplants notbeingsubjectedtoannualmidsummerplantremovalbycutting.Itwassuggested that the decline occurred as much from the suppression of autumnal regrowth by moribundplantmaterialoverlyingtheshoots giving alowoverwinteringbiomass,as fromthereleasefromthesynchronisinginfluenceofregularcuttingonplantregrowth. This suggestion was confirmed by the study of Ham et al (1981), who also found a similarresponsetocutting.Overseveralseasonsonthissamesite,differentspeciesand cyclesofbiomasseswerefoundbetweenshadedandunshadedsites.Thisillustratesthe effectsofcompetitionbetweenanaggressivelygrowingspeciesRanunculusandother lessaggressiveonesCallitricheandBerula. These differences also indicate the degree of shade tolerance or adaptation amongst thesespecies.Alongtermstudyofthebiomassvariations(determinedbyexamining the total weight of weed removed from a managed river) divided the cause equally between the environment in the early part of the year, the timing and extent of managementinthepreviousyear,andtheinherentgrowthcycleoftheplant(Westlake andDawson1982). In a subsequent study on the river in which preemptive removal of material in the previous autumn was undertaken, the importance of management was confirmed becausereductionsofuptoathirdwerefoundincomparisonwiththeexpectedbiomass (WestlakeandDawson1986). 7.3 Consideration of traditional and alternative techniques Conventional irrigation and drainage channels are designed and operated to transport watertoandfromanareaoflandatminimaldirectcost.Inconsequencechannelsare often straight for long lengths, trapezoidal in crosssection and devoid of large vegetationinthechannelandonthebanks.Thisdesignconditioncanrapidlydeteriorate as sediments are deposited in the channel and as the water flow is progressively obstructed as vegetation overgrows from the banks or within the channel. Expensive

R&D ROUGHNESSREVIEW 76 vegetation removal and dredging and reshaping of the channel is required and is undertakentovaryingdegrees,withsuccessjudgedonlyintermsofwatersuppliedto theirrigatedareaandnotbyreferencetoregularmeasurementofmeaningfulhydraulic parameterduringitspassagealongthechannel.Thereisevidencethatthedesignand construction of artificial channels can exacerbate the maintenance requirement. For example, unlined channels with moderate flows and shallower than 3 m can make excellenthabitatsformostaquaticvegetation. Traditional channel engineering emphasises the simplicity of form of channels in combinationwiththeabilitytoproducethesestructuresbylabourorheavymachinery. Thestraightchannelisbasedupontheconceptthatwatershouldandwillflowquickest inastraightlineandthatthespeedisenhancedbytheshortestroute.Manystudieshave shownthatflowsabovequitealowvelocityrarelyobeythispremiseandtheinitiation ofmasswaterflowreadilyresultsinthemaximumvelocitiesmovingfromsidetoside inanystraightchannel.Thisincipientsinuosityofthechanneltendstocreateerosion anddepositioninchannelsandeveninlinedchannelswheresedimentisavailable. Oncealterationofflowisinitiated,itisdifficult,andsomesayunnecessary,toremedy it for a dynamically stable situation exists. The trapezoid cross sectional design requirementisprimarilyrelatedtothestabilityofworkedbankmaterialsi.e.soils,sands etc,butsuchashapeis rareinnature.Nearverticalslopesaremostcommonexcept where erosional slumping or blockfall changes create shallow shores frequently observed in low flow conditions in large rivers. Vegetated margins when allowed to developnaturallyandreachastableplantpopulationfrequentlycreateverticalfacesto theflow,exceptunderhighlyvariableflows.Channelsarefrequentlydesignedwithout considerationforthedevelopmentofvegetationoritsassociatedeffectse.g.seasonally enhancedsiltation. Thepotentialforchangesinmorphologythatmaymoderateplantgrowthisrelatedto thesizeandstabilityofthestaticorflowingwater,althoughthereismorescopewhen channelsarebeingdesignedorrefurbished.Morphologicaladaptationsbythemselves do not solve macrophyte problems but must be used in combination with other techniques. Morphologicaldesigncriteriaforenvironmentallysoundchannelswhichareexpected tocontainvegetationshouldprimarilybebasedonreducingthelightclimateforgrowth whichincludes: 1. Aminimumsurfaceareaconsistentwiththeselfbalancingratioofdepthtowidth for the flowing water because submerged macrophyte growth is related to the watersurfacearea(notvolume). 2. Amaximumwaterdepth(withinthesameaboveconstraint)becauseshallowwater isconducivetoearlieranddensermacrophytegrowthandmaybeaccompaniedby overgrowthofmarginaloremergentmacrophytes(Dawsonetal.1978). Overwide,andthusshallow,lowlandriverswhichareoftenopenandunshaded,havea high potential for macrophyte growth which disproportionately increases water levels and the risk of flooding adjacent land. Seasonally early fineleaved submerged macrophyte development may also accumulate more sediments as seasonal flows movingsuchmaterialareoftenhigherearlyintheyear(Ladle&Casey1971,Dawson

R&D ROUGHNESSREVIEW 77

1976a, Onslow 1982, Welton 1980). Absolute water velocity and its rate of change duringtheseasonsisalsoimportant,foralthoughturbulenceishighinshallowflows, watervelocityisgenerallynotashighwhencomparedtodeeperwaterflows.Similarly, washoutinthelattermaybehigher(Dawson1976a). Broad recommendations for new lowland rivers in Northern Europe which are consistentwithhydrauliccriteriaarebeginningtoemphasisechannelformandassume that vegetation will develop and that regular removal is undesirable. The recommendationsinclude: 1. Variationinplanform.Thisrequiresthatthenaturalsinuosityorcurves(exhibited bynatural adjustedrivers)be allowedtodevelop;imposedorfixedsinuosityor straightchannelscreateproblems(e.g.Brookes1984,1985). 2. Variation in longitudinal bedslope to match the natural development of natural sequencesofpoolsandrifflesandtheassociatedvariationinwidth. 3. Variation in transverse vertical section includes variation in channel width and bankslopetogetherwithasymmetric`handing'ofsteepandshallowslopesbutshould also include emergent and submerged vegetation near the margins to protect and stabiliseriverbankswithplantingofthepreferredemergentbankmacrophyteduring itsgrowingseasons. 4. Theplantingofsuitabletreesorbushesonthetopsoffloodberms(butnotraised banks) to moderate plant growth on both the berms and in the water; roots will stabilisethebanks. 7.4 Weed cutting Weedcuttingofsubmergedplantsisfrequentlyundertakenwhenflowreductionandits associated processes, such as enhanced , have already occurred and natural environmental controls are beginning to act. For example, a species of ‘fine leavedrooted’submergedplantwhichgrowsinachannel,hasbeenselectedgiventhe environmentofthechannel,foritsabilitytocoloniseandmakebetteruseoftheinitial conditionsthanotherspecies,whenoverallconditionsallowanyplantgrowthtooccur atall. Innaturalsystems,thebiologicalfactorsmayincludethetimingoftheplantsgrowth during the season to avoid excessive flows, turbid water, excessive summer temperaturesorotherfactorsasyetunidentified.Onefactorfrequentlynotconsideredis thesizeofthefoodstorageorgans,e.g.rhizomes,bywhichtheplantcarriesoveragood reserve of building materials from one growing season to the next. For example in Nuphar, large storage organs allow both rapid growth when turbid water conditions restrictothersubmergedplantgrowth,andtheproductionoflargesurfaceleaveswhich oftenshadeoutothersubmergedspecies. Themaximumbiomasswhichisachievedatanysiteistheresultofthecombinationof environmentaldrivingvariableswhichmayactincommonorinopposition.Thuslight may be increasing which linearly increases gross photosynthesis but increasing water temperatures may exponentially elevate respiration reducing the net photosynthetic gain. During the seasonal growth, increased biomass increases hydraulic resistance reducing the flow capacity of the channel and also reducing the supply of inorganic carbontotheplants,slowingtheirgrowth.Higherbiomassincreasestheproportionof

R&D ROUGHNESSREVIEW 78 selfshadingamongsttheplants.Thusevenundersteadyflowconditionsabalancecan beachievedwiththeprimedrivingvariable,light.Itishoweverunusualforwaterflow or discharge to be constant and in cold temperate zones it is likely to decrease significantly during summer and for a lower maximum or equilibrium biomass to be achieved. Inwarmtemperatezones,thereislikelytobelittleinhibitionofgrowthin winterandmaximumbiomassmayoccurearlierinthe year,e.g.spring,followedby environmental growth suppressing factors such as elevated temperatures or very low flowslaterintheyear. Traditionalweedcuttingisthemajorfactorinspeciesselectioninmanagedriversand channels.Itisassociatedwithreductionsinspeciesdiversity,rapidandresynchronised regrowth, elevated biomasses by comparison to natural cycles, and accentuated hydrauliceffectssuchasincreasesinvegetativehydraulicresistance. OnestudyforaspeciesofRanunculusindicatesthatregularweedcuttingdoubledthe potential seasonal maximum biomass (Dawson 1976). Conversely, this result shows thatwhenmanagementceasedforthisspeciesthemaximumbiomasshalvedoverafour yearperiod.Similarbutlessextremereductionsinseveralsubmergedspecieshavealso beennotedinnaturalrivers(Dawson&KernHansen1979).Howeverintheregionof southernEnglandinwhichthisstudywasundertaken,therewasstillasignificantand unacceptableriskoffloodingduringthetwocriticalmonthsinsummer.

600 maximum 500 potential for growth

400 typical growth curve 300

biomass weed 200 cut 100

0

0 5 10 month Figure 7 Example of a typical weed growth curve with and without weed cutting

R&D ROUGHNESSREVIEW 79

Table 24 Current Control techniques for aquatic and marginal vegetation by RHS vegetation morpho-type, with comments on consequences and recovery RHS vegetation Control technique Comment and Recovery morpho-type consequences Freefloatingplants Rarelycontrolled Usuallylostwith Followssubsequent typicallyalgaeor (maybeskimmedoffifde smallincreasesin lowerflow duckweeds oxygenationandfish flow. conditions. stocksarethreatened). Filamentousalgae Rarelycontrolled(canbe Usuallymoved Followssubsequent attachedshallow skimmedoffifthreatening downstreamwith lowerflow nutrientrichwaters fishkills). increasesinflow. conditions. Mosses Notknowntobe Veryslowiflost. attachedtobedorbanks controlled. Trailingbanksideplants Physicalcontrolbyflail Regularlylostin Rapidbutseasonal. mowerorhandscythe. winterfloodevents. Emergentreeds,rushes, Physicalcontrolbyflail Removalreleases Regrowthmaybein flagandlargegrasses moverorremovalof finersediments,and theearlygrowing underlyingsedimentbank destabilisesbanks seasonbutlater (orherbicide). [encroachmentisa regrowthisslowand Cuttingofunderwater riverrenaturalising regrowthinthenext stemsismosteffective. processandlimited seasonmaybe bybalancewith reducedbyathird. increasingwater velocitiesand sedimentsupply]. Floatingleavedrooted, Physicalcontrolbyweed Somesediment Effectivenessmay typicallywaterlilliesin cuttingboat(orherbicide). movement. increasewith deeperslowerwaters removalintheearly partofgrowing season. Emergentbroadleaved Physicalcontrolby Suspendssediments Regrowthstarts rootedplants,likewater draglineorexcavator. withmuchmoving immediatelyafter cressorwaterparsnip downstream. thevelocitiesreduce. Submergedbroad Physicalcontrolbyweed Regrowthstarts leaved,Pondweeds(0.6 cuttingboats. immediately. 1.2m) Submergedfineleaved, Physicalcontrolby Oftenreleasesof Regrowthoften likewatercrowfoot, draglineorexcavator, largequantitiesof startsimmediately pondweeds oroftenmanaged plantandsilt. especiallygrowth a)shallowstreams, selectivelybyhand becomes 0.20.6m,regular [‘gardened’]infisheries resynchronisedbut management e.g.chalkstreams. regularcutting declinesifleftuncut forthreeyears. b)mediumdepthrivers Regularcontrolphysical Oftenreleasesof Regrowthalmost 0.61.2mdeep,regular byweedcuttingboats largequantitiesof startsimmediately, management ORoccasionallybydrag planttobecollected withgrowth lineinassociationwith onboomsandsome stimulatedbymore maintenancedredging. silt. favourablevelocity conditions. c)mediumdepthrivers Physicalcontrolbyweed Regrowthstarts >1.2mdeep,some cuttingboatsordragline immediatelybutis management inassociationwith slow maintenancedredging.

R&D ROUGHNESSREVIEW 80

7.4.1 Modifications and refinements to weed cutting regimes Fine leaved submerged 1. No cutting. Theinitialproposalforthemanagementofsubmergedvegetationin channels must be the `no cut' scenario which has been shown to produce significantreductionsinmaximumbiomassforsomespecies.Howeveritcannot be considered in isolation especially in smaller channels and involves some channelredesigntoallowforapplication. 2. Selective cutting of only part of a channel, such as the centre, reduces weed cutting effort and provides some protection for the banks by the remaining marginal bands of aquatic vegetation. Uncut plants remaining would be at a physiological disadvantage because of selfshading and through the reduction of waterlevels,which,inturn,wouldreducewaterflowsandthuslimitthesupplyof inorganiccarbonandnutrientsupplies.Converselytheremainingshootsandroots ofthecutcentralplantswouldbeexposedtohigherthannormalvelocitieswhich is also likely to restrict their growth and incidentally reduce sedimentation. Withinchannelwatercapacitywouldalsobeincreasedduringflowandthusthis technique is likely to facilitate the passage of floods. Watson (1986) tested the effectsonhydraulicresistanceonprogressivecuttingshowingthatremovalofa quarter of the stand reduced resistance slightly but that the removal of three quartersofthestandreducedresistancedisproportionatelylower. 3. Pre-emptive cutting .Followingdeterminationofthegrowthcycleofthespecies ofaquaticplantcausingaproblem,alterationstothetimingofweedcuttingduring itsgrowingseasoncanbeattempted.Asdiscussedabove,traditionalweedcutting seekstoremovetheproblemonceithasdeveloped;howeveritisadvantageousin termsofcost,labourandlogistics,topreemptthedevelopingproblembyearly cutting.Thusknowledgeofthebiologyofthespeciesisimportant.Forexample, species of Ranunculus that have traditionally been removed as biomass grows rapidlypriortofloweringtime.Earlycuttingthereforestimulatesplantstoregrow tosatisfy areproductiveneed whereasifcuttingwasundertakenafterflowering thereisfewertendenciestoregrow. ObservationsbyalocalriverengineerinSouthernEnglandwhocommentedthatlight autumn dredging, with minimal disturbance to the stable riverbed, suppressed plant growthformanymonthswaslinkedtotheexplorationofthefouryeareffect,whichis: 1. Thelatesummersuppressionofgrowthasplantbiomassdeclinednaturally, 2. Theconsequentlowbiomassinwinterwhichreducedthepotentialforgrowthin thenextseason,and 3. Theencouragementofplantsadaptedtomaintainingapresenceratherthanthose withcapacityformorerapidregrowth. Together these observations led to trials of a weedcut late in the year to reduce overwinteringbiomassandthus`preempt'growthinthesubsequentseason.Thishas beenshowntobeaneconomicallyadvantageousimprovementtoacceptedweedcutting practices(Westlake&Dawson1986).Whenpreemptivecutting,calledlocally`close autumnweedcutting',wastestedoverthreeyearsfortheWessexWaterAuthorityinthe RiverFrome,itindicatedthatthebiomassinthelowerriverwasonaverage28%lower than expected at normal cutting time. Direct assessment of plant biomass, and measurementsofwaterlevelchangesrelatedtotheresistancetoflowofferedbyplants, confirmed the effect (Westlake & Dawson 1986, 1988). Detailed study of the

R&D ROUGHNESSREVIEW 81 relationship of spring plant biomass to water depth, in autumncut and autumnuncut sections, indicates that the benefit of autumn cutting may be limited to water deeper than0.7m,ortoonlythelowerhalfofthe50kmriver(Westlake&Dawson1986). Although the experiment required spring cutting to proceed as previously, it became progressivelylessnecessary,andalmostceasedinthethirdyear. Immediate benefits of preemptive control included reductions in the weed removed, andconsequentialreductionsinthelogisticproblemsoftimeandlabourneededandin theneedforafurthersummercut.Adecreaseinspringfloodinggaveanagricultural benefit.Ecologicalbenefitsaccruedthroughthereductionintheneedforaspringcut, the encouragement of less vigorously growing plants and the `fouryear effect', an increaseinthenumbersoflargeplants,andachangeintheirform.Suchchangesinthe structureofindividualplantstandsrequireinvestigation.Ithasbeenobservedthatfew, largerplantshavelesshydraulicresistancethanmany,smallones(Dawson&Robinson 1984; Westlake & Dawson 1988). Also their removal and capture on weed removal boomsmaywellbemoreeffective(whencuttingcontrolisnecessary).Thesebenefits were only demonstrated for one dominant plant, a species of Ranunculus and other species may act in a different manner or indeed be selected for, by this change in management. 7.5 Indirect control 7.5.1 Direct versus Indirect macrophyte control Direct management i.e. plant removal, is effective but the results are normally only shortterm.Itisthereforebestundertakenonalocalbasis.Indirectmanagementaimsto producelonglastingeffectsandstabilitythroughmodifyingtheenvironmentalgrowth controlling factors, but is slow. Eradication of plants is not practical or ecologically desirable.Achievingthisinnaturalwaterbodieswouldrequireextrememeasureswith farreachingconsequences. Direct techniques if used, should be undertaken early in the growing season or collectively, the former requires early identification or prediction of macrophyte biomass. Such preemptive control delays the development of plants reducing the humanormachineeffortneededfortheircuttingandremovalortheameliorationofthe effectsofplantdecompositioninthesystem.Thetimingofcontroloperationscanalso bemoreflexibleandthisisecologicallybeneficialjustaslocalorselectivecontrole.g. forfishingareasorboatpassages,incontrasttotheextensiveclearanceoflargeareas. 7.5.2 Alternatives to the traditional techniques of river plant management Shadingbybanksidevegetation. Observationsoftheplantbiomassofopenandshadedsectionsofstreams,combined withthestudyshowingtheequalimportanceofterrestrialandaquaticorganicmaterial tothestreamsystem,ledtotheproposalthatsomeshadecouldbeausefulalternativeto weedcutting(Dawson1979a&b).Fieldexperimentsdemonstratedthatthebiomasses ofthreedominantandproblemspeciesofmacrophyteweredirectlyproportionaltothe light reaching the water surface in both artificially and naturally shaded sections of stream(Dawson&KernHansen1979;Dawson1981a).Theseresultswererefinedand led to the development of a proposal for management by `halfshade', with recommendations for the size of vegetation for streams and rivers of differing size (Dawson&Haslam1983).

R&D ROUGHNESSREVIEW 82

Thethemeofhalfshadehasbeendevelopedbecausemarginalvegetationalongariver bankdoesprovideshadefromsunlight,andthereforeprovidesaneconomicalwayof controllingtheexcessivegrowthofwaterplantsinwatercourses.Howeverexcessive shadeisjustasecologicallyundesirableasexcessiveplantgrowth.Itislikelytolimit fishpopulationsbyreducingcoverandinvertebratefood.Therearehowevernodirect dataonthecorrelationoffishandplants,fortheseinterrelationshipsarecomplex. Furtherexaminationsofthemanagementofrivervegetationbyshadehas: 1. Developedthethemeofthe`riverscape'inwhichtheroleoftreesalongsiderivers is considered to enhance both the aesthetics and economics of lowland river management(Dawson&Haslam1983), 2. Produced data on the transverse distribution of light across rivers under varying degreesofshade,andonthedegreeofshadeunderthemajorcompassorientations of artificial shade. This incorporates the principle of halfshade by riparian vegetation.Thisconceptisthattheheightoftheshadeshouldbeequaltothewidth of the stream when the vegetation is growing on the south bank or otherwise marginalshadeshouldinterruptdirectlightinsummer,and 3. Theproposalthattreesshouldbepartofaplannedcycleofplantingandcropping toavoidtreefalltotheriverandtoprovideeconomicbenefits.

Opaquematerials Oneshorttermsolution,designedparticularlytocontrolcriticalareasofstreams and rivers, during the growth period require the development of shade by marginal vegetation,istheuseoflightweightopaquematerialwhichisbothstrongforeaseof handlingandgaspermeabletopreventgasaccumulation(Dawson&Hallows1983). Trialsusingamediumweightgeotextilematerialsheetingindicatedthatthetimefor optimum control was around 6 weeks for areas of emergent plants with rhizomes. Shorterperiodsgavesomecontrol,butextendedperiodseradicatedplantsandrequired plantstoreinvade.Thebuildupofdetritusonthesurfaceofsubmergedsheetsenhanced theshadingeffectandallowedtheuseoflessopticallydensematerial.Aplannedcycle of movement of sheets of material was most important to the technique and, in fact, madeiteconomicallycompetitivewithothermethods.Thismaterialcanbeappliedtoa varietyofsitesandtwopeoplecanreadilyhandleareasof400m.Thebasicproblemin application is that it does not give instantaneous results (unlike weed cutting), and therefore has userresistance. There is also concern by river engineers that material could be lost downstream, be caught on hatches and lead to flooding. This has not occurredinfiveyearsofstreamtrials. Reductioninlightpenetrationofwater Reducinglightpenetrationcanbeachievedbyincreasinglightscatterfromparticlesin thewater(turbidity)orbyabsorptionbycompoundssuchasdyes.Dyesaddedtostatic waterbodiesearlyinthegrowingseasonhaveprovensuccessful. The major disadvantages include the displeasing visual effect, the fast rate at which somedyesfade,settle,orarediluted,and,thetoxicitytomanorfish(Dawson1981). Suspensionofotherveryfinematerials(e.g.suitablypreparedclays,Bentonite(4 µ))if applied early in the growing season and kept in suspension for several weeks, could usefullydelayplantgrowth.Furtherstudyofsuchtechniquesisnecessarybeforefield

R&D ROUGHNESSREVIEW 83 trialsareundertaken.Thechoiceoffinematerialisimportantbecausesomeinformation availableindicatesthatphosphateabsorptionbyclaysisnotunusual(Lake&MacIntyre 1977).Thismaybeadvantageousinenrichednaturalwatersbutmaybeundesirableloss inirrigationsystems. Thesuspensionofnaturalsediments,forexample,stockinglakeswithhighdensitiesof bottomfeedingCyprinidfish,couldbeassessedforuseindeeperirrigationchannels. InNorthernEuropetheiruseiscontroversialbutdocumentedevidenceislimited.The commoncarp(CyprinuscarpioL.)isnormallyconsideredtodestroyvegetationdirectly by uprooting plants. However, its activity is expected predominantly in shallow marginal areas which are the carp's preferred feeding and spawning habitat (Mathis, 1965,Crivelli1983,Fletcheretal.1985). Intermittentartificialsuspensionofsedimentswillincreaseturbiditybutmayalsoraise nutrientloadandincreasealgalgrowth.Despitetheusefulnessofartificialsuspension in fishponds (Huet 1972), it must be considered with caution in irrigation channels becauseofthepotentialforundesirablesideeffects. Largeirrigationchannelscouldberedesignedtomaintainornaturally resuspendfine particlesandtoextendperiodsofsuspensionoffineincomingparticles.Shortsections of channel could be enlarged (deepened) or delta regions (widened) constructed and vegetatedtoenhancethesettlementofcoarsematerialbutnotthefinematerialwhich wouldpassdownstreamtoinhibitaquaticplant photosynthesis.Obstaclesonlyinthe directionoftheprevailingwind(e.g.trees)couldberemovedtoincreasewindfetchor turbulence (Thomas & Compston 1980). In Northern Europe some alternative techniquessimultaneouslyincreaselightpenetrationandtransparencytoencouragethe development of macrophyte communities rather than algaldominated ones and are reviewedinDawson(1986). Inconclusion,aquaticmacrophyteswillnormallybepresentinnaturalwatersiflight, nutrients and suitable sites are available. Their growth depends primarily upon the intensity and duration of sunlight which they receive but also upon the physical conditions of the water, its movement, temperature, clarity and chemistry (and the absenceofgrowthinhibitingcompounds).However,astheygrowinresponsetotheir environment,theirgrowthproduceschangestothisenvironment,creatingtheirtypical habitat. Thus as growth proceeds during the season, and stands of plants develop, progressivechangesintheenvironmentoccurwhichcanadverselyrestrictfurtherplant growth, e.g. reductions in water velocity with increases in depth or decreasing water transfercapacity.Theirgrowthdependsuponthedailybalancebetweenphotosynthesis andrespirationwhichtheycanachievewithintheseenvironmentalconditionsandleads totheseasonalcyclesofgrowth,maximumbiomassandeventualdecline.Suddenor catastrophicchangesintheplants'environment,e.g.floodor `weedcutting',canalso affect plant populations, either altering them when the changes are intermittent or perpetuatingthemwhenthechangesareregular. When favourable growth conditions prevail, dense macrophyte growths may occur especiallyinshallowerwater(<2m),andreductioninbiomassorweedmanagement may be undertaken. Such direct removal of excess plant is rapid and effective but shortterm,astheeffectsofcuttingcanstimulatesynchronisedregrowthaccentuating theoriginalproblemforfutureyears.

R&D ROUGHNESSREVIEW 84

In the current economic climate improvements to plant control techniques are more likely to be considered, such as reduced, retimed or selective removal, or the introductionofindirecttechniqueswhichmoderatebiomassthroughgrowthcontrolling factors.Controlbylightisaprimeexampleofsuchtechniques.Itisdirectineffect, with a good practical chance of success, as opposed to other factors, such as water velocity or nutrient limitation, which may have disproportionate or low limiting thresholds. Thus it can be seen from the examples of natural river channels, modification of the environmentrequiredbythevegetation(e.g.suchasshading,elevatedwatervelocities, increased water depths, modification weed cutting regimes, or the introduction of environmentallyawaredredgingpractices)canreducemaintenancebudgetswhenused incombinationwithexistingtechniques.Environmentalpoliciesandpracticescanbe usedtominimisemaintenanceandtoimprovethechannelbehaviourandthebenefitsof theirapplicationhasbeendiscussed.However,researchisstillnecessarytoresolvethe potential conflicts of interest between the requirements of transferring water inexpensivelyinconventionallyengineeredchannels,andthefutureneedstodesignand constructselfsustainingchannelswithminimalmaintenancerequirements.

7.6 Techniques used CurrentbestpracticeguidelinesforphysicalandchemicalcontrolaregiveninAquatic weed Control Operations and concentrates on basic procedures for algae, floating leavedsubmergedandemergentweeds(byCAPMforEnvironmentAgency1998). WaterwayBankProtection:Aguidetoerosionassessmentandmanagementdetailsand illustratesbankerosionanditcauses,assessment,remedialworkandengineeringand alternative strategies, and appraisal with methodology and evaluation (Cranfield University for Environment Agency 1999). A design manual by Escarameia (1998) covers river and channel revetments. Environmental options with specifications for flooddefencemaintenanceworksareprofuselyillustratedinannotateddiagramswhich cover weed cutting, dredging, moving, bushing and some enhancements operations (EnvironmentAgency1997).Therearemanyotherproenvironmentoptionsincluding Lachat(1994) Control of invasive plants is becoming as area of concern and a few species are especiallyinvasiveandalterthegeneralriparianenvironmentinwaywhicharenotyet notfullyexploredorunderstood.Thesespeciesinclude: • Japanese knot weed which continues to make expansive stands of dense bushy vegetationwhichshadesoutgroundcoverplantswhichholdtogetherbanksidesoils reducingerosion • Giant Hogweed which similarly produces large densely covered areas and has a phyotoxicsapcausinglargephotosensativeskinblisters. StandsofRhodendronandAsianlaurelalsocontinuetoexpand.Comparisonsmade withnativesshowthatinafewrecentdecadesthesefewinvasiveplantshaveexpanded to occupy lengths of river bank similar to native plants such as bramble (Dawson & Holland 1999). Other nonnative species are occasionally found but apart from Australian Swamp Stonecrop (crassula helmsii) found increasingly on and in slow

R&D ROUGHNESSREVIEW 85 flowingstreamandHydrocotyleranunculoidesaveryvigorousplantofslowflowing drainageditches,nonearesofarofimminentconcern.Formerinvasiveplantsarenow almostconsideredpartofthenormalsituationinslowerriverse.g.CanadianandNuttall Pondweed.

R&D ROUGHNESSREVIEW 86

8. UNCERTAINTY Thecontextofuncertaintyforriversinthenationalcontexthasbeenbroadlydiscussed in‘Learningtolivewithrivers’(ICE2001)inwhichmanyaspectsoffloodsandtheir managementareintroduced.Thesevaryfromfloodestimation,inahistoricandcurrent context,riskassessmentanddefinitionandbestpractice,throughstrategicmanagement andcatchmentmodellingtosolutionsbyplanning,engineering,costandsustainability, improvementsinforecasting,useofnaturalprocessesandtheinternationalperspective. Specific areas of uncertainty within the project range from the general aspects of hydraulic applications such as that of measurement of water volume and movement, physicaldimensionofchannels,tothespecificsofvegetationbiology,growthvariation inresponsetoenvironmentaldrivingfactorstothedetailsimplyofpositioninchannels. A paper on uncertainty estimation in the Conveyance Estimation System, which includesissuesofroughness,iscurrentlybeingdevelopedandwillbeincludedinthe finalprojectreport.

R&D ROUGHNESSREVIEW 87

9. BIBLIOGRAPHY

AbbeTB&MontgomeryDR(1996).Largewoodydebrisjams,channel hydraulicsandhabitatformationinlargerivers.RegulatedRivers12,201221. Abbott,M.B.(1991).Hydroinformatics:InformationTechnologyandAquatic Environment.AveburyTechnicalPress.145pp. Abbott,M.B.,andA.W.Minns(1998).ComputationalHydraulics:Elementsofthe TheoryofFreeSurfaceFlows.LongmanScientificandTechnicalPress.326 pp. AbdelsalemM.W.,KhattabA.F.,KhalifaA.A.M.&BakryM.F.(1991).Effectof submergedweedsonthehydraulicpropertiesofearthenEgyptiancanals. Resumesof7thWorldCongressonWaterresourcesBWaterResources Managent,1318May1991Rabat,Marocco,9pp. Acement,G.R.&Schneider,V.R.(1984).GuideforselectingManning'sroughness coefficientsfornaturalchannelsandfloodplains.UsDepartmentof TransportationFederalHighwayAdministration,ReportFWHATS84204, 162. Acement,G.R.&Schneider,V.R.(1987)Roughnesscoefficientsfordensely vegetatedfloodplains.USGeologicalSurveyWaterResourcesInvestigation 834247,68pp. AcementGJ&SchneiderVR,(1989). Guide for selecting Manning’s roughness coefficient fornaturalchannelsandfloodplains.Waterresourcespaper2339, USGeologicalsurvey,WashingtonDC.(updated2002) Ackers,P.andCharlton,F.G.(1970)Theslopeandresistanceofsmallmeandering channels.ProceedingsoftheInstitutionofCivilEngineers,supplement15,paper 7362S. Ackers,P.,White,W.R.,Perkins,J.A.andHarrison,A.J.(1978,1984)Weirsand flumesforflowmeasurement.J.Wiley&Sons,Winchester,327pp. Ackers,P.(1991).HydraulicDesignofStraightCompoundChannels.H.R. Wallingford,UK,ReportSR281 AhmadM(1951)Spacingandprojectionofspursforbankprotection.Civil EngineeringandPublicWorksReview,March/April,p137. AkanAO&HagerWH.(2001).Designaidforgrasslinedchannels.Journalof HydraulicEngineering127,p236237. Albertson,M.L.andSimons,D.B.(1959)Fluidmechanics.In:Handbookof appliedhydrology(ed.V.T.Chow),7.17.48.McGrawHillBookCo.New York. AldridgeandGarrett(1973)Roughnesscoefficientsforstreamchannelsin Arizona:U.S.GeologicalSurveyOpenFileReport,87p. Allain,C.(2001).Relationsbetweenvegetation,flowandsedimentinriverbeds . EGSXXVIGeneralAssembly,SessionHSA2.02Hydrologyofriversand :Vegetationandchannelfeaturecontrolsonwaterflowandsediment andcontaminanttransportinrivers.Nice,France,March2001. Allen,C.M.andTaylor,E.A.(1923)Thesaltvelocitymethodofwater measurement.TransactionsoftheAmericanSocietyofMechanicalEngineers 45,285341. Al'tshul',AD&NguenTAY.(1973).Hydraulicdragduringinfiltrationofwaterin asoilvegetativelayer(gidravlicheskiyesoprotivleniyaprifil'tratsiivodyv rastitel'nomsloyepochvy)MeteorologiyaiGidrologiya,12,7784,1973.[In Russian]

R&D ROUGHNESSREVIEW 88

AllenJ.A.(1992).Nilebasinwaterplanning.TheNile:policies,politicsandlegal issues,P.P.Howell&J.A.Allen,eds,CambridgeUniversityPress. Allen,J.andShahwan,A.(1954)Theresistancetoflowalongatortuousstretchofthe RiverIrwell(Lancashire)aninvestigationwiththeaidofscalemodel experiments.JournaloftheInstitutionofCivilEngineersPartIII,3(1),p.144. Ambühl,H.(1959)DieBedeutungderStrömungalsökologicherFactor.Schweize ZhurnalHydrobiologie21,133264. Anderson,S.M.andCharters,A.C.(1982)Afluiddynamicsstudyofseawaterflow throughGelidiumnudifrons.LimnologyandOceanography27,399412. Andreasen,JO.(1979)Grödenshydrauliskevirkning.LaboratoryforPhysical Geography,GeologicalInstitute,ÅrhusUniversity,ReportNo.3,64pp.[In Danish] Anselm,R.(1976)AnalysederAusbauverfahren,SchädenundUnterhaltungskosten vonGewassern.MitteilungendesInstitutesfurWasserwirtschaft,Hydrologie undlandwirtschaftlichenWasserbauderTechnischeUniversitat,Hannover36, 11189.[inGerman] Anon(1992)Technicalsession6Environmentallysoundtechnologies. ProceedingsofanAfricanRegionalSymposiumonTechniquesfor EnvironmentallySoundWaterResourcesDevelopment,Alexandria,Egypt 1719February1991held2830September1991VolumeII(ed.R. Wooldridge),135154.HydraulicsResearchLtd,Wallingford,England;Water ResearchCentre,Cairo,Egypt;RegionalCoordinationUnit,AfricanWater ResourcesNetwork,WRCandODA,London.PentechPress,London.8889. ArberA(1920).Waterplants.CUP,Cambridge,England,436pp. Arrignon,J.(1976)Aménagementécologiqueetpiscicoledeseaudouces.Gauthier Villars,Paris,320pp.[inFrench] ASCE(1963)Frictionalfactorsinopenchannels.JournaloftheHydraulicsDivision, ProceedingsoftheAmericanSocietyofCivilEngineers89,97143.(Discussion 1963,89(July),283;1963,89(Sept),169;1964,90(July),223. BabovicVandKeijzerM,(1999).Computersupportedknowledgediscoverya casestudyinflowresistanceinducedbyvegetation.XXVIIIAHRBiennial Congress,Graz. Bailey,R.Y.(1939)Kudzuforerosioncontrolinthesoutheast.USDepartmentof Agriculture,FarmersBulletinNo.1840,32pp. Baitsch,B.andRadermacher,H.(1972)HydraulischeBemessungvonverkrauteten GräbengeringerDimensionenimlandwirtschaftlichenBereich. Gewässerunterhaltung4,176.[inGerman] Baker,J.H.andOrr,D.R.(1986)Thedistributionofepiphyticbacteriaonfreshwater plants.JournalofEcology74,155165. BakryMF(1992).Effectofsubmergedweedsonthedesign:Procedureofearthen Egyptiancanals.IrrigationandDrainagesystems6,179188,1992. BakryMF,GatesTKandKhattabAF(1992).Fieldmeasuredhydraulicresistance characterisitcsinvegetationinfestedcanals.JournalofIrrigationand DrainageEngineering.118,p256274. Barnes,H.H.(1967).Roughnesscharacteristicsofnaturalchannels.USGeological Survey,WaterSupplyPaperNo.1849,214pp.Washington,D.C. Bartley,T.R.andGangstad,E.O.(1974)Environmentalaspectsofaquaticplant control.JournaloftheIrrigationandDrainageDivision,Proceedingsofthe AmericanSocietyofCivilEngineers100,231244.(Discussion:1975,101, 230234;1977,103,281.)

R&D ROUGHNESSREVIEW 89

Bates,K.(1992).FishwayDesignGuidelinesforPacificSalmon.Washington DepartmentofFish&Wildlife.Olympia,Washington. BatesPD,AndersonMG,HervouetJM&HawkesJC(1997).Investigatingthe behaviouroftwodimensionalfiniteelementmodelsofcompoundchannel flow.EarthSurfaceProcesses&Landforms22,317. BarratSegretainMH(2001).Biomassallocationinthreemacrophytespeciesin relationtothedisturbanceleveloftheirhabitat.FreshwaterBiology46,935 945. BarrosAP&ColelloJD(2001).Surfaceroughnessforshallowoverlandflowon crushedstonesurfaces.JournalofHydraulicEngineering127,3852. BathurstJC(1978)Flowresistanceoflargescaleroughness,Journalofthe HydraulicsDivision,ASCE,104,HY12,15871603. BathurstJC(1985).Flowresistanceestimationinmountainrivers.Journalofthe HydraulicsDivision,ASCE,114,HY4,625643. BathurstJC(1996).Fieldmeasurementofboulderflowdrag.Journalofthe HydraulicsDivision,ASCE,122,167169. Bathurst,J.C.,Li,RM.andSimons,D.B.(1981)Resistanceequationforlargescale roughness.JournaloftheHydraulicsDivision,ProceedingsoftheAmerican SocietyofCivilEngineers107,15931613. Bathurst,JC(1997).EnvironmentalRiverFlowHydraulics,inAppliedFluvial GeomorphologyEd:CRThorne,Wiley,6993. BeschtaRL&PlattsWS(1986).Morphologicalfeaturesofsmallstreams: significanceandfunction.WaterResourcesBulletin22,369379. Beaumont,P.(1975)Hydrology.In:Riverecology(ed.B.A.Whitton),Studiesin Ecology2,138.BlackwellScientificPublications,Oxford. Bedient,P.B.,andW.C.Huber(1992).HydrologyandFloodplainAnalysis. AddisonWesleyPublishingCo.692pp. Begeman,W.(1980)LebendverbauanGewässern.ForschungenInstitutet Senckenberg41,247257. BenovitskyEL,ModzalevskyAI,SherenkovIA.(1990).Bankvegetationeffecton riverchanneldischargecapacity.InternationalconferenceonRiverFlood Hydraulics,Wallingford. BenovitskyEL.(1992).Hydraulicfrictionfactorandboundarybetweenstandof tallaquaticvegetationandopenchannels.WaterResources18,258262. Benson,M.A.andDalrymple,T.(1967)Generalfieldandofficeproceduresfor indirectdischargemeasurements.USGeologicalSurveyTechniquesofWater ResourcesInvestigation,Book3,ChapterA1,30pp. BeshirM.E.&KochW.(Eds)(1979).WeedresearchinSudanProceedingsofa Symposium.BerichteausdemFachgebeitHerbologiederUniversitat Hohenheim18,200pp. BhargavaA.N.andSinghH(1981)Prototypebehaviouroflongspurs,Irrigation andPower,38,367372. BiggsB.J.F.(1996).Hydraulichabitatofplantsinstreams.RegulatedRivers: research&management12,131144. Bilby,R.(1977)Effectsofaspateonthemacrophytevegetationofastreampool. Hydrobiologia56,109112. BilbyR.E.(1984).Removalofwoodydebrismayaffectstreamchannelstability. JournalofForestry82,609613. BishopJ.E.(1973).LimnologyofasmallMalayanRiverSungaiGombak. MonographiaeBiologicae22,DrWJunk,TheHague,385pp.

R&D ROUGHNESSREVIEW 90

Bittmann,E.(1967)UferbewuchsandUferform.SymposiumonRiver Morphology.Bern1967,InternationalAssociationofScientificHydrology Publication75,297308. Blackburn,R.D.,Sutton,D.L.andTaylor,T.(1971)Biologicalcontrolofaquatic weeds.JournaloftheIrrigationandDrainageDivision,Proceedingsofthe AmericanSocietyofCivilEngineers97,421432. BlanchaertK&GrafWF.(2001).MeanHydraulicflowandturbulenceinopen channelbend.JournalofHydraulicEngineering127,835847. Blench,T.(1969)Mobilebedfluviology.(2nd.Edition).TheUniversityofAlberta Press,Edmonton,168pp. Boesch,D,F,&TurnerR.E.(1984).Dependencyoffishspeciesonsaltmarshes: Theroleoffoodandrefuge.Estuaries7(4A).460468. Bogart,D.G.(1949)Theeffectofaquaticweedsonflowinevergladescanals. ProceedingsoftheSoilScienceSocietyofFlorida9,3552. BoltonP.&DawsonF.H.(1992)Theuseofachecklistinassessingpossible environmentalimpactsinplanningwatercourseimprovements.Proceedingsof theInternationalSymposiumonEffectsofWatercourseImprovements: Assessment,Methodology,ManagementAssistance,1012September1991, Wepion,Namur,Belgium.Departmentfornonnavigablewatercoursesofthe WalloonRegion.VolumeI,2942. Bon,J.(1976)[Maintenanceclasses:arrangementclassificationofdykesanddrains. [inDutch.] BonettoA.A.(1975).LandscapesofRiverBasins(SouthAmerica).Ecological Studies10.Couplingoflandandwatersystems.Ed.A.D.Hasler.Springer, NewYork.173197. Bonham,A.J.(1974)Stormdrainagesystemdesignandnewcityplanning.Civil EngineeringTransactionsoftheInstitutionofEngineers,AustraliaCE16,6770. Bonham,A.J.(1975)Theinfluenceofalternativedrainagesystemson flooddischarges.InstitutionofEngineers,Australia,HydrologySymposium, Armidale1975,188192. Bonham,A.J.(1978)Aroleforfloodretardingvegetationinurbanstormwater managementandcreekpreservation.InstitutionofEngineers,Australia, HydrologySymposium,Canberra1978,174175. Bonham,A.J.(1980)Bankprotectionusingemergentplantsagainstboatwashin riversandcanals.HydraulicsResearchStation,Wallingford,England,Report No.IT206,34pp. Booker,D.J.,Sear,D.A.andPayne,A.J.(2001).Modellingthreedimensionalflow structuresandpatternsofboundaryshearstressinanaturalpoolriffle sequence.EarthSurfaceProcessesandLandforms 26,553576. Botma,HandStruyk,A.J.(1970)Errorsinmeasurementsofflowbyvelocityarea methods.InternationalAssociationofScientificHydrology,Symposium, Koblenz1970,2,771784. Boulet,G;Kalma,JD;Braud,I;Vauclin,M.(1999).Anassessmentofeffective landsurfaceparameterisationinregionalscalewaterbalancestudies,Journal ofHydrology(Amsterdam)217,225238. Bowie,A.J.(1982).Investigationsofvegetationforstabilisingerodingstreamsbanks. TransactionsoftheSoilandWaterDivisionoftheAmericanSocietyof AgriculturalEngineers25,112. Brabben,T.E.(1984).Weedcontrolandcanalmaintenance:ReviewofMansouria CanalStudy(October1983toMay1984).HydraulicsResearchLtd,

R&D ROUGHNESSREVIEW 91

Wallingford,England,TechnicalNoteOD/TN4,14pp. BrabbenT.E.(1986).MonitoringtheeffectsifaquaticweedsinEgyptianIrrigation Systems.Proceedingsofthe7th.SymposiumonAquaticWeeds,European WeedResearchSociety/AssociationofAppliedBiologists,Loughborough 1986,p151 BrabbenT.E.&BoltonP.(1988).Aquaticweedproblemsinirrigationsystems. Proceedingsofthe16thAnnualConferenceoftheWeedScienceSocietyof Nigeria,27Nov1Dec.1988IleIfe,Nigeria,24pp. BrabbenT.E.(1989)ReportonavisittoEgypt,511August1889.ReportODV397, HydraulicsResearchLtd,Wallingford.9pp+Appendices. BritishStandardsInstitution.Methodsformeasurementofliquidflowinopen channels.(BS3680). (1993)Part3Q.Streamflowmeasurement.Codeofpracticeforsafepractice instreamgauging (1983)Part1.Vocabularyandsymbols. (1974)Part2ADilutionmethods.Constantrateinjection.(1983)Part2C Dilutionmethods.Radioisotopetechniques.(1980)Part3AVelocityarea methods. (1980)Part3DMovingboatmethod. (1981)Part4AWeirsandflumes.ThinplateweirsandVenturiflumes. (1969)Part4BWeirsandflumes.Longbaseweirs.(1981)Part4CWeirsand flumes.Flumes. (1980)Part4EWeirsandflumes.Rectangularbroadcrestedweirs.(1981)Part 4GWeirsandflumes.FlatVweirs. (1990).BS3680:Part4F:ISO4374:MeasurementifLiquidFlowinOpen Channels,Part4:Weirsandflumes.Part4F:Roundnosehorizontal broadcrestedweirs. (1970)Part5Slopeareamethod. (1973)Part6Tidalchannels.[underrevision] (1971)Part7Themeasurementofliquidlevel(stage).(1973)Part8ACurrent meterscurrentmetersincorporatingarotatingelement. (1973)Part8BCurrentmeterssuspensionequipment.(1980)Part8CCurrent meterscurrentmetercalibration. (1971)Part9AWaterlevelinstrumentsspecificationfortheinstillationand performanceofpressureactuatedliquidlevelmeasuringequipment. (1980)Part10BMethodsofmeasuringsedimentload. (1980)Part10CBedmaterialsampling. BritishStandardsInstitution(1980).BS5844.Calculationofuncertaintyofa measurementofflow. BrodskyK.A.(1980).MountaintorrentoftheTienShan.Monographiae Biologicae39,DrW.Junk,TheHague.311pp. Brooker,M.P.,Morris,D.L.andWilson,C.J.(1978).Plantflowrelationshipsinthe R.Wyecatchment.ProceedingsoftheEuropeanWeedResearchSociety,5th SymposiumonAquaticWeeds,Amsterdam1978,6370. Brookes,A.(1981).ChannelizationinEnglandandWales:DiscussionPaperNo.11. DepartmentofGeography,UniversityofSouthampton,49pp. Brookes,A.(1983).RiverchannelizationinEnglandandWales.Downstream consequencesforthechannelmorphologyandaquaticvegetation,458pp. UniversityofSouthampton.Ph.DThesis. Brookes,A.,Gregory,K.J.andDawson,F.H.(1983)Anassessmentofriver

R&D ROUGHNESSREVIEW 92

channelizationinEnglandandWales.TheScienceoftheTotalEnvironment27, 97111. Brookes,A.(1985)Riverchannelization:Traditionalengineeringmethods,physical effectsandalternativepractices.ProgressinPhysicalGeography9,4473. BrookesA(1987).Recoveryandadjustmentofaquaticvegetationwithin channelisedworksinEnglandandWales.JournalofEnvironmental Management24,365382 BrookesA(1988).ChannelizedRivers.Perspectivesforenvironmental management.JohnWileyandSonsLtd. Brookes,A.,Shields,F.D.eds.(1996).RiverChannelRestoration:Guiding PrinciplesforSustainableProjects.JohnWileyandSons,458pp. Brooks,N.H.(1975).MechanicsofStreamwithMovableBedsinFineSand. Procs.ASCE,September,No.668. Brownlie,W.R.(1981).PredictionofFlowDepthandSedimentDischargeinOpen Channels.ReportKHR43A,CaliforniaInstituteofTechnology. BrownlieW.R.(1983).Flowdepthinsandbedchannels.ASCEJournalof HydraulicEngineering,Vol109,pp959990 Bruk,S.andOef,Z.(1975).Determinationofroughnesscoefficientsforvery irregularriverswithlargefloodplains.Proceedingsofthe12thCongressofthe InternationalAssociationforHydraulicResearch,PaperA.12,9599. BurkeRW.,StolzenbachKD.(1983).Freesurfaceflowthroughsaltmarshgrass. MITSeaGrantReportMITSG8316,Cambridge,MA.USA. Burman,R.D.andBlack,R.D.(1970).Theinferenceofintakeandhydraulic roughnessparametersfromplotrunoffusingkinematicwavetheory. TransactionsoftheAmericanSocietyofAgriculturalEngineers13,479481. ButcherR.W.(1933).StudiesontheEcologyofRivers.I.onthedistributionof macrophytevegetationintheriversofBritain.JournalofEcology21,5891. Bussmann,P.(1978).EineweitereMöglichkeitderBerücksichtigungdes VerkrautungseinflussesaufdenAbfluss.DeutscheGewässerkundliche Mitteilungen22,5761. Butcher,R.W.(1933).Studiesontheecologyofrivers.1.Onthedistributionof macrophytevegetationintheriversofBritain.JournalofEcology21,5891. Butler,D.,Rock,S.P.andWest,J.R.(1978).Frictioncoefficientvariationwithflow inanurbanstream.JournaloftheInstitutionofWaterEngineersandScientists 32,227232. Butterworth,B.(1981).Biofilmgrowthandhydraulicperformance.Journalofthe HydraulicsDivision,ProceedingsoftheAmericanSocietyofCivilEngineers 107,629649. CapblancqJ.andDautaA.(1978).Phytoplanktonetproductionprimairedela riviereLot.AnnalsdeLimnologie14,85112. Carling,PA;Glaister,MS;Flintham,TP(1997).Theerodibilityofuplandsoilsand thedesignofpreafforestationdrainagenetworksintheUnitedKingdom HydrologicalProcesses11,15,19631980. Carling,P.A.(1992).Thenatureofthefluidboundarylayerandtheselectionof theparametersforbenthicecology.FreshwaterBiology28:273284 Carstens,T.(1968)Waveforcesonboundariesandsubmergedbodies.Sarsia34, 3760.(SecondEuropeanSymposiumonMarineBiology.) Carter,R.W.,Einstein,H.A.,Hinds,J.,Powell,R.W.andSilberman,E.(1963) Frictionalfactorsinopenchannels.JournaloftheHydraulicsDivision, ProceedingsoftheAmericanSocietyofCivilEngineers89,97143.(Discussion:

R&D ROUGHNESSREVIEW 93

1963,89(July),283;1963,89(Sept.),169;1964,90(July),223. CaseyH.andWestlakeD.F.(1974).Growthandnutrientrelationshipsof macrophytesinSydlingWater,asmallunpollutedchalkstream.Proc.Eur. WeedRes.Counc.4thint.Symp.AquaticWeeds1974,6976. Caspar,J.(1983)Circulationinreedovergrownlakes.Proceedingsofthe20th CongressoftheInternationalAssociationforHydraulicResearch,MoscowV, 536542.VINITI,Moscow. Chang,HH,Graf,WL,Grissinger,EH,Guy,HP,Osterkamp,WR(1982) RelationshipsBetweenMorphologyofSmallStreamsandSedimentYield. JournaloftheHydraulicsDivision,ProceedingsoftheAmericanSocietyof CivilEngineers108,13281365. Chang,H.H.(1985)Rivermorphologyandthresholds.JournalofHydraulic Engineering111,503519. Chang,H.H.(1988).Fluvialprocessesinriverengineering.WileyInterscience, 432pp. Chanson,H.(1999).TheHydraulicsofOpenChannelFlows:AnIntroduction. ButterworthHeinemann,Oxford,UK,512pp Charlton,F.G.(1977).Anappraisalofavailabledataongravelrivers.HRReportINT 181,HydraulicsResearchStation,Wallingford,UK,82pp Charlton,F.G.(1978).Measuringflowinopenchannels:areviewofmethods. ConstructionIndustryResearchandInformationAssociation,London,Report No.75,160pp. Chaudry,M.H.(1993).OpenChannelFlow.PrenticeHall,NewJersey,483pp Chen,CL(1975).Urbanstormrunoffinlethydrographstudy.2.Laboratorystudies oftheresistancecoefficientforsheetflowovernaturalturfsurfaces.UtahWater ResearchLaboratory,CollegeofEngineering,UtahStateUniversity,Logan, Utah.FinalReportNo.PRWA1062,56pp.or NTISasPB263986.OAND alsosametitleReportFHWARD76117,march1976.104pp. Chen,CL(1976).Flowresistanceinbroadshallowgrassedchannels.Journalofthe HydraulicsDivision,ProceedingsoftheAmericanSocietyofCivilEngineers 102,307322.(Discussion:1977,103,9091;1977,103,13561357) Chen,YH.,Cotton,GK(1988).DesignofRoadsideChannelswithFlexible Linings.HydraulicEngineeringCircularNo.15,ReportNo.FHWAIP877, April1988.112pp,[NTISPB89122584] ChezyA,(1768).In:OntheoriginoftheChezyformulabyCHerschel.Journal AssociationofEngineeringSocieties,18363368.(Discussion:1897,368 369.) Choi,SU.,KangH.(2001).ReynoldsStressModelingofVegetatedOpenChannel Flows.XXIXIAHRCongressConferenceProceedings.Beijing,China. Chow,VT(Editor)(1959,1984)Handbookofappliedhydrology.McGrawHillBook Co.NewYork,680pp. Chow,VenTe(1981).Hydraulicexponents.JournaloftheHydraulicsDivision, ProceedingsoftheAmericanSocietyofCivilEngineers107,14891499. ChowVT(1981).OpenChannelHydraulics.McGrawHillLimited,London.680 pp.[Editions1959,1969] ChurchM(1972).BaffinIslandSandurs;astudyofArcticFluvialProcesses. GeologicalSurveyofCanada,Bulletin216,1972. Church,M.A.(1974).Electrochemicalandfluorometrictracertechniquesfor streamflowmeasurements.BritishGeomorphologicalResearchGroup,Technical BulletinNo.12,73pp.

R&D ROUGHNESSREVIEW 94

CoffeyB.T.andMcNabbC.D.(1974).EurasianwatermilfoilinMichigan.The MichiganBotanist13,159165. Colebrook,C.FandWhite,C.M.1937.Experimentswithfluidfrictioninroughened pipes,ProceedingsoftheRoyalSocietyA,Vol161,p367379. Colebrook,C.F.1939.Turbulentflowinpipeswithparticularreferencetothe transitionregionbetweenthesmoothandroughpipelaws,Journalofthe InstitutionofCivilEngineers,Vol11,p133156. Cole,J.A.(1969).Dilutiongaugingbyinorganictracers,notablytheplateaumethod. In:InstitutionofWaterEngineers,SymposiumonRiverFlowMeasurement, Loughborough1969,111154. Conboy,D.A.andGlime,J.M.(1971).EffectsofdriftabrasivesonFontinalisnovae angliaeSull.Castanea36,111114. CookC.D.K.(1990).Aquaticplantbook.SPBAcademicPublishing,TheHague, TheNetherlands228pp. Cook,H.L.(1938)SpartanburgOutdoorHydraulicLaboratory.JournaloftheCivil EngineeringDivision,ProceedingsoftheAmericanSocietyofCivilEngineers8, 653655. Cook,H.L.andCambell,F.B.(1939).Characteristicsofsomemeadowstrip vegetations.AgriculturalEngineering20,345348. Cornish,B.A.,Yong,K.C.andStone,D.M.(1967).Hydrauliccharacteristicsoflow costsurfacesforfarmdambywashspillways.UniversityofNewSouthWales, WaterResearchLaboratory,ReportNo.93. Cowan,W.L.(1956).Estimatinghydraulicroughnesscoefficients.Agricultural Engineering37,473475. Cox,M.B.(1942).Testsonvegetatedwaterways.OklahomaAgriculturaland MechanicalCollege,AgriculturalExperimentalStation,Stillwater,Oklahoma, TechnicalBulletinNo.T15,23pp. Cox,M.B.andPalmer,V.J.(1948).Resultsoftestsonvegetatedwaterwaysand methodoffieldapplication.OklahomaAgriculturalExperimentalStation, Stillwater,Oklahoma,MiscellaneousPublicationNo.MP12,43pp. Cox,R.G.(1973).Effectivehydraulicroughnessforchannelshavingbedroughness differentfrombankroughness:astateoftheartreport.USArmyEngineers WaterwaysExperimentalStation,MiscellaneousPaperH732,64pp.(AD757 138) Cunge,J.A.,F.M.Holley,andA.Verwey(1980).PracticalAspectsof ComputationalRiverHydraulics,MonographsandSurveysinWater ResourcesEngineering,Vol.3,Pitman.240pp. Dackombe,R.V.andGardiner,V.(1982)Fluvialprocesses.In:Geomorphological fieldmanual,(eds.V.Gardiner&R.V.Dackombe)127156.GeorgeAllenand Unwin,London. Dane,B.G.(1978).CulvertGuidelines:RecommendsfortheDesign&Installation ofCulvertsinBritishColumbiatoAvoidConflictwithAnadromousFish. DepartmentofFisheriesandOceans.Fisheries&MarineServiceTechnical ReportNo.811.Vancouver,BritishColumbia. (Det)DanskeHedeselskab(1976)DataforQHKurver,BilagiViborgAmtskomme afströmningsmalinger1976.ReportofDetDanskeHedeselskabSlagelse, Denmark,53pp.[inDanish.] Darby,SE;Thorne,CR(1992).ImpactofchannelizationontheMimmshallbrook, Hertfordshire,UK.RegulatedRivers:Research&Management,7,193204. Darby,SE,Thorne,CR(1995).Fluvialmaintenanceoperationsinmanagedalluvial

R&D ROUGHNESSREVIEW 95

rivers.AquaticConservation,5,3754. Darby,SE;Thorne,CR(1996).Predictingstagedischargecurvesinchannelswith bankvegetation.JournalofHydraulicEngineering122,583586. Darby,SE;Thorne,CR(1996).Numericalsimulationofwideningandbed deformationofstraightsandbedrivers.I:Modeldevelopment.Journalof HydraulicEngineering,122,184193. Darby,SE,Thorne,CR,&Simon,A,(1996).Numericalsimulationofwidening andbeddeformationofstraightsandbedrivers.In:ModelevaluationJournal ofHydraulicEngineering,122,194202. Darby,SE(1999).EffectofRiparianVegetationonFlowResistanceandFlood Potential.JournalofHydraulicEngineering125,443454. D'Arcy,H.(1857).Surrecherchesexpérimentalesrelativesaumouvementdeseaux danslestuyaux.CompteRendusdesSéancesdeL'AcádemiedesSciences1857, 11091121. Davidian,J.andCahal,D.I.(1963)Distributionofshearinrectangularchannels.US GeologicalService,ProfessionalPaperNo.475C.Washington. DaviesB.R.andWalkerK.F.(1986).TheEcologyofRiverSystems,Editors MonographiaeBiologicae60,Junk,Dordrecht,793pp. Davies,J.T.(1972)Turbulencephenomena.AcademicPress,London,402pp. Dawson,F.H.(1973)TheproductionecologyofRanunculuspenicillatus var.calcareusinrelationtotheorganicinputintoachalkstream,356pp. UniversityofAstoninBirmingham,Ph.DThesis. DawsonF.H.(1976).Theannualproductionoftheaquaticmacrophyte Ranunculus penicillatus var. calcareus (R.W.Butcher)C.D.K.Cook.Aquat.Bot.2,5173. DawsonF.H.,CastellanoE.andLadleM.(1978).Theconceptofspecies successioninrelationtorivervegetationandmanagement.Verhandlung internationalVereinungtheorotischeangewanteLimnologiae20,14511456. DawsonF.H.(1978a).Seasonaleffectsofaquaticplantgrowthontheflowofwaterin asmallstream.ProceedingsoftheEuropeanWeedResearchSociety,5th SymposiumonAquaticWeeds,Amsterdam1978,7178. DawsonFH(1978b).Aquaticplantmanagementinseminaturalstreams:therole ofmarginalvegetation.JournalofEnvironmentalManagement,6,213221. Dawson,F.H.,Castellano,E.andLadle,M.(1978)Theconceptofspeciessuccession inrelationtorivervegetationandmanagement.Verhandlungender internationalenVereiningungfürtheoretischeundangewandteLimnologie20, 14511456. DawsonF.H.(1979)Ranunculuscalcareus anditsroleinlowlandstreams.Annual ReportofFreshwaterBiologicalAssociation,47,6069. DawsonF.H.andKernHansenU.(1979).Theeffectofnaturalandartificialshade onthemacrophytesoflowlandstreamsandtheuseofshadeasamanagement technique.Int.RevuegesamptenHydrobiologieundHydrographie64(4), 437455. DawsonF.H.(1980).Theorigin,compositionanddownstreamtransportofplant materialinasmallchalkstream.FreshwaterBiology10,419435. DawsonF.H.(1980).Thefloweringof Ranunculus penicillatus var. calcareus in theRiverPiddle,Dorset.AquaticBotany9,145157. Dawson,F.H.(1981)Thereductionoflightasatechniqueforthecontrolofaquatic plantsanassessment.AssociationofAppliedBiologists,WeedGroup, ProceedingsofaSymposium,AquaticWeedsandtheirControl,Oxford,1981, 157164.

R&D ROUGHNESSREVIEW 96

Dawson,F.H.,KernHansen,U.andWestlake,D.F.(1981).Waterplantsand temperatureandoxygenregimesofsmalllowlandstreams.In:Studiesonaquatic plants(eds.J.J.Symoens,S.S.HooperandP.Compère),214221.Royal BotanicalSocietyofBelgium,Brussels. DawsonF.H.&RobinsonW.N.(1984).Submergedmacrophytesandthehydraulic roughnessofalowlandchalkstream.Verhandlungenderinternationalen VereinungentheoretischeundangwandteLimnologie22,19441948. DawsonF.H.(1988).Waterflowandthevegetationofrunningwaters.In: HandbookofVegetationSciencesseries,15,VegetationofInlandWaters(ed. J.J.Symoens),283309.Junk,TheHague. DawsonF.H.&CharltonF.G.(1988).Abibliographyonthehydraulicresistance orroughnessofvegetatedwatercourses.FreshwaterBiologicalAssociation OccasionalPublication25,50pp. DawsonF.H.(1989).Ecologyandmanagementofwaterplantsinlowlandstreams. AnnualRep.oftheFreshwaterBiologicalAssociation57,4360. DawsonF.H.&BrabbenT.E.(1991).Conflictsofinterestindesigning environmentallysoundchannels.ProceedingsofanAfricanRegional SymposiumonTechniquesforEnvironmentallySoundWaterResources Development,Alexandria,Egypt1719February1991held2830September 1991(ed.R.Wooldridge),135154.HydraulicsResearchLtd,WRC,Cairo, AfricanWaterResourcesNetwork,WRCandODA,London. DawsonF.H.,ClintonE.M.F.&LadleM.(1991).Invertebratesoncutweed removedduringaweedcutoperationsalonganEnglishriver,theRiver Frome,Dorset.Aquaculture&FisheriesManagement22,113121.[weed cuttingeffects,levelchanges&consequences] DawsonF.H.,P.J.Raven&GravelleM.G.(1999).Distributionofthe morphologicalgroupsofaquaticplantsforrivers.Hydrobiologia415:123 130. DawsonF.H.,&HollandD.(1999).Thedistributioninbanksidehabitatsofthree alieninvasiveplantsintheUKinrelationtothedevelopmentofcontrol strategies.Hydrobiologia415:193201. Dawson,F.H.,Raven,P.J.&Gravelle,M.J.(1999)Distributionofthe morphologicalgroupsofaquaticplantsforriversintheU.K.Hydrobiologia 415123130. DawsonF.H.(inpress).Managementandconstructioneffectsonvegetationin Britishrivers.In:WaterManagement(edsB.G.deBikuña&I.Benito). Proceedingsofaconferenceonwatermanagement,October241990Vitoria, Spain.BasqueGovernment,AssociciónEspañoladeLimnologíaandSociedad deRecursNaturalesSIRNSA,47pp. Denny,M.W.(1985).Waveforcesonintertidalorganisms:Acasestudy.Limnology andOceanography30,11711187.[Biologyeffectsofbrakingwaves] Denny,M.W.,Daniel,T.L.andKoehl,M.A.R.(1985).Mechanicallimitstosizein wavesweptorganisms.EcologicalMonographs55.69102. DepartmentoftheEnvironment(1977).Weedgrowthonriverflowmeasuring structures.UKDepartmentoftheEnvironment,WaterDataUnitTechnical Memorandum15,22pp. denHartogC.(1982).Architectureofmacrophytedominatedaquaticcommunities. inStudiesonAquaticVascularplants(edsJ.J.Symoens,S.S.Hooper&P. Compere),222234.ProceedingsInternationalColloquiumonAquatic VascularPlants,Brussels,2325January1981.Brussels,RoyalBotanical

R&D ROUGHNESSREVIEW 97

SocietyofBelgium. DilleniusJJc1700Atreatiseonplantsinwaterplants. Dittrich,HartmannandGottauf(1999).Validationofresistanceformulasof compoundchannelswithfielddata,IAHRcongress,Graz1999. DunnC.,LopezF.,GarciaM.(1996).Meanflowandturbulencestrucureinduced byvegetation:HydraulicEngineeringSeriesNo.51,UILUENG962009, Dept.ofCivilEng.,UniversityofIllinoisatUrbanaChampaign,Urbana, Illinois,USA Dobbie,C.H.andPartners(1980).Reportonbankprotectioninriversandcanals. HydraulicResearchStation,Wallingford,England. Doubt,P.D.(1955).Chutespillways.In:NationalEngineeringHandbook.US NationalSoilConservationService. DuboisJ,SchleissA,(1999).Hydraulicbehaviourofsurfaceflowinandover macroroughness,IAHRcongress,Graz Duff,D.A.andWydoski,R.S.(1982)Indexedbibliographyonstreamhabitat improvement.UnitedStatesDepartmentofAgriculture,ForestService, IntermountainRegion,143pp. Dudley,SJ;Bonham,CD;Abt,SR;Fischenich,JC(1998).Comparisonofmethods formeasuringwoodyriparianvegetationdensity.JournalofArid Environments38,7786. Dudley,SJ;Fischenich,JC;Abt,SR(1998).Effectofwoodydebrisentrapmenton flowresistance.JournaloftheAmericanWaterResourcesAssociation34, 11891198. Dumas,H.(1952).Laméthodechemiquepourlamesurédedébitdescoursd'eau.La HouilleBlanche5,690701.86. Duncan,M.J.;Smart,G.M.;Walsh,J.M.(1999).Areviewoftechniquesfor calculatinghydraulicparametersandflowresistanceathighrelative roughness.GravelbedRiversWorkshop,NZHydrologicalSociety Symposium,Napier,23–26November,121. DunnC.,LopezF.,GarciaM.(1996).Meanflowandturbulencestrucureinduced byvegetation:HydraulicEngineeringSeriesNo.51,UILUENG962009, Dept.ofCivilEng.,UniversityofIllinoisatUrbanaChampaign,Urbana, Illinois,USA Eastgate,W.I.(1966)Vegetatedstabilizationofgrassedwaterwaysanddam bywashes.UniversityofQueensland.MScEngThesis. Eastgate,W.I.(1969).Vegetatedstabilizationofgrassedwaterwaysanddam bywashes.WaterResearchFoundationofAustralia,BulletinNo.16.Sydney. Edwards,R.V.andDybbs,A.(1984).Refractiveindexmatchingforvelocity measurementsincomplexgeometries.TSIQuarterlyX(4),35. EdwardsR.W.andBrookerM.P.(1982).TheecologyoftheWye.Monographiae Biologicae50,DrW.Junk,TheHague.164pp. Edwards,D.(1969).Someeffectsofsiltationuponaquaticmacrophytevegetationin rivers.Hydrobiologia34,2937. Edwards,R.W.andOwens,M.(1962).Theeffectsofplantsonriverconditions.IV. Theoxygenbalanceofachalkstream.JournalofEcology50,207220. EichenbergerE.(1983).Theeffectoftheseasonsonthegrowthof Ranunculus fluitans Lam.ProceedingsoftheInternationalSymposiumonAquatic Macrophytes,Nijmegen1823September,6367. Einstein,HA(1950).Thebedloadfunctionforsedimenttransportationinopen channelflows,TechnicalBulletinNo.1026,UnitedStatesDepartmentof

R&D ROUGHNESSREVIEW 98

Agriculture,SoilConservationService,Washington,D.C. EkzertzevV.A.(1979).ThehigheraquaticvegetationoftheVolgainTheRiver Volgaanditslife.EdPh.D.MordukhaiBoltovskoi,MonographiaeBiologicae 33,271194.DrW.Junk,TheHague. Emmett,W.W.(1970).Thehydraulicsofoverlandflowonhillslopes.U.S.Geological SurveyProfessionalPaper662A,68pp. Engelund,F.(1966).Hydraulicresistanceofalluvialstreams.Proceedingsofthe AmericanSocietyofCivilEngineers.JournaloftheHydraulicsDivision,92(2)315 –326. Engelund,F.(1967).Hydraulicresistanceofalluvialstreams.(Closureto discussion).ProceedingsoftheAmericanSocietyofCivilEngineers.Journal oftheHydraulicsDivision,93(4)287–296. EnvironmentAgency(1997).Environmentaloptions:specificationsforflood defencemaintenanceworks.EnvironmentAgency,50pp. EnvironmentAgency(1998).Aquaticweedcontroloperation:bestpractice guidelines.EnvironmentAgencyR&DReportW111,ReporttoIACRCentre forAquaticPlantManagement,132pp. EnvironmentAgency.Waterplantstheirfunctionandmanagement. EscarameiaM(1998).Riverandchannelrevetments:adesignmanual.Thos Telford,London245pp. EscarameiaM,GasowskiYandMayR(2002).Grasseddrainagechannels– hydraulicresistancecharacteristics.ProcofInstitutionofCivilEngineers. WaterandMaritimeEngineering154,December2002,Issue4.pp333341 Evers,P.(1983).UntersuchungderStrömungsvorgängeingegliedertenGerinnenmit extremenRauheitsunderschieden.MitteilungenausdemInstitutfürWasserbau undWasserwirtschaft,RheinischWestfälischeTechnischeHochschule,Aachen 45,222pp. Evers,P.andRouvé,G.(1980).Basicmodelinvestigationsonhydrauliceffectsof bankandfloodplainvegetation.InternationalAssociationforHydraulic Research,SymposiumonRiverEngineeringanditsInteractionwith HydrologicalandHydraulicResearch,Belgrade1980,paperD14,8pp. Fasken,G.B.(1963).Guidetoselectingroughnesscoefficient'n'valuesforchannels. USDepartmentofAgricultureSoilConservationService,33pp.[‘n’s&channel pictures] Falconer,R.A.,P.Goodwin,andR.G.S.Matthew(1989).Hydraulicand EnvironmentalModellinginCoastal,EstuarineandRiverWaters.712pp. FathiMoghadamMandKouwenN,(1997).Nonrigid,nonsubmergedvegetation roughnessinfloodplains.JournalofHydraulicEngineering123,5157. Faust,O.(1933).Basisofamethodforascertainingtheeventsinvolvedintherateof flowforstretchesofriverwithweedgrowth.,BalticStatesFourthHydrological Conference,Leningrad,1933.[InGerman.] Fenzl,R.N.(1962).Hydraulicresistanceofbroadshallowvegetatedchannels. UniversityofCalifornia,Davis.PhDThesis. Fenzl,R.N.andDavies,J.R.(1964).Hydraulicresistancerelationshipsforsurface flowsinvegetatedchannels.TransactionsoftheAmericanSocietyof AgriculturalEngineers7,4651,55. FergusonRM,LynessJF,MyersWRCandO’SullivanJJ,(1998).Hydraulic performanceofenvironmentalfeaturesinrivers.JournalofCIWEM,12,286 291. Finnigan,J.J.(1979).TurbulenceinwavingwheatI.MeanstatisticsandHonami.

R&D ROUGHNESSREVIEW 99

BoundaryLayerMeteorology16,181121.[Shortflexiblevegetationinair,for comparison,] Finnigan,J.J.(1979).TurbulenceinwavingwheatII.Structureofmomentum transfer.BoundaryLayerMeteorology16,213236. Finnigan,J.(2000).Turbulenceinplantcanopies.AnnualReviewofFluidMechanics 32,519571. FisherKR,(1992).MorphologicaleffectsofRiverImprovementworks: recommendedprocedures.HRWallingfordReportSR300. FisherKR(1993).Modellingthehydraulicimpactofvegetationinriverchannels. HRWallingfordReportSR346,March1993. FisherKR,ReeveCE.(1994).Impactofaquaticvegetationcutting.2 nd InternationalConferenceonRiverFloodHydraulics,March. FisherKR,DunderdaleJAL,MorrisJ.(1994).TheLongevityofRiver Maintenance.XIICIGRWorldCongressandAgricultueralEngineering ConferenceonAgriculturalEngineering. FisherKRandHollinrakePG,(1995).EnvironmentallypreferableRiver Improvements.AnEngineeringGuide.HRWallingfordReportSR433. FisherKR,(1993).Modellingthehydraulicimpactofvegetationinriverchannels. .HRWallingfordReportSR346,HRLtdWallingford. FisherKR,(1995).Manualofsedimenttransportinrivers.HRWallingfordReport SR359. FisherKR,(1995).RiverMaintenanceEvaluation.HRWallingfordReportEX 2961.August1995. FisherKR(1995).Theimpactoftemporalandspatialvariationsinvegetationin rivers.HRWallingfordReportSR393,March1995. FisherKR(2002).Handbookfortheassessmentofhydraulicperformanceof environmentallyacceptablechannels.HRWallingfordSR490. FisherKR,MyersR,LynessJ,O’SullivanJ.(1996).Monitoringoffisheriesonthe RiverBlackwater.2 nd InternationalSymposiumonHabitatHydraulics. Quebec,June1996. FisherKR,RamsbottomDM.(1996).Designofenvironmentallyacceptableriver channels.31 st MAFFConferenceofRiverandCoastalEngineers.Keele,July 1996. FisherKR,LavedrineIA,MillingtonRJ,SamuelsPG,(1996).Hydraulic improvementsforPHABSIM.HRWallingfordReportSR486. FisherKRandDawsonFH,(2001).Parametersaffectingconveyance(vegetation). ReviewpaperforEPSRCnetworkonConveyanceinRiver/Floodplain systems.(ncrfs.civil.gla.ac.uk/fisher.pdf) FisherKRandKnightDW,(2002).Improvedroughnessandvelocityprediction forinstreamhabitatsdevelopmentandcomparisonofmethods.4 th InternationalEcohydraulicsSymposium,CapeTown,SouthAfrica. FischerAntze,T.,Stoesser,T.,Bates,P.B.,Olsen,N.R.(2001).3DNumerical ModellingofOpenChannelFlowwithSubmergedVegetation.Journalof HydraulicResearch,39(3)303310. Fonseca,M.S.,Fisher,J.S.,Zieman,J.C.andThayer,G.W.(1982).Influenceofthe seagrass,ZosteramarinaL.,oncurrentflow.Estuarine,CoastalandShelf Science15,351364. Fonseca,M.S.,Zieman,J.C.,Thayer,G.W.andFisher,J.S.(1983).Theroleofcurrent velocityinstructuringeelgrass(ZosteramarinaL.)meadows.Estuarine,Coastal andShelfScience17,367380.

R&D ROUGHNESSREVIEW 100

FoxAM(1992) Francis,T.R.D.(1962).Atextbookoffluidmechanicsforengineeringstudents. EdwardArnold,London,340pp. Fread,DL(1989).FloodRoutingModelsandtheManningn.Proceedingsofthe InternationalConferenceonChannelFlowandCatchmentRunoff:Centennial ofManning'sFormulaandKuichling'sRationalFormula.Universityof Virginia,CharlottesvilleVA.699708 Fredenhagen,V.B.andDoll,E.H.(1954).Grassedwaterways.Agricultural Engineering35,417419. FreemanGE,RahmeyerW,Derrick,DL,andCopelandRR,(1998).Manning’sn forfloodplainswithshrubsandwoodyvegetation.USCIDConferenceon SharedRivers,ParkCity,Utah,October FergusonRM,LynessJF,MyersWRCandO’SullivanJJ,(1998).Hydraulic performanceofenvironmentalfeaturesinrivers.JournalofCIWEM,12 pp286291 Frutiger,A.(1984).Aversatileflowchannelforlaboratoryexperimentswithrunning watermacroinvertebrates.SchweizerischeZeitschriftfurHydrologie46, 301306. FukuokaSandFujitaK(1990).Flowresistanceduetolateralmomentumtransport acrossvegetationintherivercourse.InternationalconferenceonPhysical ModellingofTransportandDispersion,ASCE,12B,2530. Gardiner,JL(Ed)(1990).Riverprojectsandconservation.JohnWiley&Sons, Chichester236pp. Gardner,H.H.andFreyburger,E.(1949).Grasswaterways.USDepartmentof Agriculture,Leaflet257. GaudetJ.J.(1974).Thenormalroleofvegetationinwater.inAquaticvegetationits useandcontrol,Ed.D.S.Mitchell.2437,UNESCO,Paris. Gessner(1955).Hydrobotanic.PartIEnergiehaushalt.(1959)PartIIStoffhaushalt. VebDeutscherVerlagderWissenschaften,Berlin,517ppand701pp. [InGerman] Giles,R.V.(1977).Fluidmechanicsandhydraulics(2nd.ed.),SchaumOutlineSeries. McGrawHill,NewYork,275pp. Gilley,JE,Kottwitz,ER,Wieman,GA(1992).DarcyWeisbachRoughness CoefficientsforGravelandCobbleSurfacesJournalofIrrigationand DrainageEngineering,AmericanSocietyofCivilEngineers118,104112 Gilley,JE,Kottwitz,ER(1994).DarcyWeisbachroughnesscoefficientsfor selectedcropsTransactionsoftheAmericanSocietyofAgricultural Engineering,37,467471. Gils,H.(1962).DiewechselndeAbflusshemmunginverkrautetenGewässern. DeutschegewässerkundlicheMitteilungen6,102110. Gils,H.(1966).DerAbflussinverkrautetenGewässern:eineGegenüberstellungden VerfahrenvonPrantle,GilsundSchenk.Deutschegewässerkundliche Mitteilungen10.4451. GippelCJ,(1995).Environmentalhydraulicsoflargewoodydebrisinstreamsand rivers.ASCEJournalofEnvironmentalEngineering,Vol121,No5pp388 395. GimminghamC.H.andBirseE.M.(1957).Ecologicalstudiesongrowthformsin BryophytesI.correlationsbetweengrowthformandhabitat.Journalof Ecology45,533545. Gluck(19051924).BiologischeundmorphologischeuntersuchungenuberWasser

R&D ROUGHNESSREVIEW 101

undSumpfgewasserVolumesIIV,Jena.[inGerman] GlymeJ.M.andCarrR.E.(1974).Temperaturesurvivalof Fontinalis novae- angliae Sull.TheBryologist77,1722. Goldsmith,H.(1985).Hydrauliceffectsofaquaticweeds:Reappraisalof measurementsMansouriaCanal,Egypt.HydraulicsResearchLtd,Wallingford, U.K.TechnicalNoteOD/TN12. GoltermanandKouwen(1980) GopalB.andSharmaK.P.(1981).WaterHyacinth( Eichhornia crassipes )themost troublesomeweedoftheworld.HindasiaPublications,Delhi,India. Gore,J.A.ed.(1985).TheRestorationofRiversandStreams;Theoriesand experience.AnnArbourScienceBook,Butterworth,280pp. GovernmentofCanada,FisheriesandOceans,(1980).StreamEnhancement Guide. GrayDH7MacDonaldA(1989).Theroleofvegetationinriverbankerosion. HydraulicEngineering,Proceedingsofthe1989conferenceonHydraulic Engineering,218223. Graf,W.H.andKo,S.C.(1971).Testsoncylindersinturbulentflow.Journalofthe HydraulicsDivision,ProceedingsoftheAmericanSocietyofCivilEngineers97, 12651267. Graf,W.H.andChhun,V.H.(1976).Manning'sroughnessforartificialgrasses. JournaloftheIrrigationandDrainageDivision,AmericanSocietyofChemical Engineers102,413423. Graf,W.H.(1998).FluvialHydraulics:FlowandTransportProcessesinChannels ofSimpleGeometry.IncollaborationwithM.S.Altinakar,JohnWileyand Sons,England,681pp. GranOlsson,R.(1936).GeschwindigkeitsundTemperaturverteilunghintereinem GitterbeiturbulenterStrömung.ZeitschriftfürAngewandteMathematikund Mechanik16,245274. GreenJEPandGartonJE(1983).Vegetationlinedchanneldesignprocedures. TransactionsoftheAmericanSocietyofAgriculturalEngineering,26,437 439. Gregory,K.J.ed.(1977).RiverChannelChanges.JohnWileyandSons,448pp. GregoryKJ,GurnellAM&HillCT(1985).Thepermananceofdebrisdams relatedtoriverchannelprocess.HydrologicalSciencesJournal30,371381. Grover,N.C.andHarrington,A.W.(1949).Streamflow.J.WileyandSons,London, 363pp. Goldman,S.J.,K.Jackson,andT.A.Bursztynsky,(1986).ErosionandSediment ControlHandbook.McGrawHill,Inc.NewYork. GurnellAMandMidgleyP,(1994).Aquaticweedgrowthandflowresistance: influenceontherelationshipbetweendischargeandstageovera25yearriver gaugingstationrecord.Hydrologicalprocesses,8,6373. Gwinn,W.R.andRee,W.O.(1980).Maintenanceeffectsonthehydraulicproperties ofavegetationlinedchannel.TransactionsoftheAmericanSocietyof AgriculturalEngineers23,636642. Haber,B.(1982).ÜberdenErosionsbeginnbeiderÜberströmungvonflexiblen Rauheitselementen,MitteilungendesLeichtweissInstitutfürWasserbau, TechnischeUniversität,Braunschweig74,212pp. Hahn,A.(1942).Rateofflowinwatercoursescoveredwithiceorwithweedgrowth. DeutscheWasserwirtschaft7,419451. HaldarSK,SohaniSS,SinghKP,(1981).DeterminationofManning’sroughness

R&D ROUGHNESSREVIEW 102

coefficientfrommeasuredbedmaterialsizeandhydraulicradius.Irrigation andPower,38,2732. HamS.F.,WrightJ.F.andBerrieA.D.(1981).Growthandrecessionofaquatic macrophytesonanunshadedsectionoftheRiverLambourn,England,from 1971to1976.FreshwaterBiology,381390. Ham,S.F.,Cooling,D.A.,Hiley,P.D.,McLeish,P.R.,Scorgie,H.R.A.andBerrie, A.D.(1982).Growthandrecessionofaquaticmacrophytesanashadedsection oftheRiverLambourn,England,from1971to1980.FreshwaterBiology12, 115. HamS.F.,CoolingD.A.,HileyP.D.,McLeishP.R.,ScorgieH.R.A.andBerrie A.D.(1982a).Growthandrecessionofaquaticmacrophytesonashaded sectionoftheRiverLambourn,England,from1971to1980.Freshwater Biology12,115. HamS.F.,WrightJ.F.andBerrieA.D.(1982b).Theeffectofcuttingonthegrowth andrecessionofthefreshwatermacrophyte Ranunculus penicillatus (Dumort.) Bab.var. calcareus (R.W.Butcher)C.D.K.Cook,J.Environ.Manage.15, 263271. Hamill,L.(1983.)SomeobservationsonthetimeoftravelofwavesintheRiver Skerne,England,andtheeffectofaquaticvegetation.JournalofHydrology66, 291304. Haque,M.I.andMahmood,K.(1983).Analyticaldeterminationofformfriction factor.JournalofHydraulicEngineering109,590610. HarrodJ.J.(1964).Thedistributionofinvertebratesonsubmergedaquaticplantsin achalkstream.J.AnimalEcology33,335348. HasegawaK,AsaiS,KanetakaSandBabaH(1999).Flowpropertiesofadeep openexperimentalchannelwithadensevegetationbank.Journalof HydroscienceandHydraulicEngineering,17,5970. HaslamSM(1978).RiverPlants:TheMacrophyticVegetationofWatercourses. CambridgeUniversityPressCambridge,396pp. HaslamSMandWolseleyPA(1981).RiverVegetation:itsidentification, assessmentandmanagement.CambridgeUniversityPress,154pp. Hayes,J.C.,Barfield,B.J.andAlbrecht,S.(1981).Techniquesformodelingand monitoringtheeffectsofvegetativestripsonsedimentyieldfromdisturbed areas.InternationalAssociationofHydrologicalSciences,Proceedingsofthe SymposiumonErosionandSedimentTransportMeasurement,Firenze1981,Ist. Ing.Civ.1981,241248. HearneJWandArmitagePD(1993).Implicationsoftheannualmacrophyte growthcycleonhabitatinrivers.RegulatedRivers:Researchand Management,8,313322. Helmioe,T(1998).Kasvillisuudenaiheuttamanvirtausvastuksenarviointi avouomassa[Estimatingvegetationinducedresistanceinopenchannelflow], [inFinish]Vesitalous,2,1013. Henderson,F.M.(1966).Openchannelflow.Macmillan,London,522pp. HenryCP,AmerosC&BornetteG(1996).Speciestraitsandrecolonisation processesafterflooddisturbancesinriverinemacrophytes,Vegetatio122,13 27. HeermanDFWenstromRJ&EvansNA(1969).Predictionofflowresistancein furrowsfromsoilroughness.Transactions,AmericansocietyofAgricultural Engineering12,482485. HenriquesPR(1987).AquaticMacrophytesinAquaticbiologyandhydroelectric

R&D ROUGHNESSREVIEW 103

powerdevelopmentinNewZealand(Ed.PRHenriques),OxfordUniversity Press,Auckland,pp207222. Herschel,C.(1897).OntheoriginoftheChezyformula.JournaloftheAssociationof EngineeringSocieties18,363369. Herschy,R.W.(Editor)(1978).Hydrometry.Principlesandpractices.Wiley, Chichester,542pp. Hey,R.D.,Bathurst,J.C.,Thorne,C.Reds.(1982).GravelBedRivers:Fluvial Processes,EngineeringandManagement.JohnWileyandSons,875pp. HeyRDandThorneCR(1986).Stablechannelswithmobilegravelbeds,Journal ofHydraulicEngineering,ASCE,112,671689. HeyRD,HeritageGLandPattesonM,1994.Impactoffloodalleviationschemes onaquaticmacrophytes.Regulatedrivers:ResearchandManagement,Vol9, 103119. HeyRD(1979).Flowresistanceingravelbedrivers.Proceedingsofthe AmericanSocietyofCivilEngineers,JournaloftheHydraulicDivision, 105(HY4),365379. HickinEJ(1984).Vegeationandriverchanneldynamics.Canadian Journal of Geography28,111126. HicksDMandMasonPM(1991).RoughnesscharacteristicsofNewZealand Rivers,WaterResourcesSurveyDSIRMarineandFreshwater,NewZealand. Hicks,M.;Nikora,V.;Goring,D.;Smart,G.(1998).Somenewdevelopmentsin gravelbedrivermechanics:anoverviewofNIWA’sresearchprogramme. Abstracts,JointConferenceoftheMeteorologicalSocietyofNewZealandand theNewZealandHydrologicalSociety,Dunedin,24–27November,p47. Hicks,D.M.;MasonP.D.(1998).RoughnesscharacteristicsofNewZealand Rivers.NIWA,Christchurch.329pp HigginsonNNJandJohnstonHT(1989)RifflepoolformationsinNorthern IrelandRivers,Proc.ofIntl.Conf.onChannelFlowandCatchmentRunoff, UniversityofVirginia,Charlottesville,May,pp638647. HigginsonNNJ(1992).Evaluationofhydraulicresistanceinsingleandtwostage rivers.APhDthesissubmittedtoTheQueen'sUniversityofBelfast. Hill,A.R.(1976).Theenvironmentalimpactsofagriculturallanddrainage.Journalof EnvironmentalManagement4,251274.[Refs.] Hillebrand,D.(1950).VerkrautungundAbfluss.DeutscheGewässerkundliche Jahrbuch2,130.[inGerman,DSIRtranslation] [EarlyclassicstudyonR.Eder,Germany;hydrauliceffectsatvaryingconditionsof weedgrowth,tallflexiblevegetation,RanunculusandPotamogetons] Hino,M.&UtaharaH(1977).Hydrauliccharacteristicsofflowwithaquaticplants. ProceedingsJapanSocietyCivilEngineering266,8497.(inJapanese) Hino,M.(1977).Ecohydraulics,anattempt.HydraulicEngineeringforImproved WaterManagement,17thCongressofInternationalAssociationofHydraulic Research,BadenBaden19776,178208.[Biology] Hino,M.(1981).Ecohydrodynamics.AdvancesinHydroscience12,143193. Hoerner,S.F.(1965).Fluiddynamicdrag(2nded.).Publ.S.F.Hoerner,Midland Park,N.J.450pp. HolmesN.T.H.(1983).TypingBritishriversaccordingtotheirflora.Focuson NatureConservationNo.4.NatureConservancyCouncil,Huntingdon, Cambridgeshire,194pp. Holtorff,G.(1982).Resistancetoflowinalluvialchannels.Journalofthe HydraulicsDivision,AmericanSocietyofCivilEngineers108,10101027.

R&D ROUGHNESSREVIEW 104

Horton,R.E.(1916).SomebetterKutter'sformulacoefficients.EngineeringNews, 75,373374(24Feb.)[DiscussionbyScobeyFCandHorton75,8623(4May). Horton,R.E.(1933).Separateroughnesscoefficientsforchannelbottomandsides. EngineeringNewsRecord3or111,22(30Nov). Hosia,L.(1980).Manninginkertoimenmuuttuminenvesisyvyydenjahydraulisen sateenmukaan.Vesitalous21(5),811.[inFinish] Hosia,L.(1980)Pietenuomienvirtausvastuskerroin.Vesitalous21(2),1721.[in Finish] HowardWilliamsC.,DaviesJ.andPickmereS.(1982).Thedynamicsofgrowth, theeffectsofchangingareaandnitrateuptakebywatercress Nasturtium officinale R.Br.inaNewZealandstream.JournalAppliedEcology19,589 601. Hsieh,T.(1964)Resistanceofcylindricalpiersinopenchannelflow.Journalofthe HydraulicsDivision,ProceedingsoftheAmericanSocietyofCivilEngineers90 (Jan.),161173. (Discussion:1964,90(Sept.),223;90(Nov.),269;1965,91(July),276.) Huang,HQ;Nanson,GC(1997).Vegetationandchannelvariation:Acasestudyof foursmallstreamsinsoutheasternAustralia.Geomorphology18,237249. Hütterott,K.(1976).BiologischerUferschutzanfliessendenundstehenden Gewässern.WasserundBoden9,234237. HydraulicsResearchLtd(1985).Thehydraulicroughnessofvegetationinopen channels.ReportIT281(SR36).HydraulicsResearchLtd,Wallingford.39pp. HydraulicsResearchLtd(1985).Thehydraulicroughnessofvegetationinopen channels.HydraulicsResearchLtdWallingford,England.ReportIT281(SR36), 48pp. HydraulicsResearch(1992).Thehydraulicroughnessofvegetatedchannels. ReportNoSR305,March1992.HydraulicsResearchLtd,Wallingford. HRWallingfordandBarrDIH,(1998).Tablesforthehydraulicdesignofchannels andpipes.7thEdition.Volumes1and2pp252 HynesH.B.N.(1970).TheEcologyofRunningWaters,LiverpoolUniversity Press.555pp. IkedaS&KanazawaM(1996).Threedimensionalorganisedvorticesabove flexiblewaterplants.JournalofHydraulicEngineering122,634640. Ieperen,H.vanandHerfst,M.S.(1986).Laboratoryexperimentsontheflow resistanceofaquaticweeds.Proceedings2ndInternationalConferenceon HydraulicDesigninWaterResourcesEngineering:LandDrainage,1986. Indlekofer,H.andRouve,G.(1981).Onhydrauliccapacityofriverswithvegetated banksandfloodplains.InternationalAssociationforHydraulicResearch, SymposiumonRiverEngineeringanditsInteractionwithHydrologicaland HydraulicResearch,Belgrade1981,paperD15,8pp. InternationalStandardsOrganization (1978)Calculationofuncertaintyofameasurementofflow.ISO5168. (2000)Velocityareamethods.ISO748. (1981)Establishmentandoperationofagaugingstation.ISO1100/I (1998)Stagedischargerelation.ISO1100/II. (1983)Errorsinvelocityareastation.TR7178,(1985)Datafordeterminationof errors.ISO1088. Isaacs,L.T.(1965).Hydrodynamicforcesonsurfacepiercingcircularcylindersand flatplates.UniversityofQueensland,St.Lucia,Brisbane.MScEngThesis. Jain,S.C.(2001).OpenChannelFlow.JohnWileyandSons,NewYork,328p

R&D ROUGHNESSREVIEW 105

JamesCS,(1994).Evaluationofmethodsforpredictingbendlossinmeandering channels,JournalofHydraulicEngineering,120,245253. James,CS(1998).Theroleofhydraulicsinunderstandingriverprocesses, NationalRiversInitiative,SouthernAfricanSocietyofAquaticScientists, Pietermaritzburg,SouthAfrica,29June1July. JamesCS,LiuW,andMyersWRC,(2001).Conveyanceofmeanderingchannels withmarginalvegetation.ICE,Water&MaritimeEngineering148,97106. Jamme,G.(1974).TravauxFluviaux.CollectiondelaDirectiondesEtudeset Recherchesd"ElectricitédeFrance,Eyrolles. Jansen,P.Ph.,L.vanBendegom,J.vandenBerg,M.deVries&A.Zanen(1979). PrinciplesofRiverEngineering;TheNonTidalAlluvialRiver.Pitman, London. Jarrett,R.D.(1984).Hydraulicsofhighgradientstreams.Journal.Hydraulic Engineering.110,15191539. Jarrett,R.D.,(1985).Determinationofroughnesscoefficientsforstreamsin Colorado:U.S.GeologicalSurveyWaterResourcesInvestigationsReport85 4004,54p. Jarrett,R.D.,andPetsch,H.E.,Jr.,(1985).ComputerprogramNCALCuser's manualverificationofManning'sroughnesscoefficientinchannels:U.S. GeologicalSurveyWaterResourcesInvestigationsReport854317,27p. Jeffers(1998) Jenkins,J.T.(1982).Effectsofflowrateontheecologyofaquaticbryophytes. UniversityofExeter,April1982.164pp.Ph.DThesis. JenkinsJ.T.andProctorM.C.F.(1985).Watervelocity,growthformanddiffusion resistancestophotosyntheticCOuptakeinaquaticbryophytes.Plant,Celland Environment8,317323. John,P.H.(1978).Dischargemeasurementinlowerorderstreams.Internationale RevuedergesamtenHydrobiologie63,731755.[Astitle,rangeofmethods includingtracers] JorgaW.andWeiseG.(1978).BiomasseenwichlungsubmerserMakrophytenin langsamfliessendenGewasserninBezehungzumSauerstoffhaushalt. InternationaleRevuedergesammtenHydrobiologie62,209234. Julien,P.Y.(2002).RiverMechanics.CambridgeUniversityPress,375pp. Jumars,P.A.andNowell,A.R.M.(1984).Fluidandsedimentdynamiceffectson marinebenthiccommunitystructure.AmericanZoologist24,4555. [Microbialcommunitydynamicsandtexturalroughness.] Kadlec,RH2000Theinadequacyoffirstordertreatmentwetlandmodels.Journal ofHydraulicEngineering125,443454. Kao,D.T.Y.andBarfield,B.J.(1976).Hydraulicresistanceofgrassmediaon shallowoverlandflow.KentuckyWaterResourcesResearchInstitute. ResearchCompletionReport,Project(A049KY). Kao,DTY&BarfieldBJ(1978).PredictionofFlowHydraulicsforVegetated Channels.TransactionsoftheAmericanSocietyofAgriculturalEngineering 21,489494. Kao,D.T.,Barfield,B.J.,Lyons,A.E.andAustin,E.(1977).Hydraulicresistance ofgrassmediaonshallowoverlandflows.WaterResourcesResearchInstitute, ResearchReport107,October1977,116pp.OfficeofWaterResearchand Technology(Lexington,UniversityofKentucky).(PB2752194ST) Karasev,I.F.(1969).Influenceofthebanksandfloodplainonchannelconveyance. SovietHydrology,SelectedPapers5,429442.

R&D ROUGHNESSREVIEW 106

Kármàn,T.von.(1934).Turbulenceandskinfriction.JournalofAeronautical Science1,124. Karovicova,M.andKosorin,K.(1981).Experimentalresearchofflowstructurein vegetatedchannels.Vodohospodárskycasopis29.309319.[SeeCivil EngineeringHydraulicAbstracts14,1780CH14.] Keller,E.A.(1976).Channelization:environmentalgeomorphicandengineering aspects.In:GeomorphologyandEngineering(ed.D.R.Coates),115140. Dowden,Hutchinson&RossInc.London. Keller,E.A.(1978).Pools,rifflesandchannelisation.EnvironmentalEcology2, 119127. KellerEAandMelhornWN(1978).Rhythmicspacingandoriginofpoolsand riffles,GeologicalSocietyofAmericaBulletin,Vol89,pp723730. Keller,E.A.andBrookes,A.(1984).Considerationofmeanderinginchannelization projects:selectedobservationsandjudgements.In:Rivermeandering(ed.C.M. Elliot),ProceedingsoftheConference,'Rivers'83,'NewOrleans1983,384397. AmericanSocietyofCivilEngineers,Vicksburg. Kelly,W.E.andGularte,R.C.(1981).Erosionresistanceofcohesivesoils.Journalof theHydraulicsDivision,AmericanSocietyofCivilEngineers107,12111224. Kennedy,J.F.andN.H.Brooks(1963).LaboratorystudyofanAlluvialStreamat ConstantDischarge.Paper37.Procs.ofFederalInterAgencySedimentation Conferences.USDept.ofAgriculture. Keown,M.P.,Oswalt,N.R.,Perry,E.B.andDardeau,E.A.(1977).Literature surveyandpreliminaryevaluationofstreambankprotectionmethods.US ArmyEngineerWaterwaysExperimentalStation,HydraulicsLaboratory, Vicksburg,Mississippi,TechnicalReportNo.H779,262pp. KernHansenU.andDawsonF.H.(1978).Thestandingcropofaquaticplantsof lowlandstreamsinDenmarkandtheinterrelationshipsofnutrientsinplant, sedimentandwater.Proceedingsofthe5thEuropeanWeedResearchCouncil SymposiumonAquaticWeeds.143150. KernHansen,U.,Holm,T.F.,Madsen,B.L.,Thyssen,N.andMikkelsen,J.(1980). Vedligeholdelseafvandlöb.MiljöprojekterNo.30,Miljöministeriet Copenhagen,162pp.41pp.indatasupplement.(AdditionalTechnicalReport (1984)No.4Undersögelser,vedrörendevedligeholdelseofvandlöb,197982.) [inDanish] KernHansen,U.,Holm,T.F.,ThyssenN,Mortensen,Hunding,CandBrostrup,V. (1983).Vedligeholdelseogrestaureringafvandlöb.Miljöstyrelsens Ferskvandslaboratorium,Silkeborg,47pp. KhattabA.F.&ElGharablyZ.A.(1982).SomeactivitiesoftheResearchInstitute ofWeedControlandChannelMaintenance.J.Egypt.SocofEngs,21,1116. KhattabA.F.&ElGharablyZ.A.(1986).Someaspectsoftheeffectsofaquatic weedsmanagementinirrigationanddrainagesystemsoncontrollingBilharzia. ProceedingsICID,specialsession,Lahore,2,95107.INCLUDE? KhattabA.F.&ElGharablyZ.A.(1987).Problemsofaquaticweedsinirrigation systemsandmethodsofmanagement.Proc.6thAfroAsianRegional Conference,Cairo,Egypt,2,B6.117. KhattabA.F.&ElGharablyZ.A.(1990).Aquaticweedsandtheireffectonchannel roughness.Proc.8thEWRSSymposiumonAquaticWeeds,Upsalla,Sweden August145149. King,H.W.andBrater,E.F.(1963).Handbookofhydraulics,5th.edition.McGraw HillBookCo.Inc.NewYork,c.350pp.

R&D ROUGHNESSREVIEW 107

Kinori,B.Z.andMevorach,J.(1984).ManualofsurfacedrainageengineeringII. Streamflowengineeringandfloodprotection.Elsevier,Amsterdam523pp. [Practicalguidetosmallriverengineeringanddesign,includesstreamchannel morphology,hydrometricmeasurement,roughnesscalculationandoptimisation forvariedflowregimes,bedformvariation,sedimenttransport,floodprotection andstreamoutletdesign.AlsoVol.I1970,pp.131135.Kinori,B.Z.on vegetativeliningofchannels.] Kite,D.(1980).Gettingtotherootofriverecology.TheSurveyor10July,2425. KlassenGJandvanderZwaard(1974).Roughnesscoefficientsofvegetated floodplains.JournalofHydraulicsResearch.12,4363. KlassenGJandvanUrkA(1985).Resistancetoflowoffloodplainswithgrasses andhedges.Proceedings21stIAHRCongress,Melbourne.3,468473. Klaasen,G.J.andvanUrk,A.,(1986).Testingexpressionsfortheresistanceto flowofbedforms,DelftHydraulicsLab,Rijkswaterstaat,TOWRivers,ReportR 657XVI. Knight,ACE,(1988).RationalisedEnergylossparametersforchannels.Journal ofHydaulicEngineering114,757765. KnightD.W(1981).Somefieldmeasurementsconcernedwiththebehaviourof resistancecoefficientsinatidalchannel.Estuarine,CoastalandShelfScience 12,303322. Knight,D.W.andMacdonald,J.A.(1979)Hydraulicresistanceofartificialstrip roughness.JournalofHydraulicsDivision,ProceedingsoftheAmericanSociety ofCivilEngineers105,675695.(Discussion:1980,106,1142;106,1257;1981 107,140.) Knight,D.W.andHamed,M.E.(1984)Boundaryshearinsymmetricalcompound channels.JournalofHydraulicEngineering110,14121430. Knighton,D.(1998).FluvialFormsandProcesses:ANewPerspective.Arnold, UK,383pp. KnorozVS,(1959).Theeffectofthechannelmacroroughnessonitshydraulic resistance.TrudyLaboratoriiPlotinIGidrouuzlov,62p7596. Knutson,P.L.(1977).Designingforbankerosioncontrolwithvegetation.Coastal sediments77,716733.orUSCoastalEngineeringResearchCentre782 (1978)78/5/41. KochEW&GustG(1999).Waveflowintideandwavedominatedbedsofthe seagrass Thalassia testidinium. MarineEcologyProgressSeries184,6372. Koehl,M.A.R.(1977).Effectsofseaanemonesontheflowforcestheyencounter. JournalofExperimentalBiology69,87105. Koehl,M.A.R.(1977).Mechanicalorganizationofcantileverlikesessile organisms:seaanemones.JournalofExperimentalBiology69,127142. Koehl,M.A.R.(1982).Mechanicaldesignofspiculereinforcedconnectivetissue: stiffness.JournalofExperimentalBiology98,239267.[Biology] Koehl,M.A.R.(1982).Theinteractionofmovingwaterandsessileorganisms. ScientificAmerican247,110120. Koehl,M.A.R.(1984).Howdobenthicorganismswithstandmovingwater? AmericanZoologist24,5770. KofoidC.A.(1908).TheplanktonoftheIllinoisRiver19841899.PartIII constituentorganismsandtheirseasonaldistribution.BulletinoftheIllinois StateLaboratoryofNaturalHistoryVIIIArticle1,1361. Kohler,A.,Pensel,T.andZeltner,G.H.(1980).VeränderungenvonFloraund VegetationindenFliessgewässernderFriedbergerAu(beiAugsberg)zwischen

R&D ROUGHNESSREVIEW 108

1972und1978.VerhandlungenderGesellschaftfürÖkologie(Freising Weihenstephan1979),8343350. Kolessar,M.A.(1967).AquaticplantsinMarylandagrowingmenace.Journalof WaterwaysandHarbourDivision,ProceedingsoftheAmericanSocietyof CivilEngineers93,18. Kolkman,P.A.(1984).Vibrationsofhydraulicstructures.In:Developmentsin hydraulicengineering2,(ed.P.Novak),153.ElsevierAppliedScience, London. Koloseus,H.J.(1971).Rigidboundaryhydraulicsforsteadyflow.In:River mechanics1,(ed.H.W.Shen),31to351. Komura,J.(1976).Hydraulicsofslopeerosionbyoverlandflow.Journalofthe HydraulicsDivision,ProceedingsoftheAmericanSocietyofCivilEngineers 102,15731586.(Discussion:1977103,679680;103,11151118;1978,104, 802803.) Komora,J.(1977).HydraulickeodporystromovychPorastovvinundovanych územiachriek.VyskumnyUstavVodnehoHospodarstva87,82pp. Komora,J.(1981).Vplyvstromovychporastovnaodvádzaniepovodniv inundovanychúzemiachriek.Vodohospodárskycasopis29,514537.[in Slovak] Kopecky,K.(1965).EinflussderUferundWassermakrophytenVegetationaufdie MorphologiedesFlussbetteseinigertschechoslowakischenFlüsse.Archivfür Hydrobiologie61,137160. Kopecky,K.(1969).KlassifikationvorschlagderVegetationsstandorteandenUfern dertschechoslowakischenWasserläufeunterhydrologischenGesichtspunkten. ArchivfürHydrobiologie66,326347. Kosorin,K.(1977).Onturbulentshearstressandvelocitydistributioninvegetated streams.Vodohospodárskycasopis25,352356.[InSlovak] Kosorin,K.(1981).Strukturaprudeniavzarastenejzoneotvorenehokoryta. Vodohospodarskycasopis29,6370.[inSlovak] Kosorin,K.(1983).Turbulentshearstressandvelocitydistributioninvegetatedzone ofopenchannel.Proceedingsofthe20thCongressoftheInternational AssociationforHydraulicResearch,Moscow1983,V,572579.VINITI, Moscow. KouwenN,(1992).Modernapproachtodesignofgrassedchannels.Jrnlof IrrigationandDrainage,Vol118,No5:733743 Kouwen,N.,Unny,T.E.andHill,H.M.(1969).Flowretardanceinvegetated channels.JournaloftheIrrigationandDrainageDivision,Proceedingsofthe AmericanSocietyofCivilEngineers95,329342.(Discussion:GourlayMR, 1970,96,351357;1970,96,101;1971,97,321.) Kouwen,N.(1970).Flowretardanceinvegetatedopenchannels.Universityof Waterloo.PhDThesis. KouwenNandUnnyTE(1973).Flexibleroughnessinopenchannels.Journalof theHydraulicsDivision.ASCE.99,713728. (Discussion:1974,100,699700;closurebyauthors:1975,101,194196.) Kouwen,N.andHarrington,R.A.(1974).Acriterionforvegetationstiffness. AmericanSocietyofCivilEngineers,SymposiumonAgriculturalandUrban ConsiderationsinIrrigationandDrainage,273284. KouwenNandLiRM(1980).Biomechanicsofvegetatedchannellinings. JournaloftheHydraulicsDivision.ASCE.106,10851103. Kouwen,N.,Li,RMandSimons,D.B.(1980).Velocitymeasurementsinachannel

R&D ROUGHNESSREVIEW 109

linedwithflexibleplasticroughnesselements.TechnicalReportCER7980N KRMLDBS11,DepartmentofCivilEngineering,ColoradoStateUniversity, FortCollins,Colorado. Kouwen,N.,LiRMandSimons,D.B.(1981).Flowresistanceinvegetated waterways.TransactionsoftheAmericanSocietyofAgriculturalEngineers24, 684690,698. KouwenN.(1989).Fieldestimationofthebiomechanicalpropertiesofgrass, JournalofHydraulicResearch,26,1988,559568 KouwenN,(1992).Modernapproachtodesignofgrassedchannels.Journalof IrrigationandDrainage,118,733743 KouwenNandFathiMoghadamM,(1996).Frictionfactorsforvegetation. Ecohydraulicsconference,1996,Quebec,A251257. KouwenNandFathiMoghadamM,(2000).Frictionfactorsforconiferoustrees alongrivers.JournalofHydraulicEngineering,126,732740 Kowobari,T.S.,Rice,C.E.andGarton,I.E.(1972).Effectofroughnesselementson hydraulicresistanceforoverlandflow.TransactionsoftheAmericanSocietyof AgriculturalEngineers15,979984. KronvangB,SvendsenLm,BrookesA,FisherK,MollerB,OttosenO,NewsonM andSearD,(1999).Effectsofriverrestoration:Channelmorphology, hydrodynamicsandtransportofsedimentandsedimentassociatedsubstances. Kruse,E.G.,Huntley,C.W.andRobinson,A.R.(1965).Flowresistanceinsimulated irrigationbordersandfurrows. AgriculturalResearchService,USDepartmentof Agriculture,ConservationResearchReport3. KutijaVandHongHTM,(1996).Anumericalmodelforassessingtheadditional resistancetoflowintroducedbyflexiblevegetation.JournalofHydraulic Research34,99114. Lachat,B.(1994).GuidedeProtectiondesBergesdeCoursd’EauenTechniques Végétales.IncollaborationwithPhilippeAdam,PierreAndréFrossard,René Marcaud.MinistèredeL’Environment,DirenRhoneAlpes,143pp. LadleM.andCaseyH.(1971).Growthandnutrientrelationshipsof Ranunculus penicillatus var. calcareus inasmallchalkstream.Proceedingsofthe EuropeanWeedResearchCouncil3rdinternationalSymposiumonAquatic Weeds1971,5363.[Interactionoftwoplantsandsedimentaccumulation.] Lal,R.andPandya,A.C.(1971).Flowretardationonirrigatedsurfaces.Journalof InstitutionofCivilEngineersofIndia51,159164.[Experimentalworkontall vegetationtopartitionlossbetweensurfacegroundroughnessandstemor vegetalroughness.] LarsenT,FrierJ,andVestergaardK(1990).Discharge/stagerelationsinvegetated Danishstreams.InternationalConferenceonRiverFloodHydraulics,Paper F1,September1990,JohnWiley&SonsLtd.187195. [SeeGreenandRichardsnotes] Lates,M.(1965).Bankandslopeprotectionagainstwaveactionbymeansofgrass andwatervegetation.Hidrotechnica,GospodarireaapelorMeterologia, Bucharest,Rumania10,304309. Lebreton,J.C.(1974).DynamiqueFluviale.CollectiondelaDirectiondesEtudes etRecherchesd’ElecticitédeFrance,Eyrolles. LeclercM,SecretanYandBoundreau,P.(2000).Integratedtwodimensional macrophytehydrodynamicmodelling.JournalofHydraulicResearchVol38, No3. LeCrenE.D.andLoweMcConnellR.H.(1980).Thefunctioningoffreshwater

R&D ROUGHNESSREVIEW 110

ecosystemsIBP22Eds.CambridgeUniv.Press,588pp. Leitman,H.M.,Sohm,J.E.andFranklin,M.A.(1982).Wetlandhydrologyandtree distributionofApalachicolaRiverfloodplain,Florida.USGeologicalSurvey, OpenFileReport82251,92pp Lejmbach,B.(1977).Theinfluenceofflowingwatervelocityonthestructureof underwaterphytocenosis.FragmentaFloristicaetGeobotanica22,355362. [inPolish] LeonardLA&LutherME(1995).Flowhydrodynamicsintidalmarshcanopies. Limnology&Oceanography40,14741484. LeonovAY(1966).Factorsresponsibleforthegrowthofaquaticvegetation. CollectionofpapersonHydrology,StateHydrologicInstitute. LeopoldLB,BagnoldRA,WolmanMG,andBrushLM,(1960).Flowresistance insinuousorirregularchannels.GeologicSurveyProfessionalPaper282D. Leopold,L.B.,Wolman,M.G.andMiller,J.P.(1964)Fluvialprocessesin geomorphology.FreemanandCo.SanFrancisco,522pp. Leopold,L.B.(1994).AViewoftheRiver.HarvardPress,USA,298pp. Leutheusser,H.J.andChisholm,W.O.(1973).Extremeroughnessofnaturalriver channels.JournaloftheHydraulicsDivision,ProceedingsoftheAmerican SocietyofCivilEngineers99,10271041.(Discussion:1974,100,10791080; 100,14841487;1975,101,538539;101,1275.) Levich,V.(1962).Physicochemicalhydrodynamics.PrenticeHallInc.Englewood Cliffs,N.J.700pp. Lewis,G.andWilliams,G.(1984).Riversandwildlifehandbook:aguidetopractices whichfurthertheconservationofwildlifeonrivers.RoyalSocietyforthe ProtectionofBirds,RoyalSocietyforNatureConservation,Sandy,Beds,295pp. Lewis,K.(1973).Theeffectofsuspendedcoalparticlesonthelifeformsofthe aquaticmossEurhynchiumripariodes(Hedw.)I.Thegametophyteplant. FreshwaterBiology3,251257. LewisK.(1973).Theeffectofsuspendedcoalparticlesonthelifeformsofthe aquaticmoss Eurhychium ripariodes (Hedw.)II.Theeffectonspore germinationandregenerationofapicaltips.FreshwaterBiology3,391396. Leyton,L.(1975).Fluidbehaviourinbiologicalsystems.OxfordUniversityPress, Oxford,235pp. Li,RMandShen,H.W.(1973).Effectoftallvegetationonflowandsediment. JournaloftheHydraulicsDivision,ProceedingsoftheAmericanSocietyofCivil Engineers99,793814.(Discussion:1974,100,255256;1974,100,495497; 1974,100,14841488.) Limerinos,J.T.(1970).DeterminationoftheManningcoefficientfrommeasured bedroughnessinnaturalchannels.USGeologicalSurvey,WaterSupplyPaper 1898B. Linde,DT;Watschke,TL;Jarrett,AR;Borger,JA(1995).Surfacerunoff assessmentfromcreepingbentgrassandperennialryegrassturf.Agronomy Journal87,176182. Lindner,K.(1982)DerStrömingswiderstandvonPflanzenbeständen,Mitteilungen desLeichtweissInstititfürWasserbau,TechnischeUniversität,Braunscheig75, 262pp. Linstead,C.(1999).TheinfluenceoflargewoodydebrisonBritishheadwater streams.PhDThesis,UniversityofBirmingham Lopez,F,Garcia,MH(1997).OpenChannelFlowThroughSimulatedVegetation: TurbulenceModellingandSedimentTransport.HydrosystemsLaboratory,

R&D ROUGHNESSREVIEW 111

DepartmentofCivilEngineering,UniversityofIllinois. LopezFandGarciaMH,(2000).MeanFlowandturbulencestructureofopen channelflowthroughnonemergentvegetation.JournalofHydraulic Engineering,127,392402. LoweR.L.(1979).PhytobenthicEcologyandRegulatedstreams.ProceedingFirst InternationalSymposiumonRegulatedStreams,EriePennsylvaniaApril18 20.EdsJ.V.Ward&J.A.Stanford.2534. Lyatkher,V.M.andGurin,I.N.(1978).Hydrauliccharacteristicsofflowsovera surfacecoveredwithherbaceousvegetation.VodnyeResursy,3,159168.[In Russian,translationofjournalavailable;seeWaterResources5,445454] MaccaferriSPA(1981).Flexiblegabionstructuresinriverandstreamtraining works.Section1.Weirsforrivertrainingandwatersupply. MadsenJ.D.(1986).Theproductionandphysiologicalecologyofthesubmerged aquaticmacrophytecommunityinBadfishCreek,Wisconsin.PhDThesis, DeptofBotany,Univ.ofWisconsinMadison. Madsen,T.V.andWarncke,E.(1983).Velocitiesofcurrentsaroundandwithin submergedaquaticvegetation.ArchivfürHydrobiologie97,389394. Madsen,T.V.andSöndergaard,M.(1983).Theeffectofcurrentvelocityonthe photosynthesisofCallitrichestagnalisScop.AquaticBotany15,187193. MaheshwariB&McMahonT(1992).Modellingshallowoverlandflowinsurface irrigation.JournalofIrrigationandDrainageEngineering,118,201217. Maizels,J.K.andstudents(1984).Ateacher/studentcommentaryonafieldtestof Manning'sroughnesscoefficient.JournalofGeographyinHigherEducation8, 137150. ManzDH&WesthoffDR(1987/8).Numericalanalysisoftheeffectsofaquatic weedsontheperformanceofirrigationconveyancesystems.CanadianJournal ofCivilEngineering.15,113. MalekE.A.(1975).EffectoftheAswanHighdamonprevalenceofschistosomiasis inEgypt.TropicalandGeographicalMedicine27,359364. Mangelsdorf,J.,Scheurmann,K.,Weiss,F.H.(1990).RiverMorphology:aGuide forGeoscientistsandEngineers.SpringerVerlag,Germany. Manning,R,(1891).Ontheflowofwaterinopenchannelsandpipes.Transactionsof theInstituteofCivilEngineersofIreland20,161207.(Alsosupplementary paper(1895)24,179207.) Marati,P.andAdrian,R.J.(1984).Directionalsensitivityofsingleandmultiple sensorprobes.TSIQuarterly10(2),311. MarklundO,BlindowI&HargebyA(2001).Distributionanddielmigrationof macroinvertebrateswithindensesubmergedvegetation.FreahwaterBiology46, 913924. Markstein,B.andSukopp,H.(1980).DieUfervegetationderBerlinerHavel196277. GartenundLandschaft,1/80,3036.[Designandmanagementwaterside vegetationchanges] MarshallE.J.P.andWestlakeD.F.(1978).Recentstudiesontheroleofaquatic macrophytesintheirecosystem.ProceedingsoftheEuropeanWeedResearch Council5thinternationalSymposiumonAquaticWeeds,4351. MarshallEJPandWestlakeDF(1990).Watervelocitiesaroundwaterplantsin chalkstreams.FoliaGeobotanicaPhytotaxonomica25,279289. and/orIn:ProceedingsFirstInternationalWorkshoponAquaticPlants,Illmitz,1981 (ed.L.Hammer).Cramer,Braunschweig.CHECK MasonPJ(1984).Erosionofplungepoolsdownstreamofdamsduetotheaction

R&D ROUGHNESSREVIEW 112

offreetrajectoryjets,Proc.InstitutionofCivilEngineers,Paper8734,76, 523537. McCollumRA,O'NealCWandGloverJE(1987).Bankprotection,Bass location,WilliametteRiver,Oregon.Hydraulicmodelinvestigation.USArmy CorpsofEngineers,WaterwaysExperimentalStation,Vicksburg, Massachusetts.TechnicalReportHL877. McKenney,R;Jacobson,RB;Wertheimer,RC(1995).Woodyvegetationand channelmorphogenesisinlowgradient,gravelbedstreamsintheOzark Plateaus,MissouriandArkansas.26thBinghamtonSymposiumin Geomorphology,(n.p.),68Oct1995eds:Hupp,CR;Osterkamp,WR; Howard,AD,Geomorphology,Terrestrial&FreshwaterSystems,1995,175 198,[inGeomorphology:Terrestrial&FreshwaterSystems,13,14.] McWhorter,J.C.,Carpenter,T.B.andClark,R.W.(1968).Hydrauliccharacteristics ofchannelswithartificialliners.TransactionsoftheAmericanSocietyof AgriculturalEngineers68,207. MeijerDGandvanVelzenEH,(1999).Prototypescaleflumeexperimentson hydraulicroughnessofsubmergedvegetation.IAHRcongress1999,Graz. MellquistP.(1984).Summariesfromtheweirprojectinformationbulletins. NorwegianWaterResourcesandElectricityBoard41pp. MertensW(1994).Hydraulicresistanceinnaturalisedchannels.Wasserwirtschaft 84138141. MichiokuK,TakemotoO&HirotaM(1999).Flowresistanceinanopenchannel withanalternativerifflepoolarrangement.JournalofHydroscienceand HydraulicEngineering17,87101. MiersRH,(1973).TheCivilEngineerandFieldDrainage.Presentedatameeting iftheRiverEngineeringSectionoftheInstiutionofWaterandEnvironmental Managers. Miers,R.H.(1979).Landdrainageitsproblemsandsolutions.Journalofthe InstitutionofWaterEngineersandScientists33,547579. Miles,W.D.(1976).Landdrainageandweedcontrol.BritishCropProtection Council,SymposiumonAquaticHerbicides,Oxford1976,Monograph16,713. MillarRG&QuickMC(1998).Stablewidthanddepthofgravelbedriverswith cohesivebanks.JournalofHydraulicEngineering124,10051013. MillerACetal(1983).Physicalmodellingofspursforbankprotection, Proceedings,Rivers'83,RiverMeandering,ASCE,NewOrleans,October, 9961007. MillsC.A.(1981).Thespawningofroach Rutilis rutilis L.inachalkstream. FisheriesManagement12,4954. MilneJA(1982).Bedmaterialsizeandtherifflepoolsequence,Sedimentology, 29,267278. Ming,Li,R.andShen,H.W.(1973).Effectoftallvegetationsonflowandsediment. JournaloftheHydraulicsDivision,ProceedingsoftheAmericanSocietyofCivil Engineers99,793814(Discussion:1973,99,793814;1974,100,255256; 1974,100,495497;1974.100,1484.) Mirtskhoulava,TE(1973).Scourinriverbasinandinitsbedmechanism,forecast. In:SedimentTransportation,1;ProceedingsoftheInternationalAssociation forHydraulicResearchSymposiumonRiverMechanics,Bangkok,Thailand, January912,1973.8191. MohamoodYM(1992).EvaluatingManning’sroughnescoefficientsfortilled

R&D ROUGHNESSREVIEW 113

soils.JournalHydrology135,143156. Montes,J.S.(1998).HydraulicsofOpenChannelFlow.ASCEPress,NewYork, USA,712pp. Morris,JandSutherlandDC.(1992).Theevaluationofrivermaintenance.MAFF RiverandCoastalEngineersConference,Loughborough. Murota,A.,&Fukuhara,T.(1983).Experimentalstudyonturbulencestructurein openchannelflowwithaquaticplants.ProceedingsJapaneseSocietyCivil Engineering338,97103.[InJapanese,notread] Murota,A.,Fukuhara,T.andSato,M.(1984).Turbulencestructureinvegetated openchannelflows.JournalofHydroscienceandHydraulicEngineering2, 4761. MurphyK.J.andEatonJ.W.(1982).Themanagementofaquaticplantsina navigablecanalsystemusedforamenityandrecreation.6thInternational SymposiumonAquaticWeeds,2025September1982.EuropeanWeed ResearchSociety141151. MurphyK.J.andEatonJ.W.(1983).Effectsofpleasureboattrafficonmacrophyte growthincanals.JournalofAppliedEcology20,713729. Myers,WRCandElsawy,E.M.(1975).Boundaryshearinchannelwithflood plain.JournaloftheHydraulicsDivision,ProceedingsoftheAmerican SocietyofCivilEngineers101,933946.(Discussion:1974,102,542;102, 802;102,1769.) Myers,W.R.C.(1982).Flowresistanceinwiderectangularchannels.Journalof HydraulicsDivision,ProceedingsoftheAmericanSocietyofCivilEngineers 108,471482. NakagawaH.,TsujimotoT.,ShimizuY.(1992).SedimentTransportinVegetated bedChannel.5 th InternationalSymposiumonRiverSedimentation.Karlsruhe 1992. Nalluri,C,Judy,ND(1989).FactorsAffectingRoughnessCoefficientinVegetated Channels.ProceedingsoftheInternationalConferenceonChannelFlowand CatchmentRunoff:CentennialofManning'sFormulaandKuichling's RationalFormula.UniversityofVirginia,CharlottesvilleVA.,1989,589598 NationalRiversAuthoritySevernTrent(NRAST),(1991).Manning’s RoughnessStudySecondInterimReport Naot,D.,Nezu,I.,Nakagawa,H.(1996).HydrodynamicBehaviourofpartly vegetatedopenchannels.JournalofHydraulicEngineering,122,625633. Naot,D.,Nezu,I.,Nakagawa,H.(1996).Unstablepatternsinpartlyvegetated channels.JournalofHydraulicEngineering.Vol.122,671673. NationalAcademyofSciences(1976).Reportofanadhocpaneloftheadvisory committeeontechnology,InnovationBoardonscienceandtechnologyfor InternationalDevelopmentCommissiononIntertationalRelations,National AcademyofSciences,Washington,175pp. NationalRiversAuthority(1995).TheNewRiversandWildlifeHandbook.The RoyalSocietyfortheProtectionofBirds,426pp. NaturalEnvironmentResearchCouncil(1975).FloodStudiesReport;Vol.III FloodRoutingStudies.WhitefriarsPress.76pp. NegriP,FisherKRandWheeldonJ,(1999).Monitoringandanalysisofhydraulic dataontheRiverCole.HRWallingfordReportTR75. Nepf,H.M.(1997).Drag,Turbulence,andDiffusioninFlowThroughEmergent Vegetation.WaterResourcesResearch35,479489. NepfHM,SullivanJA&ZavistoskiRA(1997).Amodelfordiffusionwithin

R&D ROUGHNESSREVIEW 114

emergentvegetation.Limnology&Oceanography42,17351745. NepfHM&VivoniER(1999).Turbulencestructureindepthlimited,vegetated flow:transitionbetweenemergentandsubmergedregimes,XXVIIIIAHR CongressGrazConferenceProceedings,p217[onCD] Newall,A,(1993).Themicroflowenvironmentsofaquaticplantsanecological persepective.DeptofGeography,UniversityofReading.Perscomm. NewallAM,(1995).Themicroflowenvironmentsofaquaticplants–anecological perspective.Theecologicalbasisforriverbasinmanagement.EditedbyDM HarperandAJDFerguson. Newbury,R.W.andM.N.Gaboury,(1993).StreamAnalysisandFishHabitat Design,AFieldManual.NewburyHydraulicsLtd.BritishColumbia,Canada, VON1V0. Newcombe,C.L.,Morris,J.H.,Knutson,P.L.andGorbico,C.S.(1979).Bankerosion controlwithvegetation,SanFransiscoBay,California.USCorpsofEngineers, MiscellaneousReportNo.792,33pp. NezuIandNaotD(1999).Partlyvegetatedopenchannels;newexperimental evidence.IAHR conferenceGraz Nikuradse,J.(1933).VDIForschungschaft361 Nikora,V.I.;Goring,D.G.;Biggs,B.J.F.(1998).Ongravelbedroughness characterisation.WaterResourcesResearch34(3):517527. Nikora,V.I.;Goring,D.G.;McEwan,I.,andGrifiths,G.(2001).Spatiallyaveraged openchannelflowoverroughenedbed.JournalofHydraulicEngineering, ASCE,Vol127,No.2p123133 Nnaji,S.andWu,I.P.(1973).Flowresistancefromcylindricalroughness.Journalof theIrrigationandDrainageDivision,ProceedingsoftheAmericanSocietyof CivilEngineers99,1526.(Discussion:1974,100,390393.) Novak,P.(1981).CommunicationonvariationofManning's'n'roughnesscoefficient withflowinopenriverchannels.JournaloftheInstitutionofWaterEngineers andScientists35,9495. NRA(1991).Manning’sroughnessstudy–secondinterimreport(Personal communicationwithHRWallingford Obendorf,K.(1978).AbflussverhaltenoffenerGerinneunterbesonderer BerücksichtigunglebenderBauelemente,131pp.RheinischWestfälischen TechnischenHochschule,Aachen.Dr.Eng.Dissertation. Obendorf,K.(1978).RauhigkeitsverhaltenundErmittlungvonRauhigkeitsbeiwerten beimnaturnahenAusbauderGewässer.MitteilungenausdemInstitutfür WasserbauundWasserwirtschaftRheinischWestfälischenTechnischen Hochschule,Aachen25,49202.[Roughnessbehaviouranddeterminationof roughnessparametersinriverregulationwithnaturalrevegetation.] Ohkawa,H.andOhkuma,T.(1978).Effectsofaquaticweedswithlongleaveson flowandturbulenceinopenchannels.Proceedings22ndJapaneseConferenceon Hydraulics,1978,4348.[InJapanesenotread.] Oksiyuk,O.P.,Merezhko,A.I.andVolkova,T.F.(1978).Useofhigheraquatic vegetationforimprovingwaterqualityandstabilizingcanalbanks.Water Resources5,556562. Omerod,S.(1977).Astudyofvegetativeliningsforearthchannelsandwaterways, 76pp.BScSpecialStudyReport.NationalCollegeofAgriculturalEngineering, Silsoe. Onslow,C.(1982).Someeffectsofseasonalriverweedanditsremoval,uponriver flowcharacteristics,163pp.DepartmentofGeography,Birmingham.B.A.Diss.

R&D ROUGHNESSREVIEW 115

Osborne,N.F.(1976).Hydrauliccharacteristicsofweedsinwatercourses,41pp. NationalCollegeofAgriculturalEngineering,Silsoe,BScSpecialStudyReport. O’SullivanJJ,LynessJFandMyersWRC,(1996).PostProjectMonitoringoffish habitatsontheRiverBlackwater.UniversityofUlsterReport. OwensMandEdwardsRW(1961).TheeffectsofplantsonriverconditionsIII. Furthercropstudiesandestimatesofnetproductivityofmacrophytesinfour chalkstreamsinSouthernEngland.JournalofEcology157162. Palmer,V.J.(1945).Amethodfordesigningvegetatedwaterways.Agricultural Engineering26,515520. Palmer,V.J.(1946).Retardancecoefficientsforlowflowinchannelslinedwith vegetation.Transactions.AmericanGeophysicalUnion27,187197. [Experimentallowflowstudiesongrasslinedchannels,tallvegetation,no submergenceofplants,earlyintroductionofn/vrrelationship.] Palmer,V.J.andLaw,W.P.(1947;revised1954)Handbookofchanneldesignforsoil andwaterconservation.USSoilConservationServiceTechnicalPaper61, 187197.StillwaterOutdoorHydraulicLaboratory,Stillwater,Oklahoma,US DepartmentofAgricultureSoilConservationService,WashingtonDC. Parker,G.andAnderson,A.G.(1977).Basicprinciplesofriverhydraulics.Journalof theHydraulicsDivision,ProceedingsoftheAmericanSocietyofCivilEngineers 103,10771087.(Discussion:1978,103,941942;103.11131115;103,1202; 1979,104,158.) Parsons,D.A.(1963)Vegetativecontrolofstreambankerosion.AgriculturalResearch Service,Jackson,Mississppi,ProceedingsFederalInterAgencySedimentation Conference,MiscellaneousPublicationsNo.970,paper20,130136. Pasche,E.,Evers,P.andRouvé,G.(1983).Investigationsonhydrauliceffectsof vegetatedfloodplainsincompoundcrosssectionsandtheirinfluenceon dischargecapacity.Proceedingsofthe20thCongressoftheInternational AssociationofHydraulicResearch,Moscow1983,V,489497.VINITI, Moscow. PascheEandRouveG(1985).Overbankflowwithvegetativelyroughenedflood plains.JournalofHydraulicEngineering,111,12621278. Pasche,E,1984 . Turbulencemechanisminnaturalstreamsandthepossibilityofits mechanicalrepresentation,MitteilungenInstitutfürWasserbauand Wasserwirtschaft,No.52.RWTHAachen.[inGerman] Paudyal,GN,Panigrahi,B(1989).DeterminationofManning'snandFriction FactorinVegetatedWaterways.ProceedingsoftheInternationalConference onChannelFlowandCatchmentRunoff:CentennialofManning'sFormula andKuichling'sRationalFormula.UniversityofVirginia,CharlottesvilleVA. 1989,579588 Pepper,A.T.(1971).Investigationofvegetationandbendflowretardationofastretch oftheRiverOusel,64pp.NationalCollegeofAgriculturalEngineering,Silsoe. BScDissertation. Pepper,A.T.andWaterhouse,J.(1971).Ateachingprojectinagriculturalengineering relatingchannelroughnesstovegetation.EducationinFluidMechanics (ArmfieldEngineeringJournal)7,1113.[AsPepper1971.] Peter,P.(ed.)(1982).Canalsandriverlevées,DevelopmentsinGeotechnical Engineering29.Elsevier,Amsterdam,540pp. Petersen,M.S.(1986).RiverEngineering.PrenticeHall,580pp. Petryk,S.(1969).Dragoncylindersinopenchannelflow.ColoradoStateUniversity, FortCollins,Colorado.PhDThesis.

R&D ROUGHNESSREVIEW 116

Petryk,S.andBosmajian,G.(1975).Analysisofflowthroughvegetation.Journalof theHydraulicsDivision,ProceedingsoftheAmericanSocietyofCivilEngineers 101,871884. Petryk,S.andGrant,E.U.(1978).Criticalflowinriverswithfloodplains.Journal oftheHydraulicsDivision,ProceedingsoftheAmericanSocietyofCivil Engineers104,583594.(Discussions:1978,105,287;105,433.) PettitNE,FroendRHandDaviesPM,(2001).Identifyingthenaturalflowregime andtherelationshipwithriparianvegetationfortwocontrastingWesern Australianrivers.RegulatedRivers:ResearchandManagement17:201215. Petts,G.E.(1984).Impoundedrivers.Perspectivesforecologicalmanagement. Wiley,Chichester,344pp.[Seepp.1389.] PeyrasL,RoyetPandDegoutteG(1992).Flowandenergydissipationover steppedgabionweirs,JournalofHydraulicEngineering,ASCE,118,707717. Phelps,H.O.(1970).Thefrictioncoefficientforshallowflowsoverasimulated turfsurface.WaterResourcesResearch6,12201226. Phelps,H.O.(1975).Frictioncoefficientsforlaminarsheetflowoverroughsurfaces. ProceedingsInstitutionofCivilEngineers59,2141. Phelps,H.O.(1975).Shallowlaminarflowsoverroughgranularsurfaces.Journal oftheHydraulicsDivision,ProceedingsoftheAmericanSocietyofCivil Engineers101,367384. Pickels,G.W.(1931).RunoffinvestigationsincentralIllinois.UniversityofIllinois EngineeringDepartmentExperimentalStationBulletin232. PimpertonAJandKarleML(1993).Thevariationofroughnesscoefficientwith flowinnaturalchannels,NRASTRegion. Pitlo,R.H.(1978).Regulationofaquaticvegetationbyinterceptionofdaylight. EuropeanWeedResearchSociety,Proceedingsofthe5thSymposiumon AquaticWeeds,Amsterdam1978,91100. Pitlo,R.H.(1979).Biologischslootonderhoudmetbehulpvandrijvendevegetaties. Waterschapsbelangen13,283290.[inDutch] Pitlo,R.H.(1982).Flowresistanceofaquaticvegetation.EuropeanWeedResearch Society,Proceedings6thSymposiumonAquaticWeeds,NoviSad,1982, 255234. PitloRH(1986).Towardsalargerflowcapacityofvegetatedchannels. ProceedingsEWRS/AAB7thSymposiumonAquaticweeds,1986. PitloR.H.&DawsonF.H.(1989).Flowresistancebyaquaticvegetation.In: AquaticWeeds(edsA.H.Pieterse&K.JMurphy)7484,OxfordUniversity Press. PlateE.J.,QuraishiA.A.,(1965).ModelingofVelocityDistributionsInsideand AboveTallCrops,JournalofAppliedMeteorology,4,400408 Podmore,T.H.andHuggins,L.F.(1980).Surfaceroughnesseffectsonoverland flow.TransactionsoftheAmericanSocietyAgriculturalEngineers23, 14341439and1445. Poff,NL,Allan,JD,Bain,MB,Karr,JR,Prestegaard,KL,Richter,BD,Sparks, REandStromberg,JC(1997).Thenaturalflowregime:aparadigmforriver conservationandrestoration,BioScience,Vol.47,No.11,pp769784. Ponce,V.M.,H.Indlekofer,andD.B.Simons(1978).ConvergenceofFourPoint ImplicitWaterWaveModels.JournalofHyd.Div.,ASCEHY7104,pp.947 958. PondR.H.1903(1905).TheBiologicalrelationofaquaticplantstothesubstratum. U.S.CommissionofFishandFisheries,reportofthecommissioner24,484

R&D ROUGHNESSREVIEW 117

526. Powell,K.E.C.(1972).TheroughnesscharacteristicsofthereachoftheRiverBainat FulsbyLock.LincolnshireRiverAuthority,ReportoftheHydrologicalSection, 25pp. Powell,K.E.C.(1978).Weedgrowthafactorinchannelroughness.In:Hydrometry. Principlesandpractices,(edR.W.Herschy),327352.JohnWileyandSons, Chichester. Prandtl,L.(1904).ÜberFlüssigkeitsbewegungbeisehrkleinerReibung.Verhandlung IIIInternationalerMathematischeKongress,Heidelberg1904. Prandtl,L.(1965).FührerdurchdieStrömungslehre(6thed.)(edsK.Oswatitschand K.Weighardt).Vieweg,Braunschweig,523pp. Prantle,R.(1956).AufstauundVerkrautung.WasserundBoden3,7880. Przedwojski,B.,Blazejewski,R.,Pilarczyk,K.W.(1995).RiverTraining Techniques:Fundamentals,TechniquesandApplications.Balkema,The Netherlands,686pp. PygottJR(1995).Theeffectsofboattrafficoncanalecosystems.PhDThesis, UniversityofLiverpool,England. QuernerEP(1994).Aquaticweedcontrolwithinanintegratedwatermanagement framework.Report67,AgriculturalResearchDepartment,Wageningen, Netherlands. Quinton,WL;Gray,DM;Marsh,P(2000).Subsurfacedrainagefromhummock coveredhillslopesintheArctictundra.JournalofHydrology(Amsterdam) 237,113125. Rabeni,C.F.andMinshall,G.W.(1977).Factorsaffectingmicrodistributionofstream benthicinsects.Oikos29,3343. RahmeyerW,WerthDandFreemanGE,(1996).Flowresistanceduetovegetation incompoundchannelsandfloodplains,SemiAnnualConferenceonMultiple solutionstoFloodplainManagement,Utah,Nov1996. Rákóczi,L.(1983).Effectsofvegetationonflowconditionsinshallowreservoirs. Proceedingsofthe20thCongressoftheInternationalAssociationforHydraulic Research,Moscow1983,II,3543.VINITI,Moscow. RamamurthyAS,TimUSandRaoMVJ(1988).Characteristicsofsquareedged androundnosedbroadcrestedweirs.JournalofHydraulicEngineering, ASCE114,6173. Ramser,C.E.(1929).Flowofwaterindrainagechannels.USDepartmentof Agriculture,TechnicalBulletinNo.129.102pp.[SupersedesDepartmental Bulletin832.SeeabstractinChow1981.] Raudkivi,A.J.(1998).LooseBoundaryHydraulics.Balkema,TheNetherlands, 512pp. Raupach,M.RandShaw(1982) Raupach,M.R.andThom,A.S.(1981).Turbulenceinandaboveplantcanopies. AnnualReviewofFluidMechanics13,97129. RavenJ.,BeardallJ.andGriffithsH.(1982).InorganicCsourcesfor Lemnaea , CladophoraandRanunculusinafastflowingstream:measurementsofgas exchangeandofCarbonIsotoperatioandtheirecologicalimplications. Oecologia(Berlin)53,6878. RavenP.J.,Holmes,H.T.H.,DawsonF.H.,FoxP.J.A.,EverardM.,Fozzard,I.& RouenK.J.(1998).RiverHabitatQualityThephysicalcharacterofriversand streamintheUKandIsleofMan.RiverHabitatSurveyReportNo.2. EnvironmentAgency,90pp.

R&D ROUGHNESSREVIEW 118

RawlenceD.J.andWhittonJ.S.(1976).Anelementalsurveyoftheaquatic macrophytes,waterandplanktonfromtheWaikatoRiver,NorthIsland,New Zealand.Mauriora4,121131. Ree,W.O.(1939).Someexperimentsonshallowflowsoveragrassedslope. Transactions.AmericanGeophysicalUnion4,653656. Ree,W.O.(1941).HydraulictestsofKudzuasaconservationchannellining. AgriculturalEngineering22,2729. ReeWO(1949).Hydrauliccharacteristicsofvegetationforvegetatedwaterways. AgriculturalEngineering,30,184189. Ree,W.O.andPalmer,V.J.(1949).Flowofwaterinchannelsprotectedbyvegetative linings.USDepartmentofAgriculture,SoilConservationServiceTechnical BulletinNo.967,115pp. Ree,W.O.(1958).Retardationcoefficientsforrowcropsindiversionterraces. TransactionsoftheAmericanSocietyofAgriculturalEngineers1,7880. Ree,W.O.(1960).Theestablishmentofvegetationlinedwaterways.Departmentof LandscapeArchitecture,OhioStateUniversity,19thShortCourseonRoadside Development,5465. Ree,W.O.andCrow,F.R.(1977).Frictionfactorsforvegetatedwaterwaysofsmall slope.USDepartmentofAgriculture,AgriculturalResearchService,Publication S151,56pp. Ree,W.O.,Winberley,F.L.andCrow,F.R.(1977).Manning'n'andtheoverlandflow equation.TransactionsoftheAmericanSocietyofAgriculturalEngineers20, 8995. Ree,W.O.(1985).Retardationcoeficientsforrowcropsindiversionterraces. TransactionsoftheAmericanSocietyofAgriculturalEngineers1,7880. Rehkugler,G.E.andBuchele,W.F.(1969)Biomechanicsofforagewatering. TransactionsoftheAmericanSocietyofAgriculturalEngineers12,18. Reiter,M.A.andCarlson,R.E.(1986).Currentvelocityinstreamsandspecies compositionofbenthicalgalmats.CanadianJournalofFishandAquaticScience 43,11561162. Richards,K.ed.(1987).RiverChannels:EnvironmentandProcess.TheInstituteof BritishGeographers,SpecialPublicationSeries,391pp. RichardsKS(1976).Themorphologyofrifflepoolsequences,EarthSurface Processes,1,7188. Richards,G.andHollis,G.E.(1980).Relationshipoftheroughnesscoefficient Manning's'n'anddischargeinanurbanriver.JournaloftheInstitutionofWater EngineersandScientists34,357360.(Responsesandreply,idid.pp.4523.) Richards,K.S.(1982).Rivers:FormandProcessesinAlluvialChannels.Methuen, 358pp. Ridenour,GS,Giardino,JR(1995).Logratiolinearmodellingofhydraulic geometryusingindicesofflowresistanceascovariatesGeomorphology,14, 6572. Ritterbach,E,Rouve,G(1989).BackwaterComputationofNaturalRiverswith ExtremeBankorFloodplainRoughness.ProceedingsoftheInternational ConferenceonChannelFlowandCatchmentRunoff:CentennialofManning 'sFormulaandKuichling'sRationalFormula.UniversityofVirginia, CharlottesvilleVA.1989,468477. Roberson,J.A.(1961).Surfaceresistanceasafunctionoftheconcentrationandsize distributionofroughnesselements.UniversityofIowa,IowaCity.PhDThesis. Robertson,J.A.(1968).Surfaceresistanceofplaneboundariesroughenedwith

R&D ROUGHNESSREVIEW 119

discretegeometricshapes.WashingtonStateUniversity,CollegeofEngineering ResearchDivision,BulletinNo.308. Robson,T.O.(1968).Thecontrolofaquaticweeds.MinistryofAgriculture,Fisheries andFoodBulletinNo.194,54pp. Rodi,W(1980).Turbulencemodelsandtheirapplicationinhydraulics.,IAHR, June Rouse,H.(ed.)(1965).SectionsGSurfaceresistance&HFormresistance.In: Engineeringhydraulics.JohnWileyandSonsInc.NewYork,99135. Rouse,H.(1965).Criticalanalysisofopenchannelresistance.Journalofthe HydraulicsDivision,ProceedingsoftheAmericanSocietyofCivilEngineers91, (July)125.(Discussion:1965,91(Nov),247;1966,92(March),387;91July, 154.) RousseauJ,(1962).Theconnectionbetweenvegetationandhighwaterlevelsin rivers.LaHouilleBlanche,No5. Rutherford,J.C.(1977).Modelingeffectsofaquaticplantsinrivers.Journalofthe EnvironmentalEngineeringDivision,AmericanSocietyofCivilEngineers, 575591. SalamaMMandBakryMF(1992).Designofearthen,vegetatedopenchannels. WaterResourcesManagement6,149159. Samuels,P.G.(1989).CharacteristicBackwaterLengths.ProceedingsonICE: ResearchandTheory.pp.571582. SandJensenk(1999).Influenceofsubmergedmacrophytesonsediment compositionandnearbedflowinlowlandstream.FreshwaterBiology39, 663679. SandJensenK&PedersenO(1999).Velocitygradientsandturbulencearound macrophytestandsinstreams.FreshwaterBiology42,315328. SandJensenK&RuggardMebusJ(1996).Finescalepatternsofwatervelocity withinmacrophytepatchesinstreams.Oikos76,169180. Saowapon,C,Kouwen,N(1989).APhysicallyBasedModelforDeterminingFlow ResistanceandVelocityProfilesinVegetatedChannels.Proceedingsofthe InternationalConferenceonChannelFlowandCatchmentRunoff:Centennial ofManning'sFormulaandKuichling'sRationalFormula.Universityof Virginia,CharlottesvilleVA.1989,559568. Sargent,R.J.(1979).VariationofManning's'n'roughnesscoefficientwithflowin openriverchannels.JournaloftheInstitutionofWaterEngineersand Scientists33,290294. SastroutomoS.S.,IkusimaI.,NumataM.andIzumiS.(1979).Theimportanceof turionsinthepropogationofpondweed( Potamogeton crispus L.).Ecological Review19,7588. SayP.J.(1978).LeRiouMort,affluentduLotpollueparmeteauxlourdes.IEtude preliminairedelachemieetdesalguesbenthiques.AnnalsdeLimnologie14, 113131. Sayer,W.W.andAlbertson,M.L.(1961).Roughnessspacinginrigidopen channels.JournaloftheHydraulicDivision,ProceedingsoftheAmerican SocietyofCivilEngineers87,121150.(Discussion:1961,87,249270;1962, 88,97107;88,249264.) Schenk,E.(1965).DieErmittlungeinesobjectivenVerkrautungsundEntkrautungs FactorenfürdieFlussläufe.DeutschegewässerkundlicheMitteilungen,9, 101110. Schlichting,H.(1979).Boundarylayertheory,(7thedition).McGrawHillCo.New

R&D ROUGHNESSREVIEW 120

York,817pp. Schmitz,W.(1961).Fliessgewässerforschung:HydrographieundBotanie. VerhandlungenderinternationaleVereiningungfürtheoretischeundangewandte Limnologie14,541586. Schneider,V.R.andDruffel,L.A.(1975).Computingbackwateranddischargeat widthconstrictionsinwide,heavilyvegetatedfloodplains.Modern DevelopmentsinHydrometry:ProceedingsofanInternationalSeminar,Padua 1975,II,8393.WorldMeteorologicalAssociation,Geneva.(Also,1977,US GeologicalSurveyWaterResourcesInvestigations76129,64pp..)[astitle] Scobey,F.C.(1939).Theflowofwaterinirrigationandsimilarchannels.US DepartmentofAgriculture,TechnicalBulletinNo.652,79pp. Schumm,S.A.(1977).TheFluvialSystem.JohnWileyandSons,338pp. Schumm,S.A.,Mosley,M.P.,Weaver,W.E.(1987).ExperimentalFluvial Morphology.JohnWileyandSons,413pp. SculthorpeC.D.(1967).TheBiologyofAquaticVascularPlants.E.Arnold,610 pp SchuttenJ&DaveyAJ(2000).Predictingthehydraulicforcesonsubmerged macrophytesfromcurrentvelocity,biomassandmorphology.Oecologia123, 445452 ScottA.(1985).Distribution,growthandfeedingofpostemergentgrayling Thymallus thymallus inanEnglishriver.TransactionsAmericanFish.Society 114,525531. Sear,DA;Darby,SE;Thorne,CR;Brookes,AB(1994)Geomorphological approachtostreamstabilizationandrestoration:casestudyoftheMimmshall brook,Hertfordshire,UK.RegulatedRivers:Research&Management,9,205 223. SeedDJ,(1997).Guidelinesonthegeometryofgroynesforrivertraining,HR WallingfordReportSR493. Seginer,I.,Mulhearn,P.J.,Bradley,E.F.andFinnigan,J.J.(1976).Turbulentflow inamodelplantcanopy.BoundaryLayerMeteorology10,423453. Seginer,I.andMulhearn,P.J.(1978).Anoteonverticalcoherenceofstreamwise turbulenceinsideandaboveamodelplantcanopy.BoundaryLayer Meteorology14,515523. Seibert,P.(1968).Importanceofnaturalvegetationfortheprotectionofthebanks ofstreams,riversandcanals.CouncilofEurope,NatureandEnvironment Series,Munich,3567. Sellin,RHJ;Giles,A;vanBeesten,DP(1990).PostImplementationAppraisalofa TwoStageChannelintheRiverRoding,Essex.JournaloftheInstitutionof WaterandEnvironmentalManagement4,119130.CHECKFOR‘n’s SellinR,WilsonCAMEandNaishC,(2001).Modelandprototyperesultsfora sinuoustwostageriverchanneldesign.J.CIWEM15,207216. SephtonEP(1983).Theeffectoffloodalleviationworksongravelbedrivers,Int. Conf.ontheHydraulicAspectsofFloodsandFloodControl,London, England,September1983,PaperB1,3745. SevernFR(1982).Theconflictofinterestbetweenlanddrainageandhabitat conservation:theeffectsofwatercoursevegetationonchannelcapacity.MSc Report,CentreforEnvironmentalTechnologyImperialCollegeofS&T, 119pp. Shapiro,A.H.(1961).Shapeandflow:Thefluiddynamicsofdrag.Heinemann, London,187pp.[interestingbackgroundesp.forbiologists]

R&D ROUGHNESSREVIEW 121

Sharp,W.C.(1970).10yearreportonslopingtechniquesusedtostabilizeeroding tidalriverbanks.ShoreandBeach38,3135. Shen,HW(1973)Flowresistanceovershortsimulatedvegetationandvarioustall simulatedvegetationgroupingsonflowresistanceandsedimentyield.In: Environmentalimpactonrivers.(ed.H.W.Shen),31to351.ColoradoState University,FortCollins. Shen,HW(1972).Sedimentationandcontaminantcriteriaforwatershedplanning andmanagement.CompletionReportO.W.R.R.ProjectB014COLO. ColoradoStateUniversity,FortCollins,Colorado(PB2116651). Shen,H.W.(1979).Chapter1.Introduction,flowresistance,sedimenttransport.In: Modelingofrivers(ed.H.W.Shen),130.WileyInterscience,NewYork. Shields,FD;Nunnally,NR(1984).EnvironmentalAspectsofClearingand SnaggingJournalofEnvironmentalEngineering110,152165. Shields,FD;Gray,DH(1992).EffectsofWoodyVegetationonSandyLevee Integrity.WaterResourcesBulletin28,917931. ShieldsFDandGippelCJ,(1995).Predictionofeffectsofwoodydebrisremoval onflowresistance.JournalofHydraulicEngineering.121,341354. [DiscussionbyMarriottMJ,122,471;andclosure122,471472]. ShihSFandRahiGS(1982).SeasonalvariationsofManning’sroughness coefficientinasubtropicalmarsh.AmericanSocietyofAgricultural Engineers,Vol25,No.1,116119. Shimizu,Y.,Tsujimoto,T.(1994).NumericalAnalysisofTurbulentOpenChannel FlowOveraVegetationLayerUsingakεTurbulenceModel.Journalof HydroscienceandHydraulicEngineering,11,5767. Silvester,N.R.andSleigh,M.A.(1985).Theforcesonmicrorganismsatsurfacesin flowingwater.FreshwaterBiology15,433448.[biologistsoverviewrelatedto microrganisms] Shimizu,Y.,Tsujimoto,T.(1994).NumericalAnalysisofTurbulentOpenChannel FlowOveraVegetationLayerUsingakεTurbulenceModel.Journalof HydroscienceandHydraulicEngineering.Vol.11(2):57–67. SimonsDBandRichardsonEV,(1966).Resistancetoflowinalluvialchannels. USGeologicalSurvey,ProfessionalPaper422J. Simons,D.B.andRichardson,E.V.(1962).Theeffectofbedroughnessondepth dischargerelationsinalluvialchannels.USGeologicalSurvey,WaterSupply PaperNo.1498E,26pp. Simons,D.B.andRichardson,E.V.(1966).Resistancetoflowinalluvialchannels. USGeologicalSurvey,ProfessionalPaperNo.422J. Simons,D.B.andRichardson,E.V.(1960).Resistancetoflowinalluvial channels.ProceedingsoftheAmericanSocietyofCivilEngineers,Volume 86,No.HY5. SingerJ(1964).Squareedgedbroadcrestedweirsasaflowmeasurementdevice. WaterandWaterEngineering,28,229235. Sirjola,E.(1969).AquaticvegetationoftheRiverTeuronjoki,SouthFinlandand itsrelationtowatervelocity.AnnalesbotaniciSocietatiszoologicaebotanicae fennicaeVanamo6,6875. SlackK.V.andFeltzH.R.(1968).Treeleafcontrolonlowflowwaterqualityina smallBirginiastream.EnvironmentalScienceandTechnology2,126131. SkaB.andVandeBorghtP.(1986).TheproblemofRanunculus developmentin theriverSamois.Proceedings,EWRS/AAB7thSymposiumonAquatic Weeds,307314.

R&D ROUGHNESSREVIEW 122

SmailesEL(1996).Hydrauliceffectsofvegetationmanagement.HRWallingford ReportTR3,May. Smart,G.M.(1999).Turbulentvelocityprofilesandboundaryshearingravelbed rivers.JournalofHydraulicEngineering,ASCE125(2):106116. Smart,G.M.(1999).Coefficientoffrictionforflowresistanceinalluvialchannels withgranularbeds.WaterMaritime&Energy136(4):205210. Smart,G.M.(2000).Reviewof"GravelBedRiversintheEnvironment".Journalof HydraulicEngineering,ASCE126(1):9495. Smart,G.;Walsh,J.;Duncan,M.(1999).Roughnessandflowresistance.NZ HydrologicalSocietySymposium,Napier,23–26November,Symposium Abstracts,73. Smith,RJ,Hancock,NHandRuffini,JL(1990).Floodflowthroughtall vegetation,AgriculturalWaterManagement,18,317332. Soulsby,P.G.(1974).Theeffectofaheavycutandthesubsequentregrowthof aquaticplantsinaHampshirechalkstream.JournaloftheInstituteofFisheries Management5,4953. SoulsbyPG(1974).Theeffectofaheavycutonthesubsequentgrowthofaquatic plantsinaHampshirechalkstream.JournaloftheIrrigationandDrainage Division,ASCE,893156. Smith,I.R.(undated,about1975)Theeffectofaquaticweedsonwaterflowa workingpapertobeusedinconsiderationofaproposedproject.Agricultural ResearchCouncil,WeedResearchOrganisation,InternalReport,8pp. Smith,I.R.(undated,about1975)Theeffectofvegetationonthehydraulicbehaviour ofchannels.AgriculturalResearchCouncil,WeedResearchOrganisation, InternalReport,22pp.[ResultsofhydrauliceffectsofvegetationonRivers Wissey,Blackwater,LuggandHarpersBrook.] Smith,R.(1975).Turbulenceinlakesandrivers.ScientificPublicationsofthe FreshwaterBiologicalAssociationNo.29,79pp. SmithRJ,HancockNHandRuffiniJL(1990).Floodflowthroughtallvegetation. AgriculturalWaterManagement18,317332. Sokolov,YN1980HydraulicResistanceofFloodplainsWaterResources(English Translation)7,563572,TranslatedfromVodnyeResursy,6,143154. Sokolov,YN.(1982).Determinationofthehydraulicroughnessofavegetatedflood plain.HydrotechnicalConstruction16,96100. Song,C.C.S.andYang,C.T.(1979).Velocityprofilesandminimumstreampower. JournaloftheHydraulicsDivision,ProceedingsoftheAmericanSocietyofCivil Engineers105,981998.365. SoulsbyPG(1974).Theeffectofaheavycutonthesubsequentgrowthofaquatic plantsinaHampshirechalkstream.JournaloftheIrrigationandDrainage Division,ASCE.89,3156. Sperling,W.(1938).Evaluationofflowmeasurement,particularlywithallowancefor iceconditionsandweedgrowth.BalticStatesSixthHydrologicalConference, Germany1938. Spillett,P.B.(1981).Theuseofgroynesanddeflectorsinrivermanagement. AssociationofAppliedBiologists,ProceedingsoftheConferenceonAquatic WeedsandTheirControl,1981,Oxford189198. Sridharan,K.andKumar,M.S.M.(1981).Parametricstudyoffloodwave propagation.JournaloftheHydraulicsDivision,ProceedingsoftheAmerican SocietyofCivilEngineers107,10611076.(Discussion:1982,108,469;108, 973.)

R&D ROUGHNESSREVIEW 123

Starosolszky,Oe.(1983).Theroleofreedsintheshapingofcurrents.Proceedingsof the20thCongressoftheInternationalAssociationofHydraulicResearch MoscowV,498509.VINITI,Moscow. Statzner,B.(1981).Therelationbetween"hydraulicstress"andmicrodistributionof benthicmacroinvertebratesinalowlandrunningwatersystem,the Schierenseebrooks(N.Germany).ArchivfürHydrobiologie91,192218. Statzner,B.andHigler,B.(1986).Streamhydraulicsasamajordeterminantof benthicinvertebratezonationpatterns.FreshwaterBiology,16,27139.[Astitle.] Stephens,J.C.(1950).Flowofwaterindrainagechannels.USDepartmentof Agriculture,SoilConservtionService,AnnualReport,EvergladesProject,Fort Lauderdale,Florida,19491950. Stephens,J.C.,Blackburn,R.D.,Seaman,D.E.andWeldon,L.W.(1963).Flow retardancebychannelweedsandtheircontrol.JournaloftheIrrigationand DrainageDivision,ProceedingsoftheAmericanSocietyofCivilEngineers89, 3153.or56[Discussion:1963,89(Dec.),65;1964,90(June),111.] Stevens,G.T.,Meuller,D.S.andStrauser,C.N.(1983).Anewapproachtotheelusive Manning's'n'.In:Rivermeandering,(edC.M.Elliot),Proceedingsofthe Conference,'Rivers83',NewOrleans1983,586597.AmericanSocietyofCivil Engineers,Vicksburg. Stephenson,D.(1981).Stormwaterhydrologyanddrainage.Elsevier,Amsterdam, 423pp. Sternberg,R.W.(1968).Frictionalfactorsintidalchannelswithdifferingbed roughness.MarineGeology6,243260. StrandVV,2002.Theinfluenceofventilationsystemsonwaterdepthpenetration ofemergentmacrophytes.FreshwaterBiology47,10971105. Streeter,V.L.andE.B.Wylie(1983).FluidMechanics.McGrawHill.p.562 Sturm,T.W.(2001).OpenChannelHydraulics.McGrawHillSeriesinWater ResourcesandEnvironmentalEngineering,NewYork,493pp. Sukopp,H.andKunich,W.(1969).DieUfervegetationderBerlinerHavel.Naturund Landschaft(Basel)44,287292. Sukopp,H.(1973).ConservationofwetlandsincentralEurope.PolskieArchiwum Hydrobiologii20,223228. SzczpanskiA.(1976).Limitingfactorsandproductivityofmacrophytes.Folia GeobotanicaetPhytotoxanomica11,337432. SzemesG.(1967).SystematischesVerzeichnisderPflanzenweltderDonaumit einerzusammenfassendenErlauterungLimnologiederDonauEd.LiepoltR. (V)70131.E.SchweizerbartscheVerlagsbuchhandlung,Stuttgart. TansleyA.G.(1911).TypesofBritishVegetation.CambridgeUniversityPress, 416pp. TansleyA.G.(1953).TheBritishIslandsandtheirvegetation.Cambridge UniversityPress,930pp. TaskForceonFrictionFactorsinOpenChannels(1963).Frictionfactorsinopen channels.JournaloftheHydraulicsDivision,ProceedingsoftheAmerican SocietyofCivilEngineers89,97143. TaubaevT.(1970).FloraofMiddleAsiaticwaterbodiesanditsvalueforthe nationaleconomy.InstituteofBotany,AkadamyNaukUzbek.SSR,FAN, Taskent,491pp. Taube,C.M.(1967).Stabilizationofanerodedriverbank.JournalofSoiland WaterConservation22,67. TechnologyResearchCenterforriverfrontdevelopment,(1994).Proposed

R&D ROUGHNESSREVIEW 124

guidelinesontheclearingandplantingoftreesinrivers.Japan Temple,D.M.(1980).Tractiveforcedesignofvegetatedchannels.Transactionsofthe AmericanSocietyofAgriculturalEngineers23,884904. TempleDM,(1982).Flowretardanceofsubmergedgrasschannellinings. TransactionsoftheAmericanSocietyofAgriculturalEngineers25,13001303. TempleDM,(1983).DesignofGrasslineopenchannels.Transactionsofthe AmericanSocietyofAgriculturalEngineers26,10641069. TempleDM,(1986).Velocitydistributioncoefficientsforgrasslinedchannels. JournalofHydraulicEngineering112,193205. TempleD.M.(1987)ClosureofVelocityDistributionCoefficientsforGrassLined Channels,JournaloftheHydraulicsDivision,ASCE,113,12241226 TempleDM(1999).Flowresistanceofgrasslinedchannelbanks.Journalofthe SoilandWaterDivision,ASCE,15,129133. Thomann,R.V.(1987)PrinciplesofSurfaceWaterQualityModelingandControl. Harper&Row,NewYork,644pp. ThommenG.H.andWestlakeD.F.(1981).Factorsaffectingthedistributionof populationsof Apium nodiflorum and Nasturtium officinale insmallchalk streams.Aquat.Bot.11,2136. Thompson,G.T.(1974).Atheoryofflowresistanceforvegetatedchannels. WashingtonStateUniversity,Pullmann.PhDThesis. Thompson,G.T.andRobertson,J.A.(1976).Atheoryofflowresistanceforvegetated channels.TransactionsoftheAmericanSocietyofAgriculturalEngineers19, 288293. ThompsonSMandCampbellPL(1979).Hydraulicsofalargechannelpavedwith boulders,JournalofHydraulicResearch,17,(4),p341354. Thorne,C.R.(1998).StreamReconnaissanceHandbook:Geomorphological InvestigationandAnalysisofRiverChannels.JohnWileyandSons,England, 133pp. ThorneCRandZevenbergenLW,(1985).Estimatingmeanvelocityinmountain rivers.ProceedingsoftheAmericanSocietyofCivilEngineers,Journalof HydraulicEngineering,111(4),612624. ThorntonCI,AbtSR,MorrisCEandFischenichJC,(2000).Calculatingshear stressatchanneloverbankinterfacesinstraightchannelswithvegetated floodplains.JournalofHydraulicEngineering,126,929936. ThyssenN.(1982).Aspectsoftheoxygendynamicsofamacrophytedominated lowlandstreaminStudiesonAquaticVascularPlants(edsJ.J.Symoens,S.S. Hooper&P.Compere),2_213.ProceedingsInternationalColloquiumon AquaticVascularPlants,Brussels,2325January1981.Brussels:Royal BotanicalSocietyofBelgium. Tönsman,F.andMockenhaupt,L.(1981).EinflussvonPflanzformenanUfernund VorländernaufdieWasserspiegellagenbeiHochwasser.WasserundBoden 33(2),7276.[inGerman] Tollner,E.W.,Barfield,B.J.andHayes,J.C.(1982).Sedimentologyoferect vegetalfilters.JournaloftheHydraulicsDivision,Proceedingsofthe AmericanSocietyofCivilEngineers108,15181531. TominagaA,NagaoMandNezuI,(1999a).Flowstructuresandmomentum transportprocessesincurvedopenchannelswithvegetation.IAHRCongress, Graz. TominagaA,NagaoMandNezuI,(1999b).Effectsofvegetationonflow structuresandbedprofilesincurvedopenchannels.In:Environmental

R&D ROUGHNESSREVIEW 125

Hydraulics,editedbyLee,JayawardenaandWang,Balkema,Rotterdam. TracyHJandLesterCM,(1961).Resistancecoefficientsandvelocitydistribution smoothrectangularchannels.USGeologicalSurveyWaterSupply,Paper 1592A. TsujimotoT,KitamuraTandOkadaT,(1991).Turbulentstructurteofflowover rigidvegetationcoveredbedinopenchannels.KHLcommunication HydraulicsLaboratory,KanazawaUniversity,2,114. TsujimotoT,KitamuraTandShimizuY,(1991).Applicationofthekemodelto turbulentflowoverrigidvegetationcoveredbedinopenchannels.KHL CommunicationHydraulicsLaboratory,KanazawaUniversity,2,1524. TsujimotoT,OujiY,andKitamuraT,(1991).Flowinvegetatedandnon vegetatedzonesinacrosssectionofopenchannel.KHLCommunication HydraulicsLaboratory,KanazawaUniversity,2,4158. TsujimotoT.,ShimizuY.,KitamuraT.,OkadaT.(1992).TurbulentOpenChannel FlowoverBedCoveredbyRigidVegetation.JournalofHydrology& HydraulicEngineering10,1325. TsujimotoT(1999).Fluvialprocessinstreamswithvegetation.Journalof Hydraulicresearch,37,789803 Turner,A.K.andChanmeesri,N.(1984).Shallowflowofwaterthroughnon submergedvegetation.AgriculturalWaterManagement8,375385. Turner,A.K.,Langford,K.J.,Win,M.andClift,T.R.(1978)Dischargedepth equationforshallowflow.JournaloftheIrrigationandDrainageDivision, ProceedingsoftheAmericanSocietyofCivilEngineers104,95110. UniversityofBristol(1988).DepartmentofCivilEngineering.Twostagechannel flow. UniversityofUlster(1995).PostprojectmonitoringoffishhabitatsontheRiver Blackwater.UniversityofUlsterReport Urbonas,P.A.(1982).Experimentalstudyofthecoefficientsofhydraulicresistance inabundleoftwistedpipes.MezhvuzovskiySbornikNauchnykhTrudov VsesoyuznogoZaochnogoMashinostroitelnogoInstituta11,7882.[InRussian.] Urk,A.van(1981).Hydraulischeruwheidgraslandinuiterwaarden.Directorate WaterhuishoudelijkenWaterbeweging,Dist.ZuidoostArnhem,NotaWWZO 81.21,47pp. Urk,A.van(1983).Weerstandbegroeiingeninuiterwaarden.Directorate WaterhuishoudeliskenWaterbeweging,Dist.ZuidoostArnhem1981,Nota WWZO83.11,91pp. Urk,A.,van(1982).Bedformsinrelationtohydraulicroughnessandunsteady flowintheRhinebranches,inMechanicsofsedimenttransporteditedby B.M.SumerandA.Muller,ProcEuromech156,Istanbul,pp151157. UsherwoodJR,EnnosAR&BallDJ(1997).Mechanicalandanatomical adaptationsinterrestrialandaquaticbuttercupstotheirrespective environments.JournalExperimentalBotany48,14691475. USArmyEngineerWaterwaysExperimentalStation(2000).Streambank USSoilConservationService,(1954).Handbookofchanneldesignforsoiland waterconservation.PublicationSCSTP61. USSoilConservationService,(1963).Guideforselectingroughnesscoefficient ‘n’valuesforchannels,USDepartmentofAgriculture,WashingtonDC. VanIeperenHJandHerfst,(1986).Laboratoryexperimentsontheflowresistance ofaquaticweeds.IntconferenceonHydraulicDesigninWaterResources Engineering:LandDrainage,Southampton:281292.

R&D ROUGHNESSREVIEW 126

VanMises,R.andvonKarman,T.(Eds.)AdvancesinAppliedMechanics.Vol1 (1948),Vol2(1951),Vol3(1953),AcademicPress VanRijn,L.C.(1984).SedimentTransport:PartIII,BedFormsandAlluvial Roughness,JournalofHyd.Engng.,ASCE,110HY12,pages. vanRijn,L.C.(1984).Sedimenttransport:Part1:Bedloadtransport;Part2: suspendedloadtransport;Part3:Bedformsandalluvialroughness. ProceedingsoftheAmericanSocietyofCivilEngineers,Volume110,No.s HY10,HY11andHY12. VanSchayckC.P.(1986).Theeffectofseveralmethodsofaquaticplantcontrolon twoBilharziabearingsnailspecies.AquaticBotany24,303310. VanWijk(1983) Vanoni,V.(1976).SedimentationEngineering,ASCEManualNo.54,745pp. Vennard,J.K.(1961).Elementaryfluidmechanics.J.WileyandSons,London, 570pp. VassiliosAT,(2001).Variationofroughnesscoefficientsforunsubmergedand submergedvegetation.JournalofHydraulicEngineering12,241245. VincentJ&StraussV(1975).Calculationofwoodsinfloodplainsoflargerivers anditseffectontherunoffofhighflooddischarges.ProceedingsIAHR3Sao Paulo1975516523. Vogel,S.(1981).Lifeinmovingfluids.Thephysicalbiologyofflow.WillardGrant Press,Boston,MA,368pp. Vogel,S.(1984).Dragandflexibilityinsessileorganisms.AmericanZoologist24, 3744. VollenweiderandWestlake(1980) deWaal,L.C.,Wade,P.M.,Large,A.eds.(1998).RehabilitationofRivers: PrinciplesandImplementation.JohnWileyandSon,344pp. Wade,P.M.andEdwards,R.W.(1980).Theeffectofchannelmaintenanceonthe aquaticmacrophytesofthedrainagechannelsintheMonmouthshireLevels, SouthWales,18401976.AquaticBotany8,307322. Wakhlu,O.N.(1973).Obtainingoverlandflowresistancebyoptimisation.Journal oftheHydraulicsDivision,ProceedingsoftheAmericanSocietyofCivil Engineers99,274277. Walker,KF,Sheldon,FandPuckridge,JT(1995).Aperspectiveondrylandriver ecosystems,RegulatedRivers:Research&Management,Vol.11,pp85104. WallisS.GandKnightD.W(1984).Calibrationstudiesconcerningaone dimensionalnumericaltidalmodelwithparticularreferencetoresistance coefficients.Estuarine,CoastalandShelfScience19,541562. WardDE,HolmesNTH,AndrewsJH,GowingDJGandKirbyP,(1999). GuidelinesforRiverVegetationMaintenance,EnvironmentAgencyR&D note511. WarmingE.(1909).EcologyofPlants.Oxford,422pp. WasanthaLalAM(1995).Calibrationofriverbedroughness.JournalofHydraulic Engineering121,664671. WaterSpaceAmenityCommission(1984).Conservationandlanddrainage guidelines,2nded.,121pp.WaterSpaceAmenityCommission,London. [Seealso1sted.1980andConservationandLandDrainageWorkingPartyReport, WSACLondon1980,27pp.] Watson,D.(1982).Riverchannelroughness.DepartmentofGeography,University ofSouthampton.DiscussionPaperNo.17,57pp. Watson,D.(1986).Theeffectsofaquaticmacrophytesonchannelroughnessand

R&D ROUGHNESSREVIEW 127

flowparameters.DepartmentofGeography,UniversityofSouthampton, England.PhDThesis. WatsonD(1987).HydrauliceffectsofaquaticweedsinUKrivers.Regulated Rivers:ResearchandManagement,1,211227. WattsJFandWattsGD,(1990).Seasonalchangeinaquaticvegetationandits effectonriverchannelflow.VegetationandErosionEditedbyJBThornes, Wiley. WehrJ.D.andWhittonB.B.(1986).Ecologicalfactorsrelatingtothe morphologicalvariationintheaquaticmoss Rhynchostegium riparoides (Hedw.)c.Jens.JournalofBryology14,269280. Weisbach,T.(1850).LehrbuchdurIngeniewundMaschinenMechanik. Braunschweig,Germany. WeltzMA,ArslanABandLaneLJ,(1992).Hydraulicroughnesscoefficientsfor nativerangelands.JournalofIrrigationandDrainage,118,776790 WerkgroepAfvoerberekeningen(1982.)Richtlynenvoorhetberekenenvan afwateringsstelselsinlandetykegebieden.SectieenStudiekringvoor Cultuurtechniek,155pp. Wessles,W.P.J.andStrelkof,T.(1968).Establishedsurgeonanimperviousvegetated bed.JournalofIrrigationandDrainageDivision,ProceedingsoftheAmerican SocietyofCivilEngineers94,122.(Discussion:1969,95,231237;1969,95, 587588.) Westlake,D.F.(1960).Waterweedandwatermanagement.JournaloftheInstituteof PublicHealthEngineers59,148164. Westlake,D.F.(1966).Amodelforquantitativestudiesofphotosynthesisby higherplantsinstreams.Air&WaterPollutionInternationalJournal10,883 896. WestlakeD.F.(1966b).Thelightclimateforplantsinrivers.inLightasan ecologicalfactor(edsR.Bainbridghe,G.C.Evans&O.Rackham).British EcologicalSocietySymposium6,99120. WestlakeD.F.(1967).Someeffectsoflowvelocitycurrentsonthemetabolismof aquaticmacrophytes.JournalofExperimentalBiology18,187205. WestlakeD.F.(1968).Thebiologyofaquaticweedsinrelationtotheir management.Proceedings9thBritishWeedControlConference,BritishCrop ProtectionCouncil,372379. WestlakeD.F.,CaseyH.,DawsonF.H.,LadleM.,MannR.H.K.andMarker A.F.H.(1972).Thechalkstreamecosystem.inProductivityproblemsof freshwaters.ProcedingsofIBP/UNESCOSymposium,KazimierzDolny, Poland,May6121970(edsZ.Kajak&A.HillbrichtIlkowska),615635. WestlakeD.F.(1975).Macrophytes.InRiverEcology(ed.B.A.Whitton), BlackwellScientificPublications,Oxford,106128. WestlakeD.F.(1981).Thedevelopmentandstructureofaquaticweedpopulations. ProceedingAquaticWeedsandtheirControl,3347. WestlakeD.F.(1982).Theprimaryproductivityofwaterplants.inStudieson aquaticvascularplants(edsJ.J.Symoens,S.S.Hooper&P.Compere),165 180.ProceedingsInternationalColloqiumonAquaticVascularPlants, Brussels,2325January. WestlakeD.F.andDawsonF.H.(1982).Thirtyyearsofweedcuttingonachalk stream.ProceedingsEuropeanWeedResearchSociety6thSymposium. AquaticWeeds,132140. WestlakeD.F.andDawsonF.H.(1986).Themanagementof Ranunculus

R&D ROUGHNESSREVIEW 128

calcareus bypreemptivecuttinginsouthernEngland.EuropeanWeed ResearchSociety,AssociationofAppliedBiologists,7thInternational SymposiumonAquaticWeeds,September1986,395400. WestlakeD.F.&DawsonF.H.(1988).Theeffectsofautumnalweedcutsina lowlandstreamonwaterlevelsandfloodinginthefollowingsprings. VerhandlunginternationalVereinungtheoretischeangewanteLimnologiae23, 12731277. White,F.M.(1974).Viscousfluidflow.McGrawHill,NewYork,640pp. Whitehead,E.,Schiele,M.andBull,W.(1976).Aguidetotheuseofgrassin hydraulicengineeringpractice.ConstructionIndustryResearchandInformation Association,TechnicalNoteNo.71,London,117pp. Whitehead,E.,Brown,P.,andHollindrake,P.(1992).Thehydraulicroughnessof vegetatedchannels.,SR305,HRWallingfordLtd,Wallingford WhittonB.A.(1972).Environmentallimitsofplantsinflowingwaters.in ConservationandProductivityofNaturalWaters.Ed.R.W.Edwards&D.J. Garrod.SymposiaoftheZoologicalSocietyofLondon29,319. WilbyNJ,PygottJR&EatonJW(2001).Interrelationshipsbetweenstandingcrop, biodiversityandtraitattributesofhydrophyticvegetationinartificial waterways.FreshwaterBiology46883902. Willetts,B.B.,andR.I.Hardwick(1993).StageDependencyforOverbankFlowin MeanderingChannels.ProceedingsInstitutionCivilEngineers:Water, Maritime&Energy,101,4554. White,F.M.(1974).Viscousfluidflow.McGrawHill,NewYork,640pp. WhiteWR,BettessRandParisE,(1982).Analyticalapproachtoriverregime, ASCE,JofHydraulicsDivision,Vol108,HY10,pp11791193 Wijbenga,J.H.A.andKlaasen,G.J.,(1981).Changesinbedformdimensionsunder steadyflowconditionsinastraightflume,DelftHydraulicsLab, CommunicationsPubl.No.260. Wilcock,R.J.,Champion,P.D.,Nagels,J.W.andCroker,G.F.(1999).The influenceofaquaticmacrophytesonthehydraulicandphysicochemical propertiesofaNewZealandlowlandstream.Hydrobiologia416,2032 Williams,C.C.(1910).Notesontheflowofwaterinirrigationditches.University ofColoradoStudies,Boulder,Colorado7,237247 Williams,GP;Costa,JE(1988).GeomorphicMeasurementsafteraFlood.Flood Geomorphology.JohnWiley&SonsNewYork,6577. Williams,PB(1989).RethinkingFloodControlChannelDesign.CRCCritical ReviewsinEnvironmentalControl19,5759. WilsonCAMEandSellinRHJ,(1999).Afieldinvestigationofvegetationeffects inadoublymeanderingcompoundchannel.IAHRCongress,Graz. WilsonC.A.M.E.,StoesserT.,BatesP.D.,BatemannPinzenA.(2002).Open channelflowthroughdifferentformsofsubmergedflexiblevegetation.ASCE DivisionofHydraulicEngineering Wilson,K.V.(1973).Changesinfloodflowcharacteristicsofarectifiedchannel causedbyvegetation,Jackson,Mississippi.JournalofResearchofU.S. GeologicalSurvey1,621625. WilsonC.A.M.E.,BatesP.D.HervouetJ.M.(2002).ComparisonofTurbulence ModelsforStageDischargeRatingCurvePredictioninCompoundChannel FlowsusingTwoDimensionalFiniteElementMethods , JournalofHydrology 257,4258. WilsonC.A.M.E.,HorrittM.S.(2002).Measuringthehydraulicresistanceof

R&D ROUGHNESSREVIEW 129

grass",ForthcominginHydrologicalProcesses. WilsonC.A.M.E.,StoesserT.,BatesP.D.,BatemannPinzenA.Accepted.Open channelflowthroughdifferentformsofsubmergedflexiblevegetation. JournalofHydraulicEngineering,ASCE. WitcombD.M.(1968).Thefaunaofaquaticplants.Proceedings9thBritishWeed ControlConference.BritishCropProtectionCouncil,382391. WohlEE(1998).Uncerntaintyinfloodestimatesassociatedwithroughness coefficient.JournalofHydraulicEngineering124,219223 WolmanMG(1954).Amethodofsamplingcoarseriverbedmaterial, Transactions,AmericanGeophysicalUnion,35,951956. Woolhiser,D.A.,Hanson,C.L.andKuhlman,A.R.(1970).Overlandflowon rangelandwatersheds.JournalofHydrology,(NZ)9,336356. Woo,D.C.andBrater,E.F.(1961).Laminarflowinroughrectangularchannels. JournalofGeophysicalResearch66,42074217. Wormleaton,P.R.,Allen,J.andHadjipanos,P.(1982).Dischargeassessmentin compoundchannelflow.JournaloftheHydraulicsDivision,AmericanSociety ofCivilEngineers108,975994.(Discussion:1983,109,15591567.) Wormleaton,P.R.andHadjipanos,P.(1985).Flowdistributionincompound channels.JournalofHydraulicEngineering,111,357361. Wright,R.(1980).VariationofManning'sroughnesscoefficient'n'withdischargein naturalimprovedandartificialriverchannels,50pp.DepartmentofGeography, UniversityCollege,London.BScDiss. Wright,S.J.(1973).Atheoryforpredictingtheresistancetoflowinconduits roughenedwithnonuniformroughness,WashingtonStateUniversity,Pullman. MScThesis. WuFC,ShenHWandChouYT(1999).Variationofroughnesscoefficientsfor unsubmergedandsubmergedvegetation.JournalofHydraulicEngineering 125,934942. WyattVE&NicklingWG(1997).Dragandshearstresspartitioninginsparse desertcreosotecommunities.CanadianJournalofEarthScience34,1846149 Wylie,E.B.andV.L.Streeter(1993).FluidTransientsinSystems.PrenticeHall.p. 463 XiaR(1997).Relationbetweenmeanandmaximumvelocitiesinanaturalriver. JournalofHydraulicEngineering,123,720723. Yamamoto,T.(1976).Hydrodynamicforcesonmultiplecircularcylinders.Journalof theHydraulicsDivision,ProceedingsoftheAmericanSocietyofCivilEngineers 102,11931210. Yang,C.T.(1976).Minimumunitstreampowerandfluvialhydraulics.Journalofthe HydraulicsDivision,ProceedingsoftheAmericanSocietyofCivilEngineers 102,919934. Yang,C.T.(1976).Applicabilityofunitstreampowerequation.Journalofthe HydraulicsDivision,ProceedingsoftheAmericanSocietyofCivilEngineers 102,559568. Yates,G.T.(1986).Howmicroorganismsmovethroughwater.AmericanScientist74, 358 Yano,M.(1966).Turbullentdiffusioninsimulatedvegetationcover,Colorado StateUniversity,FortCollins,Colorado.PhDThesis. Yen,B.C.(1965).Discussionon'Largescaleroughnessinopenchannelflow'.Journal oftheHydraulicsDivision,ProceedingsoftheAmericanSocietyofCivil Engineers91(Sept),257.

R&D ROUGHNESSREVIEW 130

Yen,CL&Overton,D.E.(1973).Shapeeffectsonresistanceinfloodplainchannels. JournalofHydraulicsDivision,ProceedingsoftheAmericanSocietyofCivil Engineers99,219238. Yong,K.C.(1968).Scourresistanceoffarmdamspillwayswithgrassdormant. UniversityofNewSouthWales,WaterResearchLaboratory,ReportNo.104. Yong,K.C.andStone,D.M.(1967).Resistanceoflowcostsurfacesforfarmdam spillways.UniversityofNewSouthWales,WaterResearchLaboratory,Report No.95. Yong,K.C.andStone,D.M.(1967).Resistanceoflowcostsurfacesforfarmdam spillways.UniversityofNewSouthWales,WaterResearchLaboratory,Report No.95. YulistiyantoB,Zechy&GrafWH(1997).Flowaroundacylinder:shallowwater modelingwithdiffusiondispersion.JournalofHydraulicEngineering124, 419429. YulistiyantoB(1997).Flowaroundacylinderinstalledinafixedbedopen channel.PhDthesisno.1631,PolytechniqueFederale,Lausanne,Switzerland. Zieman,J.C.(1976).Theecologicaleffectsofphysicaldamagefrommotorboatson turtlegrassbedsinSouthernFlorida.AquaticBotany10,383388.

R&D ROUGHNESSREVIEW 131

APPENDICES

R&D ROUGHNESSREVIEW 132

R&D ROUGHNESSREVIEW 133

Appendix A ReferenceTablesofdataused Acement and Schneider (1989/2002) Table A1 Base values of Manning’s n, modified from Aldridge and Garnett (1973). Bed material Median size of bed Base n value material in mm Straight uniform Smooth channel channel Sand channels Sand 0.2 0.3 0.4 0.5 0.6 0.8 1.0 Stable channels and flood plains Concrete 0.0120.018 0.011 Rockcut 0.025 Firmsoil 0.0250.032 0.020 Coarsesand 12 0.0260.035 Finegravel 0.024 Gravel 264 0.0280.035 Coarsegravel 0.026 Cobble 64256 0.030.05 Boulder >256 0.040.07

Table A2 Data from photographs of flood plains Site Description Depth of Vegetation Cd Manning’s water on density value n value floodplain for (m) trees CypressCreek Primarily trees with base 0.8 0.0067 12 0.1 of firm soil and slight surfaceirregularities Bayoude Primarily trees with base 1.1 0.0067 8.8 0.11 of firm soil and slight Loutre surfaceirregularities Bayoude Primarily trees with base 1.1 0.0075 7.7 0.11 of firm soil and slight Loutre surfaceirregularities Bayoude Primarily trees with base 1.1 0.0072 8 0.11 of firm soil and slight Loutre surfaceirregularities Coldwater Primarily trees with base 0.9 0.0077 10.2 0.11 of silty soil and slight river surface irregularities. Few obstructions, ground coverofshortweedsand grass Coldwater Primarily trees with base 0.9 0.0090 8.6 0.11 of silty soil and slight

R&D ROUGHNESSREVIEW 134 river surface irregularities. Few obstructions, ground coverofshortweedsand grass Yockanookany Primarilytreeswithmany 1.2 0.0082 7.6 0.12 small trees (0.1 to 0.2ft river diam). Base of firm soil and slight surface irregularities FlagonBayou Mixture of large and 0.98 0.0087 11.5 0.13 smalltrees.Baseoffirm soil and minor surface irregularities with some rise PeaCreek Mixture of large and 0.88 0.0085 15.6 0.14 smalltrees.Baseoffirm soil and minor surface irregularities, rises and depressions TenmileCreek Mixture of large and 1.25 0.0067 14.4 0.15 smalltrees.Baseoffirm soil and minor surface irregularities, rises and depressions SixmileCreek Large trees. Base firm 1.5 0.0084 13.3 0.18 soil and minor surface irregularities, rises and depressions Thompson Mixture of large and 0.88 0.0115 22.7 0.2 smalltrees.Basefirmsoil Creek and minor surface irregularities

Table A3 Adjustment values for factors that affect the roughness of floodplains Flood plain Manning’s Description conditions n value adjustment Noirregularity 0 Smoothest,flattestfloodplainattainableingivenbed material Minor 0.0010.005 Afewrisesanddipsorsloughsvisibleontheflood irregularity plain Moderate 0.0060.01 More rises and dips, sloughs and hummocks may occur Severe 0.0110.02 Floodplainveryirregularinshape.Manyrisesand dipsorsloughsarevisible.Irregulargroundsurfaces inpasturelandandfurrowsperpendiculartotheflow. Negligible 0.0000.004 Few scattered obstructions which include debris obstructions deposits, stumps, exposed roots, logs, piers or isolated boulders that occupy less than 5 percent of thecrosssectionalarea. Minor 0.0040.005 Obstructionsoccupylessthan15percentofthecross obstructions sectionalarea. Appreciable 0.020.03 Obstructionsoccupyfrom15percentto50percentof obstructions thecrosssectionalarea. Small amount 0.0010.01 Dense growths of flexible turf grass, such as ofvegetation Bermudaorweedsgrowingwheretheaveragedepth of flow is at least two times the height of the vegetation. Supple tree seedlings such as willow,

R&D ROUGHNESSREVIEW 135

cottonwood, and arrowweed growing where the averagedepthofflowisatleastthreetimestheheight ofvegetation. Medium 0.010.025 Turfgrassgrowingwheretheaveragedepthofflow amountof is from one to two times the height of vegetation. vegetation Moderately dense stemy grass, weeds or tree seedlingsgrowingwheretheaveragedepthofflowis fromtwotothreetimestheheightofthevegetation. Brushy, moderately dense vegetation, similar to 1 2yearoldwillowtreesinthedormantseason. Largeamount 0.0250.05 Turfgrassgrowingwheretheaveragedepthofflow ofvegetation is about equal to the height of the vegetation. 810 yearsoldwilloworcottonwoodtreesintergrowwith some weeds and brush (none of the vegetation in foliage)wherethehydraulicradiusexceeds0.607m. Alternatively, mature row crops such as small vegetablesormaturefieldcropswheredepthflowis atleasttwicetheheightofthevegetation. Verylarge 0.050.1 Turfgrassgrowingwheretheaveragedepthofflow vegetation is less than half the height of the vegetation, or moderate to dense brush or heavy stand of timber with few fallen trees and little undergrowth where depthisbelowbranches,ormaturefieldcropswhere depthofflowislessthantheheightofvegetation Extreme 0.10.2 Dense bushy willow or heavy stands of timber, few fallentrees,depthreachingbranches.

R&D ROUGHNESSREVIEW 136

Barnes (1967)

Table A4 Data from Barnes (1967) River name Description Manning n roughness Columbia river at Slimecoveredcobblesandgravel 0.024 Vernite Indian Fork below Clay bed, some grass and exposed roots 0.026 AtwoodDam onbanks Champlin Creek nr Gravelandrockbed.Grassbanks 0.027 ColoradoCity,Texas ClarkForkatStRegis Wellrounded boulders, d50=135mm. 0.028 Banks of gravel/boulders with tree and brushcover Clark Fork above Bed of sand/gravel and boulders 0.03 Missoula d50=175mm.Thickundergrowthonright bank Columbia River at the Left bank –sand, gravel, boulders with 0.03 Dalles,Oreg. light brush. Right bank – basalt cliffs. Bed material graded from boulders to sand Esopus Creek at Coarse gravel bed. Banks covered with 0.03 Coldbrook treesandbrush SaltCreekatRoca, Sandandclaybed,bankssmooth 0.03 Nebr. BlackfootRivernear Gravelandboulderd50=155mmbedand 0.031 Ovando,Mont. banks Coeurd’AleneRiver Bed–rockonleftandgravelandboulders 0.032 nearPritchard elsewhered50=103mm.Leftbanksteep bedrock. Right bank – sand/gravel with heavygrowthoftreesandbrush RioChamanear Sand/gravel bed. Left bank rock, right 0.032,0.036 Chamita bankgravel. SaltRiverArizona Bed and bank smooth cobbles 0.032 d50=150mm BeaverKillatCooks Bed – coarse gravel and cobbles with 0.033 Fall,NY scattered boulders. Light brush on both bankswithafewtrees ClearwaterRiverat Bed–gravel/boulderswithsomeexposed 0.033 Kamiah,Idaho bedrock. Banks – gravel/rock with light vegetationcover EtowahRivernear Bed–sand/gravelwithsomefallentrees. 0.041,0.039, DawsonvilleGa Linedbankswithoverhangingtrees/brush 0.035 WestForkBitterroot Bed–gravel/bouldersd50=172mm.Left 0.036 RivernearConner, bank lined with overhanging bushes. Mont. Rightbankconiferoustrees YakimaRiverat Bed–gravel/boulders. Leftbank–rock 0.036 Umtanum,Wash. riprapwithbushes.Rightbankhassome boulders,brushandweed MiddleFork Bed – gravel and small cobbles. Banks 0.037

R&D ROUGHNESSREVIEW 137

VermillionRivernear linedwithtreesandsmallbrush Danville,Ill. WenatcheeRiverat Bedbouldersd50=162mm.Bankslined 0.037 Plain,Wash. withtreesandbushes MoyieRiverat Bedof gravelandsmallboulders.Right 0.038 Eastport,Idaho banksteepwithtreesandbrush,leftbank treeandbrushcover SpokaneRiverat Bedgravel/bouldersd50=195mm.Banks 0.038 Spokane,Wash. linedtreesandbrush TobesofkeeCreeknear Bed – sand/gravel with a few outcrops. 0.043,0.041, Macon,Ga. Banks with overhanging trees and 0.039 underbrush BullCreeknearIra, Bed – sand/gravel/small boulders with 0.041 Tex. scattered angular rocks. Banks are irregularanderodedwithsparsecoverof grassandscatteredsmalltrees MiddleForkFlathead Bed – boulders d50=142mm. Banks 0.041 RivernearEssex, gravel/boulders with trees/brush along Mont. tops MiddleOconeeRiver Bed – sand/gravel with several outcrops. 0.042,0.041, nearAthens,Ga. Banks–steepandlinedwithtrees/bushes 0.044 BeaverCreeknear Bed – sand/silt. Banks irregular with 0.043 Newcastle,Wyo. thickgrowthofbrush CatherineCreeknear Bedofcobblesandsmallboulders.Banks 0.043 Union,Oreg linedwithsmalltreesandbrush ChiwawaRivernear Bedofbedrockwithcoverofbouldersof 0.043 Plain,Wash. upto0.45m.Bankshavetreesalongtops EsopusCreekat Bed – coarse gravel to large boulders. 0.043 Coldbrook,NY Banks lined with boulders and scattered trees/brush GrandRondeRiverat Bed – boulders d50=93mm. Right bank 0.043 LaGrande,Oreg. steepwithdenseoverhangingbushes MurderCreeknear Bed of sand/gravel. Banks lined with 0.045 Monticello,Ga. treesabovelowwaterline ProvoRivernear Bed/banks smooth rounded rocks up to 0.045,0.073 Hailstone,Utah 0.3mdiam RollingForknear Bed–clay/silt.Banks–overhangingtrees 0.046,0.097 BostonKy. SthBeaverdamCreek Bed – sand. Banks irregular with 0.052,0.047 nearDewyRose,Ga. trees/bushesdowntowaterline DeepRiverat Bed – coarse sand with some gravel. 3 0.049 Ramseur,NC small islands with dense stand of small birch trees. Banks steep with medium growthofbrushandlargetrees ClearCreeknear Bed/banksofangularbouldersupto0.6m 0.05 Golden,Colo. diam. ChattahoocheeRiver Bed–rock,irregular.Bankscoveredwith 0.051,0.074 nearLeaf,Ga. thickrhododendronandsmalltrees SouthForkClearwater Bed–rock/bouldersd50=250mm.Banks 0.051

R&D ROUGHNESSREVIEW 138

RivernearGrangeville, –boulderswithtrees/brushalongtops Idaho CacheCreeknear Bed – large angular boulders. Banks – 0.053,0.079 LowerLake,Calif rock,bouldersandsometrees EastBranchAusable Bed – gravel, rock and boulders up to 0.055 RiveratAuSable 1.5m. Banks lined with boulders, small Forks,NY treesandbushes MiddleBranch Bed – rocks/coarse gravel with boulders 0.056 WestfieldRiverat upto1.5mdiam. GossHeights,Mass. MissionCreeknear Bed – angular boulders up to 0.3 diam. 0.057 Cashmere,Wash. Bankslinedwithoverhangingbushes HawRivernear Bed – coarse sand with few outcrops. 0.059 Benaja,NC Banks heavily lined with overhanging birchtrees NorthForkCedar Bed – large boulders. Banks irregular 0.059 RivernrLester,Wash. linedwithbrush,treestumpsandroots HominyCreekat Bed – sand/gravel, some boulders up to 0.06 CandlerNC. 0.5m diam Banks – overhanging trees andbushes RockCreekCanalnear Bed/bankofbouldersd50=210mm 0.06 Darby,Mont. MercedRiveratHappy Bed – boulders, d50=253mm. Bank 0.065 IslesBridgenear toppedwithtrees Yosemite,Calif. PondCreeknear Bed – fine sand/silt. Banks –irregular, 0.07 Louiseville,Ky heavy growth of 5 to 20cm trees above waterline BoundaryCreeknear Bed – boulders, d50=210mm. Banks – 0.073 Porthill,Idaho boulderswithtrees/brushalongtop RockCreeknear Bed – boulders, d50=220mm. Banks – 0.075 Darby,Mont. boulderswithtrees/brush

R&D ROUGHNESSREVIEW 139

Bathurst (1978) Research by Bathurst has shown the flow resistance for channels with large scale roughness,iebouldersandlargerocksisafunctionofchannelshape,roughnessspacing andrelativeroughness.Thedeterminationofthesizeofmaterialonthebedofastream isbasedonananalysisoftherelativeareacoveredbyparticlesofgivensizesusingthe technique suggested by Wolman (1954). The method applies to data for which the relativeroughnessR/D84 <3. If using the Bathurst equation determine the frontal concentration of the roughness elementsusing

 D84  λ1 = 0.139log10 1.91  (A1)  R  where D84 =sizeofmedianaxisinsampleofsedimentthatisbiggerthanorequalto84%of medianaxesofsamplebycount(m) R =hydraulicradius(m) and λ1 =frontalconcentration,theratioofthefrontalcrosssectionareaofanelementto theareaofboundaryperelement Theexpressionforthefrontalconcentrationinequation3.6.3wasderivedfromjust2 fieldsitesandshouldonlybeappliedtoothersiteswithcaution. The frontal concentration of roughness elements is then substituted in the resistance equation /1 2 2.34 7()−0.08  8   R   w  λ1   =     (A2)  f   0.365d84   d  wherew=surfacewidthofflow(m) d =meandepthofflow(m) from which the DarcyWeisbach resistance coefficient can be determined. This coefficientcanthenbetranslatedintoaManning’snvalueusingtheequation 1/2 1   6 f n R=   (A3)  8g 

R&D ROUGHNESSREVIEW 140

Butler et al (1978) Three reaches of an urban stream, Bourn Brook, were studied in part of its course betweentheWorcesterandBirminghamcanalandtheBristolRoadinBirmingham.The reachesofthestreamweresurveyedduringlowandmediumflows.Velocity,leveland channelcrosssectiondatawereusedtoinvestigatethevariationofManning’snwith flowforeachreach,FigureA1

Figure A1 Variation in Manning’s n with discharge for the Bourn Brook

R&D ROUGHNESSREVIEW 141

Datasets at CEH Dorset (ISF) Table A5 Definition of datasets available from CEH Dorset Hydraulic NGR River/Stream Site Discharge/Depth/width/(velocity?) R.Frome Dorset ST566004 R.Frome Sandhills 73(occ),'74(2/m),76(1/m),77(occ), SY624949 R.Frome SouthoverBr. 73(occ),76(occ) SY700908 R.Frome GreysBr. 73(occ),'74(2/m) SY708903 R.Frome LoudsMill Guagingweirrecordsnotheld SY769909 R.Frome Br. 73(occ),'74(2/m) SY806893 R.Frome MortonFord SY867868 R.Frome EastStoke Guagingweirrecordsnotheld SY891868 R.Frome W.HolmeBr Veryseldom SY924872 R.Frome WarehamQuay R.Frome Tributaries. Dorset ST567004 WraxallBrook Sandhills 73(occ),'74(2/m),76(1/m),77(occ), 73 (occ), '74(2/m), 76(occ<1/m), ST537000 R.Hooke HookeG.W. 77(occ) ST593976 R.Hooke AtM.Newton 73(occ),'74(2/m),76(1/m),77(occ) SY637947 SydlingWater GrimstoneR.Br. 73(occ),'74(2/m),76(1/m),77(occ), SY678935 R.Cerne (ford) 73(occ),'74(2/m),76(1/m),77(occ), SY712889 S.Winterbourne CameRdBr. 73(occ),'74(2/m) SY770862 TadnolBrook RoadBridge(upper) 7072(occ)74(2/m),76(1/m),77(occ) at end grass Rd SY793871 TadnolBrook (Mill) ?7072(occ) 72(3/m) 73(occ), 74(2/m), 76(1/m), SY811881 TadnolBrook BroomhillBr. 77(occ), 73 (occ), '74(2/m), 76(occ 1/m), SY827868 WinStream BurtonCross 77(occ) R.Piddle Alton Pancras ST700024 R.Piddle (culvert) 73(occ),'74(2/m),76(1/m) SY705997 R.Piddle (footBr.) 73(occ),'74(2/m) (US SY714972 R.Piddle RdBr.) L.Waterstone (Rd SY743952 R.Piddle Br.) 73(occ),'74(occ2/m) Puddletown(DSRd SY757947 R.Piddle Br.) 73(occ),'74(2/m) SY829933 R.Piddle ThroopFord 73(occ),'74(2/m),76(1/m) Hyde Br. (DS Rd SY865906 R.Piddle Br.) 73(occ),'74(occ2/m),76(1/m) N.Mill Wareham SY920877 R.Piddle USFootBr. 73(occ),'74(v.occ),76(v.occ) 73(occ),'74(2/m) R.Piddle Tributaries. Dorset SY774003 DevilsBrook Bramblecombe (Rd

R&D ROUGHNESSREVIEW 142

Br.) Foot Br. SY777983 DevilsBrook (DS) 73(occ),'74(2/m),76(occ<1/m) Milton Abbas ST803013 TheMilbourne (cottage) 73(occ),'74(2/m) Milbourne st ??? TheMilbourne Andrew(byRd) Ashley Barn (US ST813955 TheMilbourne RdBr) Millum Head SY835962 BereStream outflow Above Rd Br. In SY836961 BereStream Wood Above foot Br.72(3/m)73(occ),74(2/m),76(dryfrom SY836958 BereStream Hollybush June),77(occ). Below cressb ed SY83?957 BereStream inflow 73(occ), SY851955 BereStream DoddingsFarm 72(3/m) 73(occ), 74(2/m), 76(1/m), SY856930 BereStream SnatsfordBr.(DS) 77(occ) BereHeath SY BereStream Maidenfootweir SY859920 BereStream LowerRdBr.(DS)

R&D ROUGHNESSREVIEW 143

Chow (1959)

Table A6 manning n values from Chow (1959) Roughness values Type of Channel and Description Minimum Normal Maximum Natural streams minor streams (top width at floodstage<100ft) Streamsonplain clean,straight,fullstage,noriftsordeeppools 0.025 0.030 0.033 sameasabove,butmorestonesandweeds 0.030 0.035 0.040 clean,winding,somepoolsandshoals 0.033 0.040 0.045 sameasabove,butsomeweedsandstones 0.035 0.045 0.050 same as above, lower stages, more ineffective 0.040 0.048 0.055 slopesandsections sameastwoup,morestones 0.045 0.050 0.060 sluggishreaches,weedy,deeppools 0.050 0.070 0.080 very weedy reaches, deep pools, or floodways 0.075 0.100 0.150 withheavystandoftimberandunderbrush Mountainstreams,novegetationinchannel,banks usually steep, trees and brush along banks submergedathighstages bottom:gravels,cobbles,andfewboulders 0.030 0.040 0.050 bottom:cobbleswithlargeboulders 0.040 0.050 0.070 Naturalstreamsfloodplains Pasture,nobrush shortgrass 0.025 0.030 0.035 highgrass 0.030 0.035 0.050 Cultivatedareas nocrop 0.020 0.030 0.040 maturerowcrops 0.025 0.035 0.045 maturefieldcrops 0.030 0.040 0.050 Brush scatteredbrush,heavyweeds 0.035 0.050 0.070 lightbrushandtrees,inwinter 0.035 0.050 0.060 lightbrushandtrees,insummer 0.040 0.060 0.080 mediumtodensebrush,inwinter 0.045 0.070 0.110 mediumtodensebrush,insummer 0.070 0.100 0.160 Trees densewillows,summer,straight 0.110 0.150 0.200 clearedlandwithtreestumps,nosprouts 0.030 0.040 0.050 sameasabove,butwithheavygrowthofsprouts 0.050 0.060 0.080 heavy stand of timber, a few down trees, little 0.080 0.100 0.120 undergrowth,floodstagebelowbranches same as above, but with flood stage reaching 0.100 0.120 0.160 branches Natural streams major streams (top width at floodstage>100ft);thenvalueislessthanthat for minor streams of similar descrip tion because banksofferlesseffectiveresistance

R&D ROUGHNESSREVIEW 144

regularsectionwithnoboulderorbrush 0.025 0.060 irregularandroughsection 0.035 0.100 Excavatedordredged Earth,straight,anduniform clean,recentlycompleted 0.016 0.018 0.020 clean,afterweathering 0.018 0.022 0.025 gravel,uniformsection,clean 0.022 0.025 0.030 withshortgrass,fewweeds 0.022 0.027 0.033 Earthwindingandsluggish novegetation 0.023 0.025 0.030 grass,someweeds 0.025 0.030 0.033 denseweedsoraquaticplantsindeepchannels 0.030 0.035 0.040 earthbottomandrubblesides 0.028 0.030 0.035 stonybottomandweedybanks 0.025 0.035 0.040 cobblebottomandcleansides 0.030 0.040 0.050 Draglineexcavatedordredged novegetation 0.025 0.028 0.033 lightbrushonbanks 0.035 0.050 0.060 Rockcuts smoothanduniform 0.025 0.035 0.040 jaggedandirregular 0.035 0.040 0.050 Channelsnotmaintained,weedsandbrushuncut denseweeds,highasflowdepth 0.050 0.080 0.120 cleanbottom,brushonsides 0.040 0.050 0.080 sameasabove,higheststageofflow 0.045 0.070 0.110 densebrush,highstage 0.080 0.100 0.140 Linedorbuiltupchannelsmetal Smoothsteelsurface unpainted 0.011 0.012 0.014 painted 0.012 0.013 0.017 Linedorbuiltupchannelsnonmetal Cement neatsurface 0.010 0.011 0.013 mortar 0.011 0.013 0.015 Wood planed,untreated 0.010 0.012 0.014 planed,creosoted 0.011 0.012 0.015 unplaned 0.011 0.013 0.015 plankwithbattens 0.012 0.015 0.018 linedwithroofingpaper 0.010 0.014 0.017 Concrete trowelfinish 0.011 0.013 0.015 floatfinish 0.013 0.015 0.016 finished,withgravelonbottom 0.015 0.017 0.020 unfinished 0.014 0.017 0.020 gunite,goodsection 0.016 0.019 0.023 gunite,wavysection 0.018 0.022 0.025 ongoodexcavatedrock 0.017 0.020

R&D ROUGHNESSREVIEW 145

onirregularexcavatedrock 0.022 0.027 Concretebottomfloatfinishwithsidesof: dressedstoneinmortar 0.015 0.017 0.020 randomstoneinmortar 0.017 0.020 0.024 cementrubblemasonry,plastered 0.016 0.020 0.024 cementrubblemasonry 0.020 0.025 0.030 dryrubbleorriprap 0.020 0.030 0.035 Gravelbottomwithsidesof: formedconcrete 0.017 0.020 0.025 randomstonemortar 0.020 0.023 0.026 dryrubbleorriprap 0.023 0.033 0.036 Brick glazed 0.011 0.013 0.015 incementmortar 0.012 0.015 0.018 Masonry cementedrubble 0.017 0.025 0.030 dryrubble 0.023 0.032 0.035 Dressedashlar 0.013 0.015 0.017 Asphalt smooth 0.013 0.013 rough 0.016 0.016 Vegetallining 0.030 0.500 ExtractofManning’s‘n’roughnesses,forchannelswithvegetationfromChow(1981) whichincludesdatafromobservationsbyHorton1916andonartificialchannelsfrom King1954. Comment:variableuseofthewordweedyinfersterrestrialruderalspeciesifonbanks butsometimesnormalaquaticplantswheninwater Table A7 Manning’s n values for different types of channel Type of channel and description Values of Manning’s n min mid max B. LINED OR BUILT-UP CHANNELS a.vegetallinings 0.030 0.500 C. EXCAVATED OR DREDGED a.Earth,straightanduniform 1.Withshortgrass,fewweeds 0.022 0.027 0.033 b.Earth,windingandsluggish 2.grass,someweeds 0.025 0.030 0.033 3.denseweedsoraquaticplantsindeepchannels 0.030 0.035 0.040 5.stonybottomandweedysides 0.025 0.035 0.040 c.Draglineexcavatedordredged 2.lightbrush(woodbushes)onbanks 0.035 0.050 0.060 e.Channelsnotmaintained,weedsandbrushuncut 1.denseweedshighasflowdepth 0.050 0.080 0.120 2.cleanbotton,brushonsides 0.040 0.050 0.080 3.cleanbotton,brushonsideshigheststageofflow 0.045 0.070 0.110

R&D ROUGHNESSREVIEW 146

4.densebrush,highstage 0.080 0.100 0.140 D NATURAL STREAMS D1. minor streams - width at flood stage <30m a.streamsonplain(=lowgradientorlowland) 2. clean, straight, full stage, no rifts/deep pools,some 0.030 0.035 0.040 stones&weeds 4. clean, winding, some pools & shoals, some weeds 0.035 0.045 0.050 andstones 7.sluggishreaches,weedy,deeppools 0.050 0.070 0.080 8.veryweedyreaches,deeppools 0.075 0.100 0.150 or (?) floodways with heavy stand of timber and underbrush D2. Flood plains a.pasture,nobrush 1.shortgrass 0.025 0.030 0.035 2.tallgrass 0.030 0.035 0.050 b.cultivatedareas 1.nocrop 0.020 0.030 0.040 2.maturerowcrops 0.025 0.035 0.045 3.maturefieldcrops 0.030 0.040 0.050 cbrush 1. scattered brush (heavy) dense 0.035 0.050 0.070 weeds 2.lightbrushandtreeswinter 0.035 0.050 0.060 3.lightbrushandtreessummer 0.040 0.060 0.080 4.mediumtodensebrushwinter 0.045 0.070 0.110 5. medium to dense brush 0.070 0.100 0.160 summer d.trees 1.densewillows,summer,straight 0.110 0.0150 0.200 2. cleared land with tree stumps, 0.030 0.040 0.050 nosprouting 3.denselysprouting 0.050 0.060 0.080 4. dense stands of trees, 0.080 0.100 0.120 occasionallyfallen,floodstageto belowbranches 5.floodstageatlevelofbranches 0.100 0.120 0.160 D3. Major streams - width at flood stage >30m. (n values are lower than minor streams as proportionally less resistance) a.regularsectionwithoutbouldersorbrush 0.025 0.060 b.irregularandroughsection 0.035 0.100 Manning’sunit‘n’sforvegetation‘roughnesses’basedonthetextfor‘n4’groupsfor computationusingtheadditiverelationshipcombinedandrevisedfromChow(1981). Comment:nonaturalinchannelvegetationexceptforBullrush. No clear indication of measurements deep, shallow etc., re. difference between UK andUSrivers. ‘Brush’assumedtobeshortandtallbushes

R&D ROUGHNESSREVIEW 147

Table A8 Effects of vegetation of unit n values Ratio of Effect of vegetation average depth of unit ‘n’s (forconditionscomparabletoexamples): water flow : height of vegetation min max 1. Low Verydeep +0.005 +0.010 a) dense growths of flexible turf 23:1 grassesorweeds(?) 34:1 b) flexible tree seedlings/whips eg willow 2. Medium deep +0.010 +0.025 a)turfgrasses 12:1 b) ‘stemmy’ grasses, weeds or tree 23:1 saplingswith moderatecover bankside c) bushes, moderately dense, as 12 yearolddormant willow along channel sides, no bed vegetationand HR>0.6m 3. High Medium +0.025 +0.050 a)turfgrasses 1:1 b)dormant810yearoldwillowtrees withweedsand brush(notinleaf),HR>0.6m c) bushy willows 1 year old, in leaf andwithweedsin leaf, no bed vegetation and HR >0.6m 4. Very high shallow +0.050 +0.100 a)turfgrasses <0.5:1 b)growingbushywillowsof1year(?) withweedsin leafalongbanksideslopes ordensegrowthofBulrush( Typha )on channelbed withHR<34m c)trees,bushesandweedsinleafand HR<34m

R&D ROUGHNESSREVIEW 148

Cowans (1956)

This method involves the selection of a basic value of Manning’s n for a uniform, straightandregularnaturalchannel.Thebasicvalueisthenadjustedfortheeffectsof surfaceirregularities,shapeandsizeofchannelcrosssection,obstructions,vegetation andflowconditionsandthemeanderingofthechannel.Bythismethodthevalueofn maybecalculatedby: n=(n 0+n 1+n 2+n 3+n 4)M 5 n0 is a basic value for a straight, uniform smooth channel in the natural materials involved Theconditionsofstraightalignment,uniformcrosssectionandsmoothsideandbottom surfaces should be kept in mind. The basic Manning’s n will only vary with the materialsformingthesidesandbottomofthechannel. n1 is a value added to n 0 to correct for the effect of surface irregularities Thisselectionisbasedonthedegreeofroughnessorirregularityofthechannelsides andbottom n2 is a value for variations in shape and size of the channel cross-section Selectionofamodifyingvalueforvariationsinshapeandsizeofthecrosssectionwill depend primarily on the frequency with which large and small sections alternate and secondarilyonthemagnitudeofthechanges. n3 is a value for the obstructions Theselectionisbasedonthepresenceandcharacteristicsofobstructionssuchasdebris deposits,stumps,exposedroots,boulders,fallenandlodgedlogs. n4 is a value for vegetation and flow conditions Theretardingeffectofvegetationisprobablydueprimarilytotheturbulenceinducedas thewaterflowsaroundandbetweenthelimbs,stemsandfoliageandsecondarilytoa reduction in cross section. In judging the retarding effect of vegetation, critical considerationshouldbegiventothefollowing:heightofvegetationinrelationtodepth offlow;capacityofvegetationtoresistbending;thedegreetowhichthecrosssectionis occupied or blocked out; the transverse and longitudinal distribution of vegetation of differenttypes,densitiesandheightsinthereachunderconsideration. M5 is a correction factor for meandering of channel Thesinuosityofaisdefinedastheratiooftheofthelengthalongthechannel centreline(betweentwopoints)tothestraightlinedistancebetweenthepoints. Valuesforn 0ton 4andM 5maybeselectedfromTablebelowaccordingtothegiven conditions.

R&D ROUGHNESSREVIEW 149

Channel Values condition Earth 0.02 Rockcut 0.025 Materialinvolved n0 Finegravel 0.024 Coarsegravel 0.028 Smooth 0.000 Degreeof Minor 0.005 n1 irregularity Moderate 0.010 Severe 0.020 Variationsof Gradual 0.000 channelcross Alternatingoccasionallyn2 0.005 section Alternatingfrequently 0.010to0.015 Negligible 0.000 Relativeeffectof Minor 0.0100.015 n3 obstructions Appreciable 0.0250.050 Severe 0.0400.060 Low 0.005to0.010 Medium 0.010to0.025 Vegetation n4 High 0.025to0.050 VeryHigh 0.050to0.1 Minor(sinuosity1.0to1.20) 1.000 Degreeof Appreciable(sinuosity=1.2to1.5)M 1.150 meandering 5 Severe(sinuosity=1.5andgreater) 1.300

R&D ROUGHNESSREVIEW 150

Dawson & Henville (draftpaper) HydraulicflowresistanceandthefineleavedsubmergedplantOenanthe fluviatilis in thelowerRiverPiddle,Dorset,UK Themeandepth,widthandhydraulicroughness(asManning`n'andequivalentsand grainroughness)before(2.1m 3s 1,9June1986)andafter(1.45m 3s 114July1986) removalofOenanthe fluviatilis andinthefollowingspring( ≈.68m 3s 112May1987) following`light'dredginginthepreviousautumnforsectionsofthelowerRiverPiddle, Wareham,Dorset,UKandtowardstheendoftheyearwithfullydevelopedvegetation (1.13m 3s 127October1988). Table A10 Hydraulic flow resistance of a fine leaved submerged plant in the lower , Dorset, UK Sections Reach XA AB CD DE 1 2 3 4 Length,m 620 230 220 520 Meanwaterdepth: beforeweedcut9.6.86 0.93 0.74 0.94 afterweedcut14.7.86 0.86 0.54 0.86 afterdredging12.5.87 0.88 0.93 0.55 0.84 0.95 0.85 0.51 0.78 Meanwidth: beforeweedcut 8.7 14.7 10.5 afterweedcut 8.3 12.0 9.2 afterdredging 9.0 9.0 12.2 8.4 8.5 8.2 11.3 7.8 Meanvelocity: beforeweedcut 0.26 0.19 0.21 afterweedcut 0.20 0.22 0.18 afterdredging 0.34 0.30 0.48 0.41 0.14 0.16 0.20 0.19 Mannings`n' (0.070) 0.090 0.17 0.11 - 0.089 0.11 0.098 0.026 0.036 0.060 0.040 0.126 0.210 0.147 0.083 SandGrainRoughness (1.9) 2.7 4.3 3.8 2.7 2.4 3.4 0.09 0.34 0.93 0.36 4.06 5.89 2.49 2.20

R&D ROUGHNESSREVIEW 151

Gilley and Kottwitz (1993)

DarcyWeisbach roughness coefficients were measured for corn, cotton, sorghum, soybeans,sunflowerandwheatvegetation.Differentorientationsofthecrops,parallel and perpendicular to the flow were tested which gave some very useful results as detailedinthetablesbelow. A11 Darcy Weisbach roughness coefficients for rows parallel to the flow Description Friction factor values Manning’s n roughness Upper Lower Upper Lower Corn 0.081 0.0018 0.24 0.036 Cotton 0.03 0.0001 0.14 0.008 Sorghum 0.094 0.0005 0.26 0.019 Soybeans 0.059 0.005 0.21 0.05 Sunflower 0.089 0.003 0.25 0.046 Wheat 2.2 0.11 1.26 0.28

A12 Darcy Weisbach roughness coefficients for rows perpendicular to the flow Description Friction factor values Manning’s n roughness Upper Lower Upper Lower Corn 0.025 0.0002 0.134 0.012 Cotton 0.0094 0.0004 0.082 0.017 Sorghum 0.012 0.0003 0.093 0.015 Soybeans 0.031 0.0019 0.149 0.037 Sunflower 0.02 0.0002 0.120 0.012 Wheat 0.024 0.0003 0.13 0.015

R&D ROUGHNESSREVIEW 152

Green and Garton (1983) A13 Grass cover retardance class equations Retardance Equation Limits of VR (m 2/s) Class n = 0.44 1.62VR VR<0.1542 A 0.0223 n = 0.046 + 0.1542<VR VR n = 0.403 3.3356VR VR<0.0535 0.0096 0.0535<VR< n = 0.046 + B VR 0.1792 0.0115 n = 0.0354 + 0.1792<VR VR 0.0046 n = 0.034 + VR<0.0833 VR C 0.0051 n = 0.028 + 0.0833<VR VR 0.002 n = 0.038 + VR<0.100 VR D 0.0028 n = 0.03 + 0.100<VR VR 0.0007 n = 0.029 + VR<0.123 VR E 0.0015 n = 0.0225 + 0.123<VR VR

R&D ROUGHNESSREVIEW 153

Hey and Thorne (1986)

A14 Data from Hey and Thorne, 1986 depth Manning’s d Veg River Location 50 Sediment type (m) n (mm) type Otter Dotton 1.58 0.03 56.5 Coarsegravel/cobbles 3 Exe Thoverton 1.46 0.028 60.6 Cobbles 2 Exe Stoodleigh 1.77 0.034 82.9 Cobbles 3 EastDart Bellever 1.07 0.05 109 Cobbles 2 Camel Denby 1.39 0.033 24 Medgravel 3 Fowey Restormel 1.46 0.027 61 Coarsegravel/cobbles 4 WestDar Dunnabridge 1.25 0.06 176 Boulders 2 Teign Preston 2.07 0.024 41 Coarsegravel 4 Erme Ermington 1.64 0.035 46 Coarsegravel 4 Neath Resolven 2.33 0.027 70 Cobbles 4 Usk Llandetty 2.5 0.027 66 Cobbles 3 Yscir Pontaryscir 1.51 0.042 67 Cobbles 3 Hirnant Rhiwaedog 1.14 0.05 60 Cobbles 4 Dyfrdwy NewInn 1.11 0.026 43 coarsegravel 2 Glaslyn Beddgelert(1) 1.06 0.032 75 Cobbles 2 Glaslyn Beddgelert(2) 1.22 0.044 71 Cobbles 2 Alwen Druid 1.18 0.031 45 Coarsegravel 2 Ceidog Llandrillo 1.23 0.032 65 Cobbles 4 Lugg Byton(1) 0.86 0.035 48 Coarsegravel 2 Lugg Byton(2) 0.96 0.047 35 Coarsegravel 1 Frome Yarkhill 1.75 0.048 19 Medgravel 4 PinsleyBrook CholstreyMill 0.82 0.031 14 Medgravel 4 Dove IzaakNewton 0.5 0.046 48 Coarsegravel 1 BurbageBrook Burbage 0.72 0.041 11 Medgravel 4 Manifold HulmeEnd(1) 1.12 0.041 43 Coarsegravel 2 Hamps Waterhouses 1.07 0.04 55 Coarsegravel/cobbles 2 Churnet Rocester 1.96 0.042 27 Medgravel 3 Broadway Foot Rye 1.68 0.034 81 Cobbles 4 (1) Broadway Foot Rye 1.9 0.033 84 Cobbles 4 (2) Snaizeholme Low Houses 0.51 0.047 55 Coarsegravel/cobbles 1 Beck (1) Snaizeholme Low Houses 0.59 0.039 86 Cobbles 1 Beck (2) Nidd Birstwith 1.92 0.031 79 Cobbles 4 Wylye NortonBavant 0.82 0.036 17 Medgravel 2 Alwin Clennel 0.5 0.04 66 Cobbles 1 Bottoms Beck Bottom'sBeck 1 0.042 68 Cobbles 4 Flume Coquet Bygate 0.87 0.07 74 Cobbles 1 CroasedaleBeck Croasedale 1.29 0.04 77 Cobbles 4 Temple Eden 2.69 0.047 56 Coarsegravel/cobbles 1 Sowersby Warwick Eden 3.21 0.051 50 Coarsegravel/cobbles 1 Bridge Cropple How Esk 1.26 0.028 53 Coarsegravel/cobbles 4 (1) Cropple How Esk 1.34 0.037 28 Medgravel 2 (2)

R&D ROUGHNESSREVIEW 154

Glendaranmaken Threlkeld 1.22 0.037 42 Coarsegravel 2 Hindurn Wray(1) 1.73 0.042 81 Cobbles 4 Hindurn Wray(2) 1.28 0.042 91 Cobbles 1 Hodder Hodderplace 2.61 0.035 66 Cobbles 4 Irthing Greenholme 1.34 0.029 36 Medgravel 1 Kielderburn Kielder 1.05 0.06 64 Coarsegravel/cobbles 1 Mint MintBridge 1.62 0.048 58 Coarsegravel/cobbles 4 Rede Rede'sBridge 1.44 0.038 130 Cobbles/boulders 2 Sprint SprintMill 1.29 0.038 70 cobbles 3 TarsetBurn Greenhaugh 1.85 0.042 123 Cobbles/boulders 4 Teviot Hawick 2.13 0.05 71 Cobbles 3 Tweed Bokside 2.05 0.028 60 Coarsegravel/cobbles 1 Tweed Lyneford 1.47 0.028 41 Coarsegravel 2 Tweed Peebles 2.09 0.027 69 Cobbles 3 NorthTyne Tarset 2.14 0.041 92 cobbles 3 UswayBurn Shillmoor 0.78 0.03 114 Cobbles/boulders 4 Yarrowater PhillipHaugh 1.75 0.036 84 cobbles 3 Asker 1.22 0.038 183 Boulders 3 Frome Loudsmill 0.65 0.025 20 Medgravel 1 Chittern Codford 0.68 0.035 23 Medgravel 2 Manifold HulmeEnd(2) 1.32 0.027 49 Coarsegravel 3

R&D ROUGHNESSREVIEW 155

Hicks and Mason (1991)

A15 Data from Hicks and Mason (1991) Hydaulic Flow radius Roughness Site Description range range range (m3/s) (m) PoutuatFord Bed–erodedlavaflow.Banks 2.31 0.280.36 0.0150.017 –grassesandbroom 6.36 Ngaruroroat Bed–med/finegravel.Banks 151563 1.692.01 0.0150.019 Chesterthorpe andbermsaregrassed Bridge WanganuiatTe Manmadechannelwithbed 6.75 0.811.04 0.0180.022 WhaiauCanal andbankssand/gravel.Banks 13.5 havegrassesandflaxes Loganburnat Bed–gravelwithsmall 1.85 0.350.48 0.020.039 Gorge cobbles.Bankslinedwith 5.82 grass Wanganuiat Manmadechannel. 6.15 0.831.5 0.0220.025 WairehuCanal Bed/banksofuniformlysized 31.9 cobbles.Broomalongbanks Waipaoaat Bed–finegravel/silt.Banks 19.8672 0.553.06 0.0230.029 Kanakanaia linedwithwillows Waiauat Bed–largecobbles,boulders 21.5527 1.033.08 0.0160.029 Sunnyside andbedrock.Banksnative brush Hakataramea Bedofcobbleswithsmall 1.36 0.180.75 0.0220.031 abovemain boulders.Leftbankwillows. 22.8 highwaybridge Rightbanktussock Cluthaat Bed–finegraveltoboulders~ 126247 1.371.89 0.0270.033 Lowburn 300mmdiam.Banksof cobbleboulder100to300mm diam MaruiaatFalls Bed–sandwithsome 69.5511 1.583.12 0.0260.029 silt/gravel.Banksof overhangingtrees,densescrub OrereatBridge Bed–smoothbouldersto 9.41 0.641.12 0.0230.032 smallpebblesandsomesand. 50.6 Banksgrassedwithsomescrub onrightbank GreyatDobson Bed–cobbles.Rightbank– 733220 0.673.9 0.0250.031 bedrock,cobblesandsoilwith sparsebushcover.Leftbank– cobbles,siltandsoilwiththick bushcover,overhangingtrees Avonat Bed–angularcobblesand 1.83 0.4–1.01 0.026–0.04 Gloucester smallbouldersinmuddybase. 17.3 Streetbridge Leftbank–steepandgrassed. Rightbank–lowergrassy berm

R&D ROUGHNESSREVIEW 156

Monowaibelow Bed – coarse gravel and 5.6424.1 0.470.88 0.0260.03 ControlGates cobbles.Bankslinedwithflax andoverhangingwillows Piako at Bed – mud and sand. Banks 2.8218.9 0.511.66 0.0220.032 PaeroaTahuna linedwithgrass Bridge Waikato at Bed – sand/gravel with mud. 237874 2.244.32 0.0280.039 Ngaruawahia Banks lined with willows Cableway except for small patches of othertreesandgorse Heathcote at Bed – angular cobbles and 1.228.21 0.371.27 0.0280.034 SloanTerrace gravel mixed with mud and silt. Banks steep with long grass Taieri below Bed–coarsegravelandsmall 0.7827.1 0.30.96 0.020.047 Patearoa Power cobbles. Banks lined with Station grass. Taieriat Bed–bouldersandbedrock. 0.9214.3 0.180.61 0.0260.033 MacAtamneys Banksgrassywithtussocks. Fewwillowsoneachbank Ongarueat Bed–gravel/cobbles. 10.5241 0.873.03 0.0220.05 Taringamotu Farmlandgrasseslineboth banks Pomahakaat Bed–coarsegravel/large 4.58114 0.591.68 0.0290.039 BurkesFord cobbles.Rightbank– willows,leftbankgrass WaikohuatNo. Bed–graveltolargecobbles 18.719.1 1.021.04 0.0320.033 1bridge withsomeexposedbedrock. Banks–overhangingtrees Mangaheiaat Bedrangesfromgravelto 760 0.862.06 0.0290.044 Willowbank largeboulders.Banksgrassed withoverhangingwillows OakdeanCanal Largemanmadecanalwith 4.920.5 1.771.85 0.0270.037 atOakdean bed/banksofcompacted Culvert gravel/boulderswithareasof silt/weeds WaiauWater Manmadelinedirrigation 0.332.52 0.180.38 0.0270.045 raceatLateral2 channelwithbedof cobbles/gravel.Bankslong grass

R&D ROUGHNESSREVIEW 157

Higginson and Johnston (1989)

The variation in Manning n through a pool riffle sequence is shown inFigure A2 to establishtherangeofManningnforarangeofdischarges.

Figure A2 Variation in Manning’s n through a pool riffle sequence for a range of discharges

Thisfigureshowsthatthereisaconsiderablevariationinnbetweenpoolandriffleat lowdischarges.Thedifferencesdecreasedwithincreasingdischargesandtheeffectof thepoolrifflebecameinsignificantathigherflows.Atthesehighflowstheeffectofthe poolorriffleonthehydraulicmeandepthbecamesmall. The Stickler formula relates the roughness properties of the channel n, to the grain roughnessk sinmm bytheformula

1 6 n = 0.01355ks (A4)

HigginsonandJohnsonrelatedthemeasuredvaluesofnintheriversassessedwiththe valuesofncalculated.Thedifferenceinnandn s,Stickler’sroughnessvalue,canbe plotted against velocity. Regression analysis of the data gave the following relationship:  I0.02922 R 0.03978  n n = log   (A5) s 10  0.0063 0.1025   d35 V  where d 35 is the grain size in mm, I is the slope of the channel in cm per 100m of channelandn sistheStickler’sestimatedroughnessvalue. TheHigginsonandJohsonapproachwasdevelopedinspecificriversandthetechnique application should only be applied to similar rivers. If the method is applied to dissimilarriverstheplanformofthechannelmustbeconsidered.

R&D ROUGHNESSREVIEW 158

Klassen and Van Der Zwaard (1974)

FigureA3whichisreproducedfromKlassenandVanDerZwaard’spaper,showsthe effectofprototypehedgespacingandwaterdepthontheChezyroughnesscoefficient. Twosetsofcurvesareshown;onesetwithoutorganictrashtrappedbythehedgesand one set with organic trash and a decrease in the Chezy coefficient i.e an increase in roughness.Thecurvespresentedinthefigurebelowareforanunvegetatedfloodberm roughness height of 0.07m. The hedges simulated by Klassen and Van Der Zwaard wereperpendiculartotheflowdirection.

Figure A3 Effect of prototype hedge spacing and water depth on Chezy roughness coefficient FigureA4alsoreproducedfromKlassenandVanDerZwaard,illustratestheeffectof tree density and prototype water depth on Chezy coefficient. The tree density, n, is definedasthenumberoftreesperunitarea.Anincreaseintreedensity resultsina decreaseinChezycoefficientandthusanincreaseinresistance.Thecurvespresented inFigureA4areforanunvegetatedfloodbermroughnessheightof0.07m.

R&D ROUGHNESSREVIEW 159

Figure A4 Effect of tree density and prototype water depth on Chezy coefficient ThevaluesforChezycoefficientgivenintheabovecanbeconvertedtoManning’sn R 6/1 usingtheformula n = togivethetablebelow. C Table A16 Manning roughness coefficients for clean and dirty hedgerows

Hedgerow Manning’s ‘n’ roughness coefficient for clean or dirty separation hedgerows with varying flow depths (m) 0.25m 0.50m 1.00m 1.50m 2.00m Clean Dirty Clean Dirty Clean Dirty Clean Dirty Clean Dirty 50 0.038 0.072 0.045 0.089 0.053 0.091 0.054 0.086 0.051 0.080 100 0.032 0.053 0.032 0.064 0.042 0.067 0.042 0.063 0.041 0.060 250 0.029 0.040 0.031 0.045 0.029 0.045 0.032 0.045 0.032 0.041 500 0.028 0.035 0.028 0.036 0.029 0.037 0.027 0.036 0.029 0.034 1000 0.027 0.031 0.027 0.032 0.027 0.031 0.025 0.029 0.027 0.027

R&D ROUGHNESSREVIEW 160

Kouwen N and Fathi-Moghadam M (2000)

The paper investigates the friction factors for coniferous trees along rivers with the purposeofmodellingthetreestohelpengineersestimatetheDarcyWeisbachfriction factorandManning’snfornonsumerged,flexiblevegetationinthevegetatedzonesof rivercrosssections. ThepapergivesatableofEstimatedManning’snvaluesforthevegetatedzoneofrivers andfloodplainsforjustcoveredandjustsubmergedconditions.Thedepthofwateris 2m and the height of trees are on average 3m. The first table gives the Manning’s valuesforjustsubmergedconditionswiththetotalareacovered.Thesubsequenttables give values for 75%, 50% and 25% submergence with full, 75% 50% and 25% area covered.

R&D ROUGHNESSREVIEW 161

Table A17 Manning’s n values for vegetatel zones of rivers and floodplains Total area total submergence Total area 50% submergence Manning’s n Manning’s n Velocity White Austrian Velocity White Austrian Cedar Spruce m/s pine pine (m/s) Cedar Spruce pine pine 0.1 0.19 0.201 0.198 0.208 0.1 0.268 0.284 0.280 0.294 0.2 0.162 0.171 0.169 0.178 0.2 0.229 0.241 0.239 0.252 0.3 0.148 0.156 0.154 0.162 0.3 0.209 0.220 0.218 0.229 0.4 0.138 0.146 0.144 0.151 0.4 0.195 0.206 0.204 0.214 0.5 0.131 0.139 0.137 0.144 0.5 0.185 0.196 0.194 0.204 0.6 0.126 0.133 0.131 0.138 0.6 0.178 0.188 0.185 0.195 0.7 0.122 0.129 0.127 0.133 0.7 0.172 0.182 0.180 0.188 0.8 0.118 0.125 0.123 0.129 0.8 0.166 0.176 0.174 0.182 0.9 0.115 0.121 0.12 0.126 0.9 0.162 0.171 0.170 0.178 1 0.112 0.118 0.117 0.123 1 0.158 0.166 0.165 0.174 1.1 0.11 0.116 0.114 0.12 1.1 0.155 0.164 0.161 0.170 1.2 0.107 0.114 0.112 0.118 1.2 0.151 0.161 0.158 0.167 1.3 0.105 0.111 0.11 0.115 1.3 0.148 0.156 0.156 0.163 1.4 0.104 0.11 0.108 0.113 1.4 0.147 0.155 0.153 0.160 1.5 0.102 0.108 0.106 0.112 1.5 0.144 0.152 0.150 0.158 1.6 0.101 0.106 0.105 0.11 1.6 0.142 0.149 0.148 0.156 1.7 0.099 0.105 0.103 0.109 1.7 0.140 0.148 0.146 0.154 1.8 0.098 0.103 0.102 0.107 1.8 0.138 0.145 0.144 0.151 1.9 0.097 0.102 0.101 0.106 1.9 0.137 0.144 0.143 0.145 2 0.096 0.101 0.1 0.105 2 0.135 0.142 0.141 0.148 Total area 75% submergence Total area 25% submergence Manning’s n Manning’s n Velocity White Austrian Cedar Spruce Velocity White Austrian (m/s) pine pine (m/s) Cedar Spruce pine pine 0.1 0.219 0.232 0.228 0.2401 0.1 0.38 0.402 0.396 0.416 0.2 0.187 0.197 0.195 0.2055 0.2 0.324 0.342 0.338 0.356 0.3 0.170 0.180 0.177 0.1870 0.3 0.296 0.312 0.308 0.324 0.4 0.159 0.168 0.166 0.174 0.4 0.276 0.292 0.288 0.302 0.5 0.151 0.160 0.158 0.1662 0.5 0.262 0.278 0.274 0.288 0.6 0.145 0.153 0.151 0.1593 0.6 0.252 0.266 0.262 0.276 0.7 0.140 0.148 0.146 0.1535 0.7 0.244 0.258 0.254 0.266 0.8 0.136 0.144 0.142 0.1489 0.8 0.236 0.25 0.246 0.258 0.9 0.132 0.139 0.138 0.1454 0.9 0.23 0.242 0.24 0.252 1 0.129 0.136 0.135 0.1420 1 0.224 0.236 0.234 0.246 1.1 0.127 0.133 0.131 0.1385 1.1 0.22 0.232 0.228 0.24 1.2 0.123 0.131 0.129 0.1362 1.2 0.214 0.228 0.224 0.236 1.3 0.121 0.128 0.127 0.1327 1.3 0.21 0.222 0.22 0.23 1.4 0.120 0.127 0.124 0.1304 1.4 0.208 0.22 0.216 0.226 1.5 0.117 0.124 0.122 0.1293 1.5 0.204 0.216 0.212 0.224 1.6 0.116 0.122 0.121 0.1270 1.6 0.202 0.212 0.21 0.22 1.7 0.114 0.121 0.118 0.1258 1.7 0.198 0.21 0.206 0.218 1.8 0.113 0.118 0.117 0.1235 1.8 0.196 0.206 0.204 0.214 1.9 0.112 0.117 0.116 0.1223 1.9 0.194 0.204 0.202 0.212 2 0.110 0.116 0.115 0.1212 2 0.192 0.202 0.2 0.21

R&D ROUGHNESSREVIEW 162

75% area total submergence 75% area 50% submergence Manning’s n Manning’s n Velocity White Austrian Velocity White Austrian (m/s) Cedar Spruce pine pine (m/s) Cedar Spruce pine pine 0.100 0.165 0.174 0.171 0.180 0.100 0.233 0.246 0.242 0.255 0.200 0.140 0.148 0.146 0.154 0.200 0.198 0.209 0.207 0.218 0.300 0.128 0.135 0.133 0.140 0.300 0.181 0.191 0.189 0.198 0.400 0.120 0.126 0.125 0.131 0.400 0.169 0.179 0.176 0.185 0.500 0.113 0.120 0.119 0.125 0.500 0.160 0.170 0.168 0.176 0.600 0.109 0.115 0.113 0.120 0.600 0.154 0.163 0.160 0.169 0.700 0.106 0.112 0.110 0.115 0.700 0.149 0.158 0.156 0.163 0.800 0.102 0.108 0.107 0.112 0.800 0.145 0.153 0.151 0.158 0.900 0.100 0.105 0.104 0.109 0.900 0.141 0.148 0.147 0.154 1.000 0.097 0.102 0.101 0.107 1.000 0.137 0.145 0.143 0.151 1.100 0.095 0.100 0.099 0.104 1.100 0.135 0.142 0.140 0.147 1.200 0.093 0.099 0.097 0.102 1.200 0.131 0.140 0.137 0.145 1.300 0.091 0.096 0.095 0.100 1.300 0.129 0.136 0.135 0.141 1.400 0.090 0.095 0.094 0.098 1.400 0.127 0.135 0.132 0.138 1.500 0.088 0.094 0.092 0.097 1.500 0.125 0.132 0.130 0.137 1.600 0.087 0.092 0.091 0.095 1.600 0.124 0.130 0.129 0.135 1.700 0.086 0.091 0.089 0.094 1.700 0.121 0.129 0.126 0.133 1.800 0.085 0.089 0.088 0.093 1.800 0.120 0.126 0.125 0.131 1.900 0.084 0.088 0.087 0.092 1.900 0.119 0.125 0.124 0.130 2.000 0.083 0.087 0.087 0.091 2.000 0.118 0.124 0.122 0.129 75% area 25% submergence 75% area 75% submergence Manning’s n Manning’s n Velocity White Austrian Velocity White Austrian (m/s) Cedar Spruce pine pine (m/s) Cedar Spruce pine pine 0.100 0.329 0.348 0.343 0.360 0.100 0.190 0.201 0.198 0.208 0.200 0.281 0.296 0.293 0.308 0.200 0.162 0.171 0.169 0.178 0.300 0.256 0.270 0.267 0.281 0.300 0.148 0.156 0.154 0.162 0.400 0.239 0.253 0.249 0.262 0.400 0.138 0.146 0.144 0.151 0.500 0.227 0.241 0.237 0.249 0.500 0.131 0.139 0.137 0.144 0.600 0.218 0.230 0.227 0.239 0.600 0.126 0.133 0.131 0.138 0.700 0.211 0.223 0.220 0.230 0.700 0.122 0.129 0.127 0.133 0.800 0.204 0.217 0.213 0.223 0.800 0.118 0.125 0.123 0.129 0.900 0.199 0.210 0.208 0.218 0.900 0.115 0.121 0.120 0.126 1.000 0.194 0.204 0.203 0.213 1.000 0.112 0.118 0.117 0.123 1.100 0.191 0.201 0.197 0.208 1.100 0.110 0.116 0.114 0.120 1.200 0.185 0.197 0.194 0.204 1.200 0.107 0.114 0.112 0.118 1.300 0.182 0.192 0.191 0.199 1.300 0.105 0.111 0.110 0.115 1.400 0.180 0.191 0.187 0.196 1.400 0.104 0.110 0.108 0.113 1.500 0.177 0.187 0.184 0.194 1.500 0.102 0.108 0.106 0.112 1.600 0.175 0.184 0.182 0.191 1.600 0.101 0.106 0.105 0.110 1.700 0.171 0.182 0.178 0.189 1.700 0.099 0.105 0.103 0.109 1.800 0.170 0.178 0.177 0.185 1.800 0.098 0.103 0.102 0.107 1.900 0.168 0.177 0.175 0.184 1.900 0.097 0.102 0.101 0.106 2.000 0.166 0.175 0.173 0.182 2.000 0.096 0.101 0.100 0.105

R&D ROUGHNESSREVIEW 163

50% area total submergence 50% area 50% submergence Manning’s n Manning’s n Velocity White Austrian Velocity White Austrian (m/s) Cedar Spruce pine pine (m/s) Cedar Spruce pine pine 0.100 0.134 0.142 0.140 0.147 0.100 0.190 0.201 0.198 0.208 0.200 0.115 0.121 0.120 0.126 0.200 0.162 0.171 0.169 0.178 0.300 0.105 0.110 0.109 0.115 0.300 0.148 0.156 0.154 0.162 0.400 0.098 0.103 0.102 0.107 0.400 0.138 0.146 0.144 0.151 0.500 0.093 0.098 0.097 0.102 0.500 0.131 0.139 0.137 0.144 0.600 0.089 0.094 0.093 0.098 0.600 0.126 0.133 0.131 0.138 0.700 0.086 0.091 0.090 0.094 0.700 0.122 0.129 0.127 0.133 0.800 0.083 0.088 0.087 0.091 0.800 0.118 0.125 0.123 0.129 0.900 0.081 0.086 0.085 0.089 0.900 0.115 0.121 0.120 0.126 1.000 0.079 0.083 0.083 0.087 1.000 0.112 0.118 0.117 0.123 1.100 0.078 0.082 0.081 0.085 1.100 0.110 0.116 0.114 0.120 1.200 0.076 0.081 0.079 0.083 1.200 0.107 0.114 0.112 0.118 1.300 0.074 0.078 0.078 0.081 1.300 0.105 0.111 0.110 0.115 1.400 0.074 0.078 0.076 0.080 1.400 0.104 0.110 0.108 0.113 1.500 0.072 0.076 0.075 0.079 1.500 0.102 0.108 0.106 0.112 1.600 0.071 0.075 0.074 0.078 1.600 0.101 0.106 0.105 0.110 1.700 0.070 0.074 0.073 0.077 1.700 0.099 0.105 0.103 0.109 1.800 0.069 0.073 0.072 0.076 1.800 0.098 0.103 0.102 0.107 1.900 0.069 0.072 0.071 0.075 1.900 0.097 0.102 0.101 0.106 2.000 0.068 0.071 0.071 0.074 2.000 0.096 0.101 0.100 0.105 50% area 25% submergence 50% area 75% submergence Manning’s n Manning’s n Velocity White Austrian Velocity White Austrian (m/s) Cedar Spruce pine pine (m/s) Cedar Spruce pine pine 0.100 0.269 0.284 0.280 0.294 0.100 0.155 0.164 0.162 0.170 0.200 0.229 0.242 0.239 0.252 0.200 0.132 0.140 0.138 0.145 0.300 0.209 0.221 0.218 0.229 0.300 0.121 0.127 0.126 0.132 0.400 0.195 0.206 0.204 0.214 0.400 0.113 0.119 0.118 0.123 0.500 0.185 0.197 0.194 0.204 0.500 0.107 0.113 0.112 0.118 0.600 0.178 0.188 0.185 0.195 0.600 0.103 0.109 0.107 0.113 0.700 0.173 0.182 0.180 0.188 0.700 0.100 0.105 0.104 0.109 0.800 0.167 0.177 0.174 0.182 0.800 0.096 0.102 0.100 0.105 0.900 0.163 0.171 0.170 0.178 0.900 0.094 0.099 0.098 0.103 1.000 0.158 0.167 0.165 0.174 1.000 0.091 0.096 0.096 0.100 1.100 0.156 0.164 0.161 0.170 1.100 0.090 0.095 0.093 0.098 1.200 0.151 0.161 0.158 0.167 1.200 0.087 0.093 0.091 0.096 1.300 0.148 0.157 0.156 0.163 1.300 0.086 0.091 0.090 0.094 1.400 0.147 0.156 0.153 0.160 1.400 0.085 0.090 0.088 0.092 1.500 0.144 0.153 0.150 0.158 1.500 0.083 0.088 0.087 0.091 1.600 0.143 0.150 0.148 0.156 1.600 0.082 0.087 0.086 0.090 1.700 0.140 0.148 0.146 0.154 1.700 0.081 0.086 0.084 0.089 1.800 0.139 0.146 0.144 0.151 1.800 0.080 0.084 0.083 0.087 1.900 0.137 0.144 0.143 0.150 1.900 0.079 0.083 0.082 0.087 2.000 0.136 0.143 0.141 0.148 2.000 0.078 0.082 0.082 0.086

R&D ROUGHNESSREVIEW 164

25% area total submergence 25% area 50% submergence Manning’s n Manning’s n Velocity White Austrian Velocity White Austrian (m/s) Cedar Spruce pine pine (m/s) Cedar Spruce pine pine 0.100 0.095 0.101 0.099 0.104 0.100 0.116 0.123 0.121 0.127 0.200 0.081 0.086 0.085 0.089 0.200 0.099 0.105 0.103 0.109 0.300 0.074 0.078 0.077 0.081 0.300 0.091 0.096 0.094 0.099 0.400 0.069 0.073 0.072 0.076 0.400 0.085 0.089 0.088 0.092 0.500 0.066 0.070 0.069 0.072 0.500 0.080 0.085 0.084 0.088 0.600 0.063 0.067 0.066 0.069 0.600 0.077 0.081 0.080 0.085 0.700 0.061 0.065 0.064 0.067 0.700 0.075 0.079 0.078 0.081 0.800 0.059 0.063 0.062 0.065 0.800 0.072 0.077 0.075 0.079 0.900 0.058 0.061 0.060 0.063 0.900 0.070 0.074 0.073 0.077 1.000 0.056 0.059 0.059 0.062 1.000 0.069 0.072 0.072 0.075 1.100 0.055 0.058 0.057 0.060 1.100 0.067 0.071 0.070 0.073 1.200 0.054 0.057 0.056 0.059 1.200 0.066 0.070 0.069 0.072 1.300 0.053 0.056 0.055 0.058 1.300 0.064 0.068 0.067 0.070 1.400 0.052 0.055 0.054 0.057 1.400 0.064 0.067 0.066 0.069 1.500 0.051 0.054 0.053 0.056 1.500 0.062 0.066 0.065 0.069 1.600 0.051 0.053 0.053 0.055 1.600 0.062 0.065 0.064 0.067 1.700 0.050 0.053 0.052 0.055 1.700 0.061 0.064 0.063 0.067 1.800 0.049 0.052 0.051 0.054 1.800 0.060 0.063 0.062 0.066 1.900 0.049 0.051 0.051 0.053 1.900 0.059 0.062 0.062 0.065 2.000 0.048 0.051 0.050 0.053 2.000 0.059 0.062 0.061 0.064 25% area 25% submergence 25% area 75% submergence Manning’s n Manning’s n Velocity White Austrian Velocity White Austrian (m/s) Cedar Spruce pine pine (m/s) Cedar Spruce pine pine 0.100 0.190 0.201 0.198 0.208 0.100 0.095 0.101 0.099 0.104 0.200 0.162 0.171 0.169 0.178 0.200 0.081 0.086 0.085 0.089 0.300 0.148 0.156 0.154 0.162 0.300 0.074 0.078 0.077 0.081 0.400 0.138 0.146 0.144 0.151 0.400 0.069 0.073 0.072 0.076 0.500 0.131 0.139 0.137 0.144 0.500 0.066 0.070 0.069 0.072 0.600 0.126 0.133 0.131 0.138 0.600 0.063 0.067 0.066 0.069 0.700 0.122 0.129 0.127 0.133 0.700 0.061 0.065 0.064 0.067 0.800 0.118 0.125 0.123 0.129 0.800 0.059 0.063 0.062 0.065 0.900 0.115 0.121 0.120 0.126 0.900 0.058 0.061 0.060 0.063 1.000 0.112 0.118 0.117 0.123 1.000 0.056 0.059 0.059 0.062 1.100 0.110 0.116 0.114 0.120 1.100 0.055 0.058 0.057 0.060 1.200 0.107 0.114 0.112 0.118 1.200 0.054 0.057 0.056 0.059 1.300 0.105 0.111 0.110 0.115 1.300 0.053 0.056 0.055 0.058 1.400 0.104 0.110 0.108 0.113 1.400 0.052 0.055 0.054 0.057 1.500 0.102 0.108 0.106 0.112 1.500 0.051 0.054 0.053 0.056 1.600 0.101 0.106 0.105 0.110 1.600 0.051 0.053 0.053 0.055 1.700 0.099 0.105 0.103 0.109 1.700 0.050 0.053 0.052 0.055 1.800 0.098 0.103 0.102 0.107 1.800 0.049 0.052 0.051 0.054 1.900 0.097 0.102 0.101 0.106 1.900 0.049 0.051 0.051 0.053 2.000 0.096 0.101 0.100 0.105 2.000 0.048 0.051 0.050 0.053

R&D ROUGHNESSREVIEW 165

Li and Shen (1973) LiandShen(1973)presentananalysisofflowthroughtallvegetationbyconsidering thedragduetocylindersintheflow.Thisstudy isnotofdirect applicabilitytothe estimationofflowresistanceduetovegetationbutitdoesdrawsomeconclusionswhich are of relevance. The most important of these is that staggered patterns of tall vegetation (trees) are much more effective in reducing the flow than any other configurationwiththesamenumberoftallvegetations.Thisconclusionisinagreement withtheestimatesofManning’sroughnesscoefficientmadebyBrukandVolf(1967).

R&D ROUGHNESSREVIEW 166

Limernos (1970)

Table A18 Summary of basic data d Stream and Hydraulic Manning’s 50 Discharge sediment sediment type location radius n size 143.00 1.80 0.036 10.97 MedGravel AustinCreek 38.79 0.82 0.036 10.97 MedGravel nrCazadero 24.15 0.61 0.036 10.97 MedGravel 19.03 0.57 0.038 10.97 MedGravel 61.73 1.30 0.02 3.96 Finegravel CacheCreek 26.73 0.80 0.022 3.96 Finegravel atYolo 7.84 0.31 0.023 3.96 Finegravel MiddleFork 254.85 1.49 0.035 14.63 MedGravel EelRiver 38.23 0.47 0.043 14.63 MedGravel 29.73 0.65 0.071 106.68 Cobbles KaweahRiver 24.61 0.59 0.067 106.68 Cobbles 11.47 0.44 0.083 106.68 Cobbles 104.49 1.13 0.064 106.68 Cobbles 103.64 1.09 0.059 106.68 Cobbles KingsRiver 90.61 1.06 0.064 106.68 Cobbles 69.09 1.04 0.066 106.68 Cobbles 37.94 1.10 0.044 85.34 Coarsegravel 52.10 1.10 0.035 85.34 Coarsegravel MercedRiver 46.72 1.06 0.036 85.34 Coarsegravel atClarks 27.84 0.97 0.052 85.34 Coarsegravel Bridge 33.13 0.90 0.05 85.34 Coarsegravel 18.86 0.82 0.068 85.34 Coarsegravel 17.61 0.80 0.064 85.34 Coarsegravel 55.22 1.34 0.06 173.74 Cobbles/boulders 55.22 1.20 0.068 173.74 Cobbles/boulders 56.35 1.14 0.067 173.74 Cobbles/boulders 52.10 1.00 0.06 173.74 Cobbles/boulders 46.72 0.94 0.058 173.74 Cobbles/boulders MercedRiver 37.94 0.92 0.065 173.74 Cobbles/boulders atHappyIsles 33.13 0.88 0.066 173.74 Cobbles/boulders 27.84 0.82 0.07 173.74 Cobbles/boulders 18.86 0.75 0.087 173.74 Cobbles/boulders 17.61 0.69 0.074 173.74 Cobbles/boulders 5.97 0.48 0.1 173.74 Cobbles/boulders 430.42 3.32 0.033 16.46 MedGravel 125.16 2.25 0.036 19.20 MedGravel 159.71 1.83 0.035 19.20 MedGravel 33.98 1.21 0.029 19.20 MedGravel OutletCreek 34.26 1.19 0.028 19.20 MedGravel nearLongvale 45.59 1.02 0.028 19.20 MedGravel 32.00 0.98 0.025 19.20 MedGravel 15.35 0.93 0.036 19.20 MedGravel 9.85 0.78 0.038 19.20 MedGravel

R&D ROUGHNESSREVIEW 167

84.95 1.19 0.042 97.54 Cobbles MiddleFork 55.22 1.01 0.044 97.54 Cobbles SmithRiver 44.46 0.92 0.047 97.54 Cobbles VanDuzen Rivernear Bridgeville 52.10 0.84 0.039 67.06 Coarsegravel VanDuzen 150.36 1.61 0.088 94.49 Cobbles Rivernear 101.09 1.38 0.107 94.49 Cobbles Dinsmores 71.08 1.10 0.098 94.49 Cobbles

R&D ROUGHNESSREVIEW 168

Petryk and Bosmajian (1975) Petryk and Bosmajian (1975) theoretically analysed flow through vegetation. In carryingoutthisanalysistheymadethefollowingassumptions: • thevelocityissmallenoughtopreventalargedegreeofplantbending; • thevegetationisdistributedrelativelyuniformlyinthelateraldirection; • largevariationsinaveragevelocitydonotoccuracrossthechannel • themaximumflowdepthislessthanorequaltothemaximumheightofvegetation; and • largevariationsinflowvelocitydonotoccurovertheflowdepth. PetrykandBosmajianderivedthefollowingequation(inmetricunits)forManning’s roughnesscoefficient:

4 R Cdr ∑Ai n = n 1+ 3 ( ) (A6) b 2 AL 2gnb where:nb istheboundaryroughnesscoefficient Risthehydraulicradius

Cdr ΣAi/ALrepresentsthevegetationcharacteristics.

TheexpressionC dr ΣAi/ALrepresentsthedensityofvegetationinthechannel.C dr is the drag coefficient of the vegetation which Petryk and Bosmajian suggest is of the orderof1.0. ΣAiistheprojectedareaofthevegetationinthestreamwisedirection,ina channeloflengthL,withacrosssectionalareaofflowA.

The paper also includes some examples of vegetated floodplains and the roughness valuesassociatedwiththem.Thetablebelowsummarisesthesefieldsiteswherethe densityofvegetationisrepresentedasdescribedabove:

Table A19 Decription of Manning n values for various field sites Manning n roughness values Description Average Upper Lower Thirdcoverageofwillows,twothirdscoverageof 0.08 0.01 0.06 weeds,willows,poplarsof2.5to15cmdiameter, vegetationdensity~0.055permsummer,1m depthofwater Third coverage of willows, two thirds coverage of weeds, 0.11 0.14 0.08 willows,poplarsof2.5to15cmdiameter,vegetationdensity 0.06perm,summer,2mdepthofwater Third coverage of willows, two thirds coverage of weeds, 0.15 0.18 0.12 willows,poplarsof2.5to15cmdiameter,vegetationdensity 0.075perm,summer,3mdepthofwater Largesizedgrowthoftrees,mainlywillowsinfullfoliage– 0.055 summer,vegetationdensity0.015perm,1.3mdepthofwater Largesizedgrowthoftrees,mainlywillowsinfullfoliage– 0.07 0.09 0.045 summer,vegetationdensity0.02perm,2mdepthofwater Largesizedgrowthoftrees,mainlywillowsinfull 0.12 0.15 0.1

R&D ROUGHNESSREVIEW 169 foliage–summer,vegetationdensity0.035perm, 3mdepthofwater Oakgumandcypresstrees,verylittleundergrowth,summer, 0.087 0.11 0.075 vegetationdensity0.03perm,depth1.3m Oakgumandcypresstrees,verylittleundergrowth,summer, 0.11 0.12 0.1 vegetationdensity0.03perm,depth2m Oakgumandcypresstrees,verylittleundergrowth,summer, 0.155 0.17 0.14 vegetationdensity0.03perm,depth3m Oakgumandcypresstrees,verylittle 0.12 0.13 0.11 undergrowth,winter,vegetationdensity0.03per m,depth2.5m Oakgumandcypresstrees,verylittleundergrowth,winter, 0.14 0.155 0.125 vegetationdensity0.03perm,depth3m Willowtreesof5cmto30cmdiameter,largeweeds,summer, 0.065 0.08 0.055 vegetationdensity0.03perm,depth1.3m Willowtreesof5cmto30cmdiameter,largeweeds,summer, 0.078 0.085 0.07 vegetationdensity0.032perm,depth2m Willowtreesof5cmto30cmdiameter,largeweeds,summer, 0.103 0.115 0.095 vegetationdensity0.035perm,depth3m

R&D ROUGHNESSREVIEW 170

Powell (1972) Table A20 Decription of data Country Exp or Catchment Length Ht above sea Times in field data area of reach level year of data collection UK Field River Bain, 1549m Fulsbyweir Jan 1967 to FulsbyLock 10.08mODN Jan1968 Haltham Jan 1968 to 12.96mODN Sept1971

R&D ROUGHNESSREVIEW 171

Ree, Wimberly and Crow (1977) Manning’snvaluesfortheoverlandflowsurfacesofagrassedwatershedwerederived byhydrographanalysisandbyusingaveragewatershedslopeandoverlandflowlength valuesdeterminedbygeomorphicmethods.ThesevaluesarecomparedwithManning n values from laboratory tests on channels having similar grass covers. Close agreementwasfoundforpoorgrassbutnotforfairandgoodgrasscover.Thetable belowgivesvaluesforthreewatershedswiththreecoverconditions. Table A21 Manning’s n values for grassed watersheds Cover condition Watershed W1 W3 W4 Good 0.21 0.31 0.62 Fair 0.35 0.31 0.51 Poor 0.26 0.28 0.25

R&D ROUGHNESSREVIEW 172

Richards (1976) Richardswasinvestigatingthechannelgeometryinthepoolrifflesequencewithfield observationsontheRiverFowey,Cornwall,UK.Aspartoftheinvestigationthemean flowcharacteristicswererecorded,asgiveninthetablebelow. Table A22 Data from a field investigation of pool-riffle sequences on the River Fowey, Cornwall, UK Variable Curved pool Straight pool Curved riffle Straight riffle Depth(m) 0.42 0.41 0.15 0.19 Velocity(m/s) 0.19 0.17 0.44 0.39 Manningn 0.05 0.05 0.07 0.12 Slope*10 3 0.3 0.2 11 18 Width(m) 4.85 5.4 5.71 5.29 Averagedischarge 0.38 0.38 0.38 0.38 (m 3/s)

R&D ROUGHNESSREVIEW 173

Sargent (1979) Survey data from five gauging sites from the Forth River Purification Board were selected. The data was combined using Manning’s equation to obtain estimates of Manningnroughnesscoefficients.Thegaugingstationsummarydataandcalculated roughnessvaluesaregiveninthetablebelow. Table A23 Survey data from the Forth River Purification Board Station Gauge height (m) Discharge (m 3/s) Manning’s n RiverAlmondatCraigiehall 1.125 17.914 0.0255 1.4 29.8 0.0209 1.713 44.007 0.01975 2.1 67.213 0.0193 WaterofLeithatMurrayfield 0.878 8.15 0.0257 0.975 10.839 0.02375 1.3 19.612 0.0203 1.59 30.875 0.0193 1.981 44.714 0.02 2.133 52.214 0.0201 RiverEskatMusselburgh 0.732 14.235 0.0438 0.896 22.442 0.0314 1.521 62.543 0.0275 1.829 92.258 0.0265 RiverTyneatEastLinton 0.75 5.943 0.049 1.045 11.745 0.043 1.219 16.697 0.0402 1.503 26.574 0.0383 1.753 35.969 0.0382 RiverTyneatSpilmersford 1.14 17.035 0.0291 1.426 26.376 0.0258 1.536 28.866 0.0257 1.75 32.507 0.0254

R&D ROUGHNESSREVIEW 174

Severn Trent Field sites 1. River Severn at Bewdley

Figure A4 River Severn at Bewdley Bankfullhydraulicandgeometriccharacteristics5/1/88seeFigureA5. Manning'snroughnesscoefficient = 0.022 Discharge = 358m 3/s Watersurfaceslope = 0.000203(1:4926) Averagecrosssectionalarea = 249m 2 Averageflowwidth = 78m (informationavailableforxs1and2) Averagehydraulicradius = 3.24m Description of channel Bedmaterialgravelatupstreamend,otherwiseunknown.Banksgrasswithscattered willow,alderandhawthorntrees;undergrowthofnettleandbrambles.Leftandright floodplainsareshortgrasspasture.

R&D ROUGHNESSREVIEW 175

Figure A5 Plan and cross-sections, River Severn at Bewdley

R&D ROUGHNESSREVIEW 176

2. River Vyrnwy at Llanymynech

Figure A6 River Vyrnwy at Llanymynech Bankfullhydraulicandgeometriccharacteristics14/2/88seeFigureA7. Manning'snroughnesscoefficient = 0.026 Discharge = 167.7m 3/s Watersurfaceslope = 0.000372(1:2688) Averagecrosssectionalarea = 131.6m 2 Averageflowwidth = 46.4m Averagehydraulicradius = 2.25m Description of channel Bedmaterialunknown.Rightbankgrasscoveredwithscatteredmaturealders.Left banklinedwithalderandwillow.Leftfloodplainsownwithcrops,rightfloodplainis shortgrasspasture.

R&D ROUGHNESSREVIEW 177

Figure A7 Plan and cross-sections, River Vyrnwy at Llanymynech

R&D ROUGHNESSREVIEW 178

3. River Severn at Montford

Figure A8 River Severn at Montford Bankfullhydraulicandgeometriccharacteristics12/11/87seeFigureA9 Manning'snroughnesscoefficient = 0.028 Discharge = 151m 3/s Watersurfaceslope = 0.000186(1:5376) Averagecrosssectionalarea = 139m 2 Averageflowwidth = 39.9m Averagehydraulicradius = 3.31m Description of channel Bedmaterialunknown.Leftandrightbanksgrasswithoccasionalsmallwillowtrees. Floodplainsofshortgrasspasturewithhawthornhedgerowsandfences.

R&D ROUGHNESSREVIEW 179

Figure A9 Plan and cross-section, River Severn at Montford

R&D ROUGHNESSREVIEW 180

4. River Trent at Drakelow

Figure A10 River Trent at Drakelow Bankfullhydraulicandgeometriccharacteristics3/2/86seeFigureA11 Manning'snroughnesscoefficient = 0.032 Discharge = 169m 3/s Watersurfaceslope = 0.000437(1:2288) Averagecrosssectionalarea = 142.5m 2 Averageflowwidth = 54m Averagehydraulicradius = 2.62m Description of channel Bedmaterialunknown.Leftbankgrasswithhorsechestnuttreesatdownstreamlimit ofreach.Rightbankwithhorsechestnutandbeechtrees.Leftfloodplainisagolf course with occasional oak, yew, hawthorn, horse chestnut and poplar tree coppice. Rightbankformedbysteepwoodedbankloweringtofloodplainatdownstreamlimit withbeechandchestnuttreeswithbankgrassundergrowth.

R&D ROUGHNESSREVIEW 181

Figure A12 Plan and cross-sections, River Trent at Drakelow

R&D ROUGHNESSREVIEW 182

5. River Derwent at Chatsworth

Figure A13 River Derwent at Chatsworth Bankfullhydraulicandgeometriccharacteristics24/3/89seeFigureA14 Manning'snroughnesscoefficient = 0.039 Discharge = 94.5m 3/s Watersurfaceslope = 0.000695(1:1439) Averagecrosssectionalarea = 77.59m 2 Averageflowwidth = 29m Averagehydraulicradius = 2.42m Description of channel Bedmaterialgravelwithshallowrockstep.Banksgrasswithmaturealder,sycamore andashtrees.Leftandrightfloodplainsareshortgrasspastures.

R&D ROUGHNESSREVIEW 183

Figure A14 Plan and cross-sections, River Derwent at Chatsworth

R&D ROUGHNESSREVIEW 184

6. River Manifold at Ilam

Figure A15 River Manifold at Ilam Bankfullhydraulicandgeometriccharacteristics2/12/92seeFigureA16 Manning'snroughnesscoefficient = 0.042 Discharge = 52.8m 3/s Watersurfaceslope = 0.001977(1:506) Averagecrosssectionalarea = 35.6m 2 Averageflowwidth = 21m Averagehydraulicradius = 1.64m Description of channel Bed material is gravel and boulders. Bank vegetation of alder, ash, hazel, beech, sycamore and hawthorn traces with grass, scattered undergrowth of bramble. Flood plainsofshortgrasspasturewithhedgerowsandwirefencing.

R&D ROUGHNESSREVIEW 185

Figure A16 Plan and cross-sections, River Manifold at Ilam

R&D ROUGHNESSREVIEW 186

7. River Avon at Evesham

Figure A17 River Avon at Evesham Bankfullhydraulicandgeometriccharacteristics30/1/86seeFigureA18 Manning'snroughnesscoefficient = 0.044 Discharge = 110m 3/s Watersurfaceslope = 0.000234(1:4274) Averagecrosssectionalarea = 147.9m 2 Averageflowwidth = 45m Averagehydraulicradius = 3.11m

R&D ROUGHNESSREVIEW 187

Figure A18 Plan and cross-sections, River Avon at Evesham

R&D ROUGHNESSREVIEW 188

8. River Tanat at Llanyblodwel

Figure A19 River Tanat at Llanyblodwel Bankfullhydraulicandgeometriccharacteristics15/12/86seeFigureA20 Manning'snroughnesscoefficient = 0.052 Discharge = 54.8m 3/s Watersurfaceslope = 0.00298(1:336) Averagecrosssectionalarea = 40.4m 2 Averageflowwidth = 26.7m Averagehydraulicradius = 1.45m Description of channel Bedgravelandboulders.Bankslinedwithmaturealders,ashandwillow,undergrowth ofbramble,nettle,wildroseandrankgrass.Leftfloodplainissownwithcrops,right floodplainisshortgrasspasture.Fieldboundariesdelimitedbyhedgerows.

R&D ROUGHNESSREVIEW 189

Figure A20 Plan and cross-sections, River Tanat at Llanyblodwel

R&D ROUGHNESSREVIEW 190

Technology Research Centre, 1994 Grass Theresultsofsurveyresultsofgrassonfloodplainisgiveninthefollowingtablewhich hasusedresultsfromFig2.26ofthereport“Proposedguidelinesontheclearingand plantingoftreesinrivers” Table A24 Survey results for Manning’s n roughness values for grass on a floodplain Manning’s n roughness Description Average Upper Lower Stiffgrassheighthv=1.8mh/hv=1.4 0.1 0.12 0.08 Grasslandheighthv=1.0mh/hv=2 0.08 0.09 0.07 Stiffgrassheighthv=1.8m,h/hv=2.5 0.047 0.055 0.04 Grasslandheighthv=50cm,h/hv=5 0.04 0.045 0.035 Grasslandheighthv=1020cm,h/hv=16 0.026 0.028 0.022 Flat golf course with turf several cm high, 0.021 0.024 0.018 h/hv=90 Trees Table A25 Survey results for Manning’s n roughness values for different tree diameters and densities Manning’s n values at different tree diameters Water depth No of (m) trees/m2 Diameter of Diameter of Diameter of 0.5m 1m 2m 0.5 1 0.022 0.043 0.086 0.5 2 0.043 0.086 0.173 1 1 0.031 0.061 0.122 1 2 0.061 0.122 0.245 1.5 1 0.037 0.075 0.149 1.5 2 0.075 0.15 0.3

R&D ROUGHNESSREVIEW 191

Thompson and Campbell (1979) Relatesresistancesolelytorelativeroughness.IfusingtheThompsonandCampbell equationthentheDarcyWeisbachresistancecoefficientisdeterminedfrom 2  12 R  =f  1− k1.0 / R 2 log   ()s 10   (A7)   ks  where ks=4.5d,anddisthemedian(d 50 )sedimentsize(m)determinedfromthefrequency distributionofbedmaterialsize. TheDarcyWeisbachresistancecoefficientcanbetranslatedintoaManning’snvalue using 2/1 6/1  f  n = R   (A8)  g8 

R&D ROUGHNESSREVIEW 192

Turner and Chanmeersi (1984) Theshallowmovementofwaterflowingthroughdensecropsofwheatwasstudiedfor differentcropdensitiesandsowingpatternsandages.UsingManning’sequationand fielddata,valuesforManningnwerecalculatedatdifferentdepthsandcropdensities. Thevaluesgivenbelowarethoserecordedinthepaper. Table A26 Manning’s n values for wheat crops Depth of water Bare Soil Stems only Wheat (cm) 10 0.035 12 0.032 15 0.04 0.06 18 0.03 0.048 20 0.028 0.07 22 0.026 24 0.025 0.05 28 0.023 0.053 0.073 33 0.053 0.079 40 0.096 42 0.1 45 0.105 48 0.11 50 0.113

R&D ROUGHNESSREVIEW 193

University of Ulster (1995) Data collected at ten sites on the River Blackwater was analysed to give a range of roughnessvaluesforpools,rifflesandnurseryareas.Thetablebelowgivestherangeof roughnessvaluesforsevenofthesesites.Therangeofvaluesgiveniswideinrange and is dependent on the discharge and depth at which the roughness coefficient is measured.Atlowdischargesthereisagreatdiscrepancybetweentheroughnessvalues along the reach. The sites given are described in more detail in Appendix 2 with photographs,dimensionsandplanviewsofeachsite.

Table A27 Range of Manning’s n values for pools, riffles and nursery areas, R. Blackwater Range of Manning’s n values Pool Spawning Ground Nursery Site (Riffle) Max Min Max Min Max Min Bawn’sBurn 0.199 0.028 0.141 0.019 Abel’sBridge 0.0481 0.0215 0.067 0.028 LisdoartMill 0.088 0.025 0.067 0.023 Lisdoart 0.067 0.023 Bridge ForthillBridge 0.053 0.037 0.069 0.025 OmaghRoad 0.053 0.031 0.13 0.032 0.080 0.034 RiverFury 0.304 0.059 0.105 0.03

R&D ROUGHNESSREVIEW 194

US Soil Conservation Service (1954) The figure below shows the retardance class against flow parameter (VR) for grass coverasgivenbyUSDA(1954).

Figure A21 Graph of retardance class versus VR, USDA (1954) Experimentalresearchonthehydraulicimpactofgrasscoverwasundertakenovera nineyear period at the Stillwater Outdoor Laboratory of the US Soil Conservation Service.Ageneralhandbookwaspreparedin1947,furthersupplementedinarevised editionin1954. TheresultoftheworkhasbeentodefineaseriesofrelationshipsbetweenManning’sn andtheproductVR,whereVisthemeanflowvelocityandRisthehydraulicradius. The relationship is expressed as a family of curves, each curve defining the other principal variable, the physical characteristic of the vegetation. The main physical characteristicisjudgedtobetheheightbutotherfactorssuchasdensityanduniformity areinfluentialandavaluejudgementhastobemade.Acceptingthatthevegetationis anorganiccoverofalmostendlessvariability,thenVRrelationshipgivessoundresults in the majority of cases. The above figure shows the chart given in the USDA handbook of 1954, converted to metric, and the table below gives guidance to retardancecatagories.

R&D ROUGHNESSREVIEW 195

Table A28 Grass cover retardance classes (USDA, 1954) Stand Average Length Retardance Longerthan30inches A 11into24in B Good 6into10in C 2into6in D lessthan2in E Longerthan30inches B 11into24in C Fair 6into10in D 2into6in D lessthan2in E

R&D ROUGHNESSREVIEW 196

Weltz, Arslan and Lane (1992) Data were collected from 14 different native rangeland areas in the western United States. Hydraulic roughness coefficients were calculated for surfaces ranging from smoothbaresoiltogravelybaresoilandsparselytodenselyvegetatedrangelandareas. Areferencetableof“effectiveroughness”coefficientsispresentedwithadescriptionof sitecharacteristics. Table A29 Range of Manning’s n values for rangeland areas in western United States Soil texture/vegetation type Standing Manning’s n Range biomass roughness (kg/ha) value Baresoil,sand - 0.01 0.010.016 Baresoil,loam 0.037 Baresoil,clayloam 0.041 Baresoil,clayloameroded 0.02 0.0120.033 Baresoil,silt 0.043 Baresoil,clay 0.048 Gravelsurface 0.02 0.0120.03 Shrublands,Chihuahuandesert 0.030.2 Shrublands,Chihuahuandesert 770 0.25 0.110.29 Shrublands,Chihuahuandesert 0.13 0.010.32 Shrublands,Mohavedesert 490 0.15 0.140.16 Shrublands,SaltDesert 1,580 0.62 0.521.0 Shrublands,Sagebrush 3,950 0.48 Shrublands,Sagebrush 0.51 0.012.6 Shrublands,Oaksavanna 1,450 0.4 0.30.52 Shrublands,Pinyonjuniper 420 0.44 0.310.56 Nativegrasslands,desert 750 0.64 Native grasslands, shortgrass 620 0.42 0.150.73 prairie Native grasslands, shortgrass 0.15 0.10.2 prairie Native grasslands, mixedgrass 1,620 0.52 0.310.78 prairie Native grasslands, tallgrass 3,080 0.79 0.160.97 prairie Native grasslands, tallgrass 0.23 0.190.29 prairie(burned) Pasture,Bermudagrass 0.41 0.30.48 Pasture,bluegrasssod 0.45 0.390.65 Grassedwaterways,tallgrasses 0.6 0.450.75

R&D ROUGHNESSREVIEW 197

Appendix B

Explanationofvariationofroughnesswithdepth Basedonempiricaldatafromover25siteswecollatedthedepthandtheroughnessand plottedthedataascanbeseenonthegraphbelow.Thereissomescatteronthedatabut it does show a trend with the roughness decreasing as the depth increases. It is noticeable that above 1m depth the roughness decrease is quite small and the line is tending towards an asymtoptic value of 0.02 roughness which is what would be expected in a natural river system. The equation for this part of the curve can be expressedas 2  n  depth =  d =1  (B1)  n  wherenistheroughnessvalueatdepthof1m Belowavalueof1mdepththeroughnessvariesinadifferentway,withlargeincreases inroughnessforsmalldecreasesindepth.Therelationshipbelow1mis 2  n  3 depth =  d =1  (B2)  n 

6

5

4

3 depth (m) depth 2

1

0 0 0.1 0.2 0.3 0.4 0.5 roughness Figure B1 Variation in roughness with depth

R&D ROUGHNESSREVIEW 198

R&D ROUGHNESSREVIEW 199

Appendix C

FullAbstractsRiverFlow2002 (http://www.gc.ucl.ac.be/riverflow/home.html ) Paper 13 - Abstract Velocity profiles on vegetated flood plains PawelM.Rowinski InstituteofGeophysics,PolishAcademyofSciences,Warsaw,Poland JanuszKubrak FacultyofLandReclamationandEnvironmentalEngineering WarsawAgricultureUniversitySGGW,Poland Numerical computations of the vertical profiles of mean streamwise velocities in the channels vegetated with trees are presented. The given model applies particularly to vegetatedfloodplainsofatwostagechannelcrosssection.Sensitivityoftheresultsto the changes of the model parameters is discussed and it concerns the density of the trees, the tree diameter, bed slope of the channel and the artificially introduced parameterdividingthechanneldepthintotwozones:oneforwhichthemixinglengthis alinearfunctionofthedistancefromthebedandtheotheroneforwhichthemixing lengthisconstant.Thecomputationalresultsarecomparedtothedataobtainedwithin experimentationinacompoundlaboratoryflume. Paper 17 - Abstract The influence of floodplain width on the stage-discharge relationship for compound channels S.Atabay&D.W.Knight SchoolofCivilEngineering,TheUniversityofBirmingham,UK. Somestagedischargerelationshipsarepresentedforflowincompoundchannels,based onexperimentalresultsfromtheUKFloodChannelFacility(FCF)andelsewhere.The influenceoffloodplainwidthandmainchannelaspectratioontheserelationshipshas beenexaminedforcompoundchannelscomprisingonemainriverchannelandoneor twosymmetricallydisposedfloodplains.Simpleempiricalrelationshipsbetweenstage & total discharge and stage & zonal discharge have been derived for all the FCF channel cases with uniform roughness and varying floodplain width ratio (B/b). The influenceofthemainchannelaspectratiohasalsobeenexamined.Theresultsindicate thebroadeffectthatchannelgeometryhasonthestagedischargerelationship(HvQ) forcompoundchannels. Paper 46 - Abstract Modeling of lateral flow distribution in compound channels Y.Guan&M.S.Altinakar Laboratoire de Recherches Hydrauliques (LRH) Ecole Polytechnique Féderale de Lausanne(EPFL),Switzerland B.G.Krishnappan

R&D ROUGHNESSREVIEW 200

NationalWaterResearchInstitute,Burlington,Ontario,Canada A numerical model based on the longitudinal momentumconservation equation has beendevelopedtopredictthelateralvariationofdepthaveragedlongitudinalvelocity forsteadyflowsincompoundchannels.Themodeltakesintoaccounttheinfluenceof thesecondaryflowonthelateralmomentumtransferintheinterfaceregionbetweenthe mainchannelandthefloodplainbyexpressingthelateraldepthaveragedvelocityasa percentage of the depthaveraged longitudinal velocity. The model has been verified usingvelocitydatafromexperimentsinlaboratoryflumeswithasymmetricalcompound crosssections. Comparisons between the predicted velocity profiles and the measurements show that the proposed model provides an accurate prediction of the lateralflowdistributionforcompoundchannels. Paper 54 - Abstract Velocity Distribution and Scouring in Steep-Curved Channels R. Feurich and W. Kühner WaterResourcesInstitute(IWI),UniversityofInnsbruck,Austria AttheWaterResourcesInstituteoftheUniversityofInnsbruckexperimentshavebeen performedinanSshapedtrapezoidalchannelwithtwobendsandaslopeofS=0,01 withbothfixedanderodiblebeds.Gravelwithameandiameterbetween4,2mmand 6,4mmwasusedasbedmaterialandforsedimentfeeding.Velocitiesweremeasuredby means of a twodimensional electromagnetic current meter. The analysis of the experiments yields a new function for the radial distribution of the depthaveraged longitudinalvelocitiesthatdiffersfromtheforcedvortexapproach.Itisalsoshownthat in the case of an erodible bed the redistribution of flow as a consequence of the evolutionofscourontheouteranddepositionontheinnerbankleadstocompletely differentradialvelocitydistributionscomparedwiththeinitialbed. Paper 56 - Abstract A practical method for predicting the total discharge in mobile and rigid boundary compound channels M.A.Haidera&E.M.Valentine UniversityofNewcastleuponTyne,UnitedKingdom Mobileboundarylaboratorychannelswereusedtodevelopanewmethodforpredicting the total flow in compound channels. This method considers a compound channel betweentwoextremestates.Thefirstisthechannelatthethresholdofinundation(at relative depth of zero) and the second when the channel is inundated to a maximum level (relative depth approaches unity). At these two extremes the total flow can be calculatedbythesinglechannelmethodandbetweenthemthismethodassumesthatthe total flow is partially calculated by the single channel method and partially by the traditionaldividedchannelmethod.Theportionsofflowcalculatedbythesingleand thedividedchannelmethodsrelyontwoadjustmentfactors.Thesefactorsarefunctions of two dimensionless parameters, the relative depth and the channel coherence and hence this method is termed the Dimensionless Total Flow Adjustment Method. The methodwastestedusingmobileboundaryandrigidboundarydataandcomparedwith Ackers’(1993)CoherencemethodandtheLambertandMyers(1998)weighteddivided

R&D ROUGHNESSREVIEW 201 channelmethod.Theresultsshowthatthissimplermethodprovidesimprovedestimates of total discharge and it may be applied to symmetric or asymmetric channels with homogeneousornonhomogeneousroughness. Paper 77 - Abstract Determination of flow resistance of vegetated channel banks and floodplains J.Järvelä LaboratoryofWaterResources,HelsinkiUniversityofTechnology,Finland Flowresistanceduetovegetationmaygreatlyaffecttheconveyanceofachannel,and thus evaluating the resistance is a critical task in river engineering and restoration. Therefore, flow resistance of natural willows and sedges was studied in a laboratory flume. The aim was to investigate, how type, density and combination of vegetation, flowdepthandvelocityinfluencevegetaldragorfrictionlosses.Frictionfactors,f,and vegetal drag coefficients, C'd, were determined for a selection of 170 test runs. The results showed large variations with depth of flow, velocity, Reynolds number and vegetalcharacteristics.E.g.thevegetaldragcoefficientfortheleafywillowswasthree toseventimesthatoftheleaflesswillows.Theexperimentaldragcoefficientsforthe leaflesswillowswerecomparedtothevaluespredictedbyfourmethods,whichwere developedbasedontheoryandexperimentsonrigidcylinders. Paper 81 - Abstract Overbank flood routing analysis applying jointly variable parameter diffusion and depth-averaged flow finite element models J.B.Abril Honorary Research Fellow University of Birmingham, Edgbaston, Birmingham, B15 2TT,UKEmail:[email protected]Tel:+5937839593 ThispaperpresentsthejointapplicationoftwofiniteelementmodelscalledRFMFEM andRFRFEMtothehydrodynamicanalysisoffloodsinriversflowinginanoverbank condition. The RFMFEM model predicts the hydraulic characteristics of the river throughthesolutiontothemomentumequationfordepthaveragedflow.Basedupon this information, the RFRFEM model then generates the wave speed and attenuation coefficients versus discharge, and accomplish the flood routing analysis through the solution to the variable parameter convectiondiffusion equation derived from the upwindPetrovGalerkinformulation.Itincludesandheuristicalgorithmtoreducethe numerical error and oscillations generally introduced when dealing with convection dominatedproblems.Thisfiniteelementschemeiscomparedagainstanotherscheme basedontheCOHandMVPMC3models,beingrespectively‘coherence’andvariable parameterfinitedifferenceschemes,appliedtooverbankfloodroutinginahypothetical riverwithasymmetriccompoundchannels. Paper 99 - Abstract Reducing Uncertainty in Conveyance Estimation DrP.G.Samuels, HRWallingfordLtd.,HowberyPark,Wallingford,OxonOX108BA,UK DrM.E.Bramley

R&D ROUGHNESSREVIEW 202

EnvironmentAgency,RioHouse,WatersideDrive,AztecWest,Almondsbury,Bristol, BS324UD,UK E.P.Evans Consultant,CareofHRWallingfordLtd. Estimation of conveyance is a core component of flood management, water level predictionandflooddefencedesign.Allrivermodellingsoftwareincludesoneormore methodsforconveyanceestimation,usuallybaseduponmethodsdatingfromresearch completedmorethan50yearsagowithlittleornoaccounttakenofrecentadvancesin knowledgeandunderstanding.In2001theBritishEnvironmentAgencycommissioned, as a research project, a scoping study to define actions for reducing uncertainty in conveyance estimation. The paper describes some of the conclusions of that scoping studyincludingtheneedsofdifferentusers,thediversityofcurrentknowledgeandthe outline of the targeted programme of research that is now underway to produce an improvedconveyanceestimationsystem.Particularissuesofconcernaretheeffectsof riverinevegetation,theinfluenceofnaturalshaped(andrenaturalised)channelsandthe interactionbetweenriverchannelsandfloodplainflows. Paper 116 - Abstract Predictions of velocity and boundary shear stress in compound meandering channel P.Rameshwaran CentreforEcology&Hydrology,CrowmarshGifford,Wallingford,Oxfordshire,OX10 8BB,UK K.Shiono Department of Civil and Building Engineering, Loughborough University, Loughborough,LE113TU,UK Predictions of depthaveraged velocity and boundary shear stress in a compound meandering channel are carried out using a commercially available finite element computer code TELEMAC2D. The TELEMAC2D code solves the depthaveraged continuityandNavierStokesequationswiththedepthaveragedformoftheturbulence modelforfreesurfaceflow.Themodelresultsarecomparedwiththeexperimentaldata obtainedfromtheUKFloodChannelFacility.Thesimulateddepthaveragedvelocity, boundary shear stress and depthaveraged turbulent kinetic energy are used to investigate the accuracy of the TELEMAC2D prediction. The results show that the depthaveraged velocity and the boundary shear stress are predicted reasonably well alongthemeanderingchannel. Paper 131 - Abstract Quasi-Three-Dimensional Computation and Laboratory Tests on Flow in Curved Compound Channels S.Ikeda TokyoInstituteofTechnology,Tokyo,Japan K.Kawamura HewlettPakardJapan,Tokyo,Japan Y.Toda TokyoInstituteofTechnology,Tokyo,Japan

R&D ROUGHNESSREVIEW 203

I.Kasuya MinistryofAgriculture,ForestryandFisheriesofJapan,Tokyo,Japan For curved compound channels, crosssectional secondary flow appears in the main channel, and horizontal vortices induced by shear instability are generated at the junctions of the main channel and the flood plains. A quasithreedimensional computationwasperformedinthepresentstudytocalculatethesecondaryflowandthe horizontalvortices,simultaneously.Theresultsofthecomputationwerecomparedwith thelaboratorytests,anditwasfoundthatthepresentmodelisappropriatetosimulate the entire flow field except for the inner junction of the main channel and the flood plain,atwhichthreedimensionalturbulenceassociatedwithboilsispredominant.The numericalcalculationswereperformedforvariouswaterdepth,mainchannelwidthand curvatureofthechannel.Theresultsshowthatthelateraltransportoffluidmomentum associatedwithhorizontalvorticesbecomesrelativelylarger,comparedwiththatbythe secondaryflow,asthewaterdepthbecomesshallower. Paper 139 - Abstract Land-form features in compound meandering channels and classification diagram of flood flows based on sinuosity and relative depth S.Okada Graduate student, Graduate School of Engineering, Hiroshima University, Higashi HiroshimaCity,Japan S.Fukuoka Professor,GraduateSchoolofEngineering,HiroshimaUniversity,HigashiHiroshima City,Japan UsingseveralJapaneserivers,flowcharacteristicsincompoundmeanderingchannels were investigated by conducting a series of experiments where sinuosity and relative depthwerechanged.Laboratoryresultswerethencomparedwithresultsoffloodflow analysis using aerial photographs. Representative parameters governing flow characteristics were studied in order to make sense of the results of experimental channelandriverflows.Landformparameterswereconsideredfromfielddatafrom10 Japanesecompoundmeanderingrivers.Finally,classificationdiagramoftheoccurrence of the flood flows in compound meandering channels was presented on the basis of these representative parameters (such as sinuosity, relative depth, location of the maximum velocity filament and the maximum scouring depth at the meander apex section.) Paper 166 - Abstract Berm vegetation and its effect on flow resistance in a two-stage river channel: an analysis of field data R.H.J.Sellin DepartmentofCivilEngineering,UniversityofBristol,UK D.P.vanBeesten DepartmentoftheEnvironment,DEFRA,UK A twostage river channel with a managed floodplain has been studied since 1994. Duringthistimewaterlevelsat5sectionsaswellasthedischargehavebeenmeasured

R&D ROUGHNESSREVIEW 204 and recorded at 15 minute intervals. Analysis of this data reveals that the resistance coefficientforthisreachvariesbothannuallyandwiththeseasons.Thesevariationsare showntobeduetotheannualcycleofvegetationgrowthbothinthechannelandonthe floodplain.Some100stormeventshavebeenrecordedinall.Theresultsofthisanalysis will enable engineers to design river restoration projects with greater confidence as Manningnvaluesareevaluatedforoverbank,bankfullandlowflowsinthechannel, thusenablingaquasiquantitativerelationshiptobeestablishedfordifferentflowdepths aswellseasonalvariation. Paper 198 - Abstract Periodical turbulent structures in compound channels D.Bousmar&Y.Zech CivilandEnvironmentalEngineering,UniversitécatholiquedeLouvain,1348Louvain laNeuve,Belgium Inacompoundchannelflow,periodicalturbulentstructuresdevelopintheshearlayer betweenmainchannelandfloodplain.Thosestructures,whicharetypicallyhorizontal vortices,generateasignificantmomentumtransferand,accordingly,affectconsiderably thechannelconveyance.Inthispaper,suchstructuresareinvestigatedexperimentally, analytically and numerically to quantify their periodical characteristics. Experiments wereperformedinanasymmetriccompoundchannel,withtheflowstructuresmeasured by Particle Tracking Velocimetry (PTV), using surface tracers. Some results from an hydrodynamic stability analysis are then reported. A numerical simulation was performed using an UnsteadyRANS model to reproduce the development of the vorticesintheshearlayer.Theestimatedvortexwavelengthsaresimilarforthethree approaches. Paper 199 - Abstract Estimation of longitudinal dispersion coefficient for streams I.W.Seo Assoc.Prof.,Dept.ofCivilEng.,SeoulNationalUniv.,Seoul,Korea K.O.Baek Grad.Student,Dept.ofCivilEng.,SeoulNationalUniv.,Seoul,Korea Inthisstudy,atheoreticalmethodforpredictingthelongitudinaldispersioncoefficient isdevelopedbasedonthetransversevelocitydistributioninnaturalstreams.Equations ofthetransversevelocityprofileforirregularcrosssectionsofthenaturalstreamsare analyzed. Among velocity profile equations tested in this study, the beta distribution equation, which is a probability density function, is considered to be the most appropriate model for explaining the complex behavior of the transverse velocity structure of irregular natural streams. The beta function can fit various types of the velocity profile, i.e., parabolic, flattened, sharppeaked and skewed distributions, whereasotherempiricalequationsfailtofitvarioustypesofvelocitydistributions.The comparisons of the proposed equation, which is based on the beta function for the transverse velocity profile, with the existing equations and the observed longitudinal dispersioncoefficientrevealthattheproposedequationshowsbetteragreementwiththe measureddatathanotherexistingequations.

R&D ROUGHNESSREVIEW 205

Paper 207 - Abstract Estimate of hydraulic resistance of river flow by physical modelling E.N.Dolgopolova WaterProblemsInstitute,RussianAcademyofSciences,Moscow,Russia E.Tesaker SINTEFCivil&EnvironmentEngineering,Trondheim,Norway Differentmethodsofcalculationofhydraulicresistancefornatureflowsarediscussed. Two types of rivers are under consideration: (i) plane rivers with sand bottoms for whichbottomroughnessismuchlessthanthedepth,and(ii)shallowriverswithgravel bottom with the bottom roughness comparable with the depth. We discuss also dependence of habitat conditions on the bottom substratum and regime of hydro peaking. Paper 208 - Abstract Relevance of 1D flow modelling for compound channels with a converging floodplain RivièreN.1,ProustS.1,2,BousmarD.3,PaquierA.2,MorelR.1,ZechY.3 1LaboratoiredeMécaniquedesFluidesetd'Acoustique,UMRCNRS5509,INSAde Lyon,France 2CEMAGREF,Lyon,France 3UnitédeGénieCiviletEnvironnemental,UniversitécatholiquedeLouvain,Louvain LaNeuve,Belgium Experimentsinanasymmetriccompoundchannelwithastronglyconvergingfloodplain are presented. The results are compared to predictions given by two different 1D programmes.Eachprogrammeusesaparticularmethodtoaccountforthemomentum transfer that occurs in compound channels, due to the velocity gradient between the mainchannelandthefloodplain.ThefirstoneisbasedontheDEBORDformula,which isanempiricalcorrectionoftheDividedChannelMethod.Theotheroneisbasedonthe Exchange Discharge Model, which computes momentum and discharge exchanges at the interface between the two subsections. In the studied situation, where significant threedimensional phenomena are detected, both numerical models exhibit some weaknesses.Particularly,itisdifficulttogetsimultaneouslycorrectresultsforthewater depth, the discharge distribution in the compound section, and the subsection mean velocities.Theanalysisofthemomentumbalanceoftheflowprovidesinformationon the additional phenomena that exist in the experimental situation. These phenomena shouldbetakenintoaccountinthe1Dmodelswhensuchstrongconveyancedecreaseis considered. Paper 215 - Abstract On the influence of shape on resistance to flow in open channels M.Mohammadi BSc.,MSc.,PhD,CEng.,MIRCOLD,MIAH Dept.ofCivilEng., FacultyofEng.,TheUniversityofUrmia,POBox165,Urmia 5716933111,Iran. email:[email protected]

R&D ROUGHNESSREVIEW 206 url:http://www.urmiacity.com/Dr.mohammadi Water flow in open channels is always subject to the resistance to flow and energy dissipation.Fordesignpurposes,oneoftheneededvariablesisthehydraulicresistance coefficient.Theinfluenceof crosssectionalshapetogetherwithsecondary flowcells andlateraldistributionoftrueboundaryshearstresshavenotyetbeenfullyexplored. This paper highlights the effect of cross sectional shape on resistance to flow. A particular emphasis has been focused on a certain Vshaped bottom channel with verticalwalls,anditsresistancecoefficientevaluation.Theexperimentalresultsshow thatalbeitthechannelhasasmoothboundary,buttheresistancecoefficientscannotbe appliedforthischannel.Thedifferencemaybearisenbytheeffectofshape.Itcanalso beseenthattheDarcyWeisbachfrictionfactor,f,ismoresensitivethantheManningn. A KarmanPrandtl smooth pipe flow type friction formula was developed for this channel shape. Keywords: Resistance to flow, open channel, crosssectional shape, boundaryshearstress,frictionfactor.

R&D ROUGHNESSREVIEW 207

Appendix D Glossary of Terms

Table E1 Glossary of terms used Term Description Accuracy Theprecisiontowhichmeasurementorcalculationiscarriedout; potentially,accuracycanbeimprovedbybettertechnology Repeat measurements can be precise and repeatable but not necessarilyaccurate. Conveyance Channel conveyance is a measure of the discharge carrying Q capacityofachannel Km 3/s,definedas K = S 2/1 Conveyance width Depthaveraged Parameterrepresentingthemomentumexchange νt(m 2/s),defined lateral as ν = λU Dwhichrelatesviscositytothebedshearstresses.U is turbulentviscosity t * * theshearvelocity,Disthedepth. Discharge Thevolumeofwaterthatpassesthroughachannelsectionperunit oftime Error Errorsaremistakencalculationsormeasurementswithquantifiable differences Flow Ageneraltermforthemovementofvolumesofwaterataspeed Gridelement Discretisationelementforsolvingtheconveyanceequation Manning’s ne A coefficient that incorporates losses due to local friction, Cuv , shearingflows,formlossesandlateralshearstresses(aslistedin Ven te Chow historic/engineering ‘ n’). Derived for use in medium to large nonvegetated rivers with fully developed flow profiles. Manning’spure nl Acoefficientthatapproximatesthelocalfrictionlossesduetobed featuresi.e.substrate/vegetation. MaximumDepth Theverticaldistanceofthelowestpointofachannelsectionfrom thefreewatersurface. MeanDepth Theaverageverticaldepthofachannelsectionfromthefreewter surface. Measurement channellengthbetweentwoconsecutivecrosssections Reach Morphotypes SeethenotebelowandTable8inthemaintext. Nondimensional Calibration coefficient to account for lateral shear (NB in the eddy Wark equation it is termed the lateral eddy viscosity so it is viscosity actually νt) Panels Flowzoneswithinthesectione.g.inbank,outofbanketc Risk Roughness Theeffectofimpedingthenormalwaterflowofachannelbythe presence of a natural or artificial body or bodies, biotic eg vegetation,abiotic/mineralegbank.bedsubstrate Resistance Asroughnessbutdefinedasflow,form,frictionalorturbulent...... Stage The vertical distance of the free surface from an arbitrary or

R&D ROUGHNESSREVIEW 208

defineddatum Sinuosity (i)ratioofthelengthalongthechannelbetweentwosectionstothe lineardistancebetweenthesetwosectionscanbeeitherofregular orirregularamplitude (ii)ratioofthelengthalongthechannelbetweentwosectionsto thelineardistancealongthevalleybetweenthesetwosections Studyreach ThelengthofastudyreachORofasectionunderrinvestigation Unitconveyance Conveyance per metre width of channel k (m 2/s), defined as q k = S 2/1 Unitdischarge flowratepermetrewidthofchannelsection q(m 2/s),definedas D q = ∫udz 0 Uncertainty (1)Uncertaintyisdefinedthroughtwoterms (i)naturalvariability (ii)knowledgeuncertainty (2) Uncertainty arises principally from lack of knowledge or of ability to measure or to calculate which gives rise to potential differencesbetweenassessmentofsomefactorandits“true”value Note Table 8 in the main text presents a simplified form of morphotypes of channel vegetation.TheRHSrecordschannelvegetationtypestoassessthehabitatstructure theyprovideatthetimeofthesurvey,nottheirmorphologicalcharacterasdescribedin textbooks. The purpose of the recording is to provide information on the range of functionalhabitatsthefloramaybeprovidingforinvertebratesandotheranimals.This isespeciallyimportantinriverswithlimitedstructuraldiversity.Toberecorded,the channeltypemustoccupyatleast1%ofthechannelareawithinthe10mRHS‘Spot’ transect.

R&D ROUGHNESSREVIEW 209