Pappus Configurations in Finite Hall Affine Planes

Total Page:16

File Type:pdf, Size:1020Kb

Pappus Configurations in Finite Hall Affine Planes PAPPUS CONFIGURATIONS IN FINITE HALL AFFINE PLANES by Lorinda A.M. Leshock A dissertation submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics Summer 2020 © 2020 Lorinda A.M. Leshock All Rights Reserved PAPPUS CONFIGURATIONS IN FINITE HALL AFFINE PLANES by Lorinda A.M. Leshock Approved: Louis Rossi, Ph.D. Chair of the Department of Mathematical Sciences Approved: John A. Pelesko, Ph.D. Dean of the College of Arts and Sciences Approved: Douglas J. Doren, Ph.D. Interim Vice Provost for Graduate and Professional Education and Dean of the Graduate College I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: Felix Lazebnik, Ph.D. Professor in charge of dissertation I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: Robert Coulter, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: Jason Williford, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: Qing Xiang, Ph.D. Member of dissertation committee ACKNOWLEDGEMENTS This thesis would not have existed without the guidance of Felix Lazebnik. I appreciate his ingenuity, fortitude, and graciousness as an advisor and a teacher. Learning to do mathematics with him has been an honor. I am thankful to Eric Moorhouse for the discussion of Hall planes, and in particular, for his help in understanding some properties of the collineation groups of Hall planes. Many thanks go to my committee members, Robert Coulter, Jason Williford, and Qing Xiang for their helpful comments and questions. I am grateful to the professors of the classes I took; their lectures and coursework nourished my mind. The staff of the Department of Mathematical Sciences was especially efficient and friendly. I feel fortunate to have met many graduate students who faced challenges with dignity and shared humor during our time at the University of Delaware. Finally, I want to acknowledge my family. Because of their love and support, I had the opportunity to begin and the stamina to complete this endeavor. They encouraged me every step along the way. iv TABLE OF CONTENTS LIST OF FIGURES .................................. vii ABSTRACT ...................................... viii Chapter 1 INTRODUCTION ................................ 1 1.1 Affine Planes . .2 1.2 Configurations, Classical Theorems, Coordinatization . .5 1.3 Structure of the Dissertation . .9 2 FINITE HALL PLANES ............................. 11 2.1 Analytic Construction . 11 2.1.1 Algebraic System . 11 2.1.2 Construction of Hall planes . 15 2.1.3 Symmetries . 17 2.1.4 Selected Properties . 25 2.1.5 Action of Collineation Group of AH on Pairs of Lines. 26 2.1.6 The Way Mathematica is Used . 28 3 MAIN RESULTS ................................. 30 3.1 Proof of Theorem 3.0.1........................... 34 3.1.1 Case 1: BF/BF ........................... 34 3.1.1.1 Intersecting `1, `2 ..................... 34 3.1.1.2 Parallel `1, `2 ....................... 41 3.1.2 Case 2: NBF/NBF ......................... 44 3.1.2.1 Intersecting `1, `2 ..................... 44 v 3.1.2.2 Parallel `1, `2 ....................... 54 3.2 Proof of Theorem 3.0.2........................... 61 3.2.1 Case 3a: NBF/BF .......................... 61 3.3 Proof of Theorem 3.0.3........................... 70 3.3.1 Case3b: BF/NBF .......................... 70 4 SUPPLEMENT .................................. 76 4.1 Numerical Search for Pappus Configurations . 76 4.2 Alternative Methods for Constructing Hall planes . 77 4.3 Possible Future Work . 79 5 CODE SAMPLES ................................. 80 5.1 Magma . 80 5.2 Mathematica . 81 BIBLIOGRAPHY ................................... 83 vi LIST OF FIGURES 1.1 Two diagrams of the plane on four points . .4 1.2 Two diagrams of the Desargues configuration . .7 1.3 Three diagrams of the Pappus configuration . .8 vii ABSTRACT In the classical projective planes, both Desargues’s theorem and Pappus’s theorem hold. According to a result of Ostrom, the Desargues configuration can also be found in every finite projective plane on at least twenty-one points, classical or not. In fact, Ostrom’s argument shows that the number of Desargues configurations in every finite plane is actually quite large. The result is also true in the finite projective plane on thirteen points. The existence of Pappus configurations in every non-classical finite affine or projective plane is unknown. We study whether the Pappus configuration is present in such planes. In particular, we endeavor to prove that in finite Hall affine planes, the fol- lowing strong version for the existence of Pappus configurations holds: For every pair of lines `1, `2 and every triple of points on `1 and every choice of a single point on `2, a pair of points on `2 can be found to complete a Pappus configuration. This statement is not proven in every case. When it is not, weaker versions for existence are shown. Hall planes are not Pappian, yet this work implies that the number of Pappus configurations in Hall planes is actually quite large. viii Chapter 1 INTRODUCTION Geometry was developed in many cultures to describe the world. In 300 BCE, Euclid’s Elements utilized an axiomatic deductive structure to organize mathematical knowledge, see Byer, Lazebnik, Smeltzer [3, p. 9]. By changing an axiom from Euclidean geometry in the 1820’s and 1830’s, two mathematicians, Lobachevsky and Bolyai independently developed non-Euclidean geometries. These mathematicians were contemporaries of Gauss who developed a geometry by changing the same axiom but chose not to publish it. Earlier speculations that such a geometry is possible are credited to Ibn al-Haytham (11th century), Khayyám (12th century), al-Tu¯ s¯ı (13th century), and Saccheri (18th century), see Rosenfeld and Yuschkevich [27]. Descartes formalized the connection between geometry and algebra by using coordinates and algebraic equations in the 17th century, see Brannan, Esplen, and Gray [2, p. 1]. Let us define two lines in the same plane to be parallel if they have no common point or they coincide. A problem determining whether two lines in the same plane are parallel may be solved geometrically, for example, by using alternate interior angles or analytically, by finding the equations of the lines and trying to solve the corresponding system of linear equations. This second approach to problem solving, the coordinate method, will be the one we favor in this dissertation. In 1899, Hilbert published the Foundations of Geometry. It is a succinct and groundbreaking text. In this book, Hilbert adjusted the axioms of Euclidean geometry with the goal of creating a simple and complete set of independent axioms from which a geometry can be built. As a part of Hilbert’s endeavor, his abstraction of the concepts of points, lines, and planes extended the scope of geometry. Furthermore, it promoted the use of the axiomatic method in mathematics. 1 1.1 Affine Planes Consider a set P, a point set, with elements called points and another set L, a line set, with elements called lines that are subsets of the point set. We say that a point P 2 P is on the line ` 2 L if P 2 `. In this situation, we may also say that the line ` is on the point P, that the line ` contains the point P, or that the point P and the line ` are incident. If a set of points is a subset of a line, then the points from the set are called collinear. If a point P is on every line from a set of lines, we say that the lines from the set are concurrent at P, or intersect at P. An affine plane is an ordered triple A = (P, L, I) where I ⊆ (P × L) [ (L × P) is a symmetric binary relation on P[L satisfying the following three axioms. A1. For every two distinct points, there exists a unique line containing them. A2. For every line ` and every point P not on `, there exists a unique line m on P such that m and ` are parallel. A3. There exist three noncollinear points. The concept of an affine plane reminds us of high school geometry. It is a generalization of the Euclidean plane with respect to only the notion of incidence. In the usual Euclidean affine plane we can introduce a coordinate system. Points are represented as ordered pairs of real numbers. Lines are described by linear equations with real coefficients. By using this approach, the Euclidean affine plane can be easily generalized to affine planes over other fields, in particular, over finite fields. The following interesting question was implicit in Hilbert’s Foundations and echoed by Artin [1, p. 51]: Given a plane geometry whose objects are the elements of two sets, the set of points and the set of lines; assume that certain axioms of geometric nature are true. Is it possible to find a field k such that the points of our geometry can be described by coordinates from k and the lines by linear equations? 2 For affine planes, this question was answered by Hilbert himself, and the answer was negative. Hilbert’s work inspired a search, not for a field k, but for a more general algebraic system fS, +, ·g, see Cerroni [5, p.
Recommended publications
  • Configurations of Points and Lines
    Configurations of Points and Lines "RANKO'RüNBAUM 'RADUATE3TUDIES IN-ATHEMATICS 6OLUME !MERICAN-ATHEMATICAL3OCIETY http://dx.doi.org/10.1090/gsm/103 Configurations of Points and Lines Configurations of Points and Lines Branko Grünbaum Graduate Studies in Mathematics Volume 103 American Mathematical Society Providence, Rhode Island Editorial Board David Cox (Chair) Steven G. Krantz Rafe Mazzeo Martin Scharlemann 2000 Mathematics Subject Classification. Primary 01A55, 01A60, 05–03, 05B30, 05C62, 51–03, 51A20, 51A45, 51E30, 52C30. For additional information and updates on this book, visit www.ams.org/bookpages/gsm-103 Library of Congress Cataloging-in-Publication Data Gr¨unbaum, Branko. Configurations of points and lines / Branko Gr¨unbaum. p. cm. — (Graduate studies in mathematics ; v. 103) Includes bibliographical references and index. ISBN 978-0-8218-4308-6 (alk. paper) 1. Configurations. I. Title. QA607.G875 2009 516.15—dc22 2009000303 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to [email protected]. c 2009 by the American Mathematical Society.
    [Show full text]
  • Binomial Partial Steiner Triple Systems Containing Complete Graphs
    Graphs and Combinatorics DOI 10.1007/s00373-016-1681-3 ORIGINAL PAPER Binomial partial Steiner triple systems containing complete graphs Małgorzata Pra˙zmowska1 · Krzysztof Pra˙zmowski2 Received: 1 December 2014 / Revised: 25 January 2016 © The Author(s) 2016. This article is published with open access at Springerlink.com Abstract We propose a new approach to studies on partial Steiner triple systems con- sisting in determining complete graphs contained in them. We establish the structure which complete graphs yield in a minimal PSTS that contains them. As a by-product we introduce the notion of a binomial PSTS as a configuration with parameters of a minimal PSTS with a complete subgraph. A representation of binomial PSTS with at least a given number of its maximal complete subgraphs is given in terms of systems of perspectives. Finally, we prove that for each admissible integer there is a binomial PSTS with this number of maximal complete subgraphs. Keywords Binomial configuration · Generalized Desargues configuration · Complete graph Mathematics Subject Classification 05B30 · 05C51 · 05B40 1 Introduction In the paper we investigate the structure which (may) yield complete graphs contained in a (partial) Steiner triple system (in short: in a PSTS). Our problem is, in fact, a particular instance of a general question, investigated in the literature, which STS’s B Małgorzata Pra˙zmowska [email protected] Krzysztof Pra˙zmowski [email protected] 1 Faculty of Mathematics and Informatics, University of Białystok, ul. Ciołkowskiego 1M, 15-245 Białystok, Poland 2 Institute of Mathematics, University of Białystok, ul. Ciołkowskiego 1M, 15-245 Białystok, Poland 123 Graphs and Combinatorics (more generally: which PSTS’s) contain/do not contain a configuration of a prescribed type.
    [Show full text]
  • COMBINATORICS, Volume
    http://dx.doi.org/10.1090/pspum/019 PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS Volume XIX COMBINATORICS AMERICAN MATHEMATICAL SOCIETY Providence, Rhode Island 1971 Proceedings of the Symposium in Pure Mathematics of the American Mathematical Society Held at the University of California Los Angeles, California March 21-22, 1968 Prepared by the American Mathematical Society under National Science Foundation Grant GP-8436 Edited by Theodore S. Motzkin AMS 1970 Subject Classifications Primary 05Axx, 05Bxx, 05Cxx, 10-XX, 15-XX, 50-XX Secondary 04A20, 05A05, 05A17, 05A20, 05B05, 05B15, 05B20, 05B25, 05B30, 05C15, 05C99, 06A05, 10A45, 10C05, 14-XX, 20Bxx, 20Fxx, 50A20, 55C05, 55J05, 94A20 International Standard Book Number 0-8218-1419-2 Library of Congress Catalog Number 74-153879 Copyright © 1971 by the American Mathematical Society Printed in the United States of America All rights reserved except those granted to the United States Government May not be produced in any form without permission of the publishers Leo Moser (1921-1970) was active and productive in various aspects of combin• atorics and of its applications to number theory. He was in close contact with those with whom he had common interests: we will remember his sparkling wit, the universality of his anecdotes, and his stimulating presence. This volume, much of whose content he had enjoyed and appreciated, and which contains the re• construction of a contribution by him, is dedicated to his memory. CONTENTS Preface vii Modular Forms on Noncongruence Subgroups BY A. O. L. ATKIN AND H. P. F. SWINNERTON-DYER 1 Selfconjugate Tetrahedra with Respect to the Hermitian Variety xl+xl + *l + ;cg = 0 in PG(3, 22) and a Representation of PG(3, 3) BY R.
    [Show full text]
  • Chapter 7 Block Designs
    Chapter 7 Block Designs One simile that solitary shines In the dry desert of a thousand lines. Epilogue to the Satires, ALEXANDER POPE The collection of all subsets of cardinality k of a set with v elements (k < v) has the ³ ´ v¡t property that any subset of t elements, with 0 · t · k, is contained in precisely k¡t subsets of size k. The subsets of size k provide therefore a nice covering for the subsets of a lesser cardinality. Observe that the number of subsets of size k that contain a subset of size t depends only on v; k; and t and not on the specific subset of size t in question. This is the essential defining feature of the structures that we wish to study. The example we just described inspires general interest in producing similar coverings ³ ´ v without using all the k subsets of size k but rather as small a number of them as possi- 1 2 CHAPTER 7. BLOCK DESIGNS ble. The coverings that result are often elegant geometrical configurations, of which the projective and affine planes are examples. These latter configurations form nice coverings only for the subsets of cardinality 2, that is, any two elements are in the same number of these special subsets of size k which we call blocks (or, in certain instances, lines). A collection of subsets of cardinality k, called blocks, with the property that every subset of size t (t · k) is contained in the same number (say ¸) of blocks is called a t-design. We supply the reader with constructions for t-designs with t as high as 5.
    [Show full text]
  • On the Levi Graph of Point-Line Configurations 895
    inv lve a journal of mathematics On the Levi graph of point-line configurations Jessica Hauschild, Jazmin Ortiz and Oscar Vega msp 2015 vol. 8, no. 5 INVOLVE 8:5 (2015) msp dx.doi.org/10.2140/involve.2015.8.893 On the Levi graph of point-line configurations Jessica Hauschild, Jazmin Ortiz and Oscar Vega (Communicated by Joseph A. Gallian) We prove that the well-covered dimension of the Levi graph of a point-line configuration with v points, b lines, r lines incident with each point, and every line containing k points is equal to 0, whenever r > 2. 1. Introduction The concept of the well-covered space of a graph was first introduced by Caro, Ellingham, Ramey, and Yuster[Caro et al. 1998; Caro and Yuster 1999] as an effort to generalize the study of well-covered graphs. Brown and Nowakowski [2005] continued the study of this object and, among other things, provided several examples of graphs featuring odd behaviors regarding their well-covered spaces. One of these special situations occurs when the well-covered space of the graph is trivial, i.e., when the graph is anti-well-covered. In this work, we prove that almost all Levi graphs of configurations in the family of the so-called .vr ; bk/- configurations (see Definition 3) are anti-well-covered. We start our exposition by providing the following definitions and previously known results. Any introductory concepts we do not present here may be found in the books by Bondy and Murty[1976] and Grünbaum[2009]. We consider only simple and undirected graphs.
    [Show full text]
  • Second Edition Volume I
    Second Edition Thomas Beth Universitat¨ Karlsruhe Dieter Jungnickel Universitat¨ Augsburg Hanfried Lenz Freie Universitat¨ Berlin Volume I PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK www.cup.cam.ac.uk 40 West 20th Street, New York, NY 10011-4211, USA www.cup.org 10 Stamford Road, Oakleigh, Melbourne 3166, Australia Ruiz de Alarc´on 13, 28014 Madrid, Spain First edition c Bibliographisches Institut, Zurich, 1985 c Cambridge University Press, 1993 Second edition c Cambridge University Press, 1999 This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 1999 Printed in the United Kingdom at the University Press, Cambridge Typeset in Times Roman 10/13pt. in LATEX2ε[TB] A catalogue record for this book is available from the British Library Library of Congress Cataloguing in Publication data Beth, Thomas, 1949– Design theory / Thomas Beth, Dieter Jungnickel, Hanfried Lenz. – 2nd ed. p. cm. Includes bibliographical references and index. ISBN 0 521 44432 2 (hardbound) 1. Combinatorial designs and configurations. I. Jungnickel, D. (Dieter), 1952– . II. Lenz, Hanfried. III. Title. QA166.25.B47 1999 5110.6 – dc21 98-29508 CIP ISBN 0 521 44432 2 hardback Contents I. Examples and basic definitions .................... 1 §1. Incidence structures and incidence matrices ............ 1 §2. Block designs and examples from affine and projective geometry ........................6 §3. t-designs, Steiner systems and configurations .........
    [Show full text]
  • Ring (Mathematics) 1 Ring (Mathematics)
    Ring (mathematics) 1 Ring (mathematics) In mathematics, a ring is an algebraic structure consisting of a set together with two binary operations usually called addition and multiplication, where the set is an abelian group under addition (called the additive group of the ring) and a monoid under multiplication such that multiplication distributes over addition.a[›] In other words the ring axioms require that addition is commutative, addition and multiplication are associative, multiplication distributes over addition, each element in the set has an additive inverse, and there exists an additive identity. One of the most common examples of a ring is the set of integers endowed with its natural operations of addition and multiplication. Certain variations of the definition of a ring are sometimes employed, and these are outlined later in the article. Polynomials, represented here by curves, form a ring under addition The branch of mathematics that studies rings is known and multiplication. as ring theory. Ring theorists study properties common to both familiar mathematical structures such as integers and polynomials, and to the many less well-known mathematical structures that also satisfy the axioms of ring theory. The ubiquity of rings makes them a central organizing principle of contemporary mathematics.[1] Ring theory may be used to understand fundamental physical laws, such as those underlying special relativity and symmetry phenomena in molecular chemistry. The concept of a ring first arose from attempts to prove Fermat's last theorem, starting with Richard Dedekind in the 1880s. After contributions from other fields, mainly number theory, the ring notion was generalized and firmly established during the 1920s by Emmy Noether and Wolfgang Krull.[2] Modern ring theory—a very active mathematical discipline—studies rings in their own right.
    [Show full text]
  • Self-Dual Configurations and Regular Graphs
    SELF-DUAL CONFIGURATIONS AND REGULAR GRAPHS H. S. M. COXETER 1. Introduction. A configuration (mci ni) is a set of m points and n lines in a plane, with d of the points on each line and c of the lines through each point; thus cm = dn. Those permutations which pre­ serve incidences form a group, "the group of the configuration." If m — n, and consequently c = d, the group may include not only sym­ metries which permute the points among themselves but also reci­ procities which interchange points and lines in accordance with the principle of duality. The configuration is then "self-dual," and its symbol («<*, n<j) is conveniently abbreviated to na. We shall use the same symbol for the analogous concept of a configuration in three dimensions, consisting of n points lying by d's in n planes, d through each point. With any configuration we can associate a diagram called the Menger graph [13, p. 28],x in which the points are represented by dots or "nodes," two of which are joined by an arc or "branch" when­ ever the corresponding two points are on a line of the configuration. Unfortunately, however, it often happens that two different con­ figurations have the same Menger graph. The present address is concerned with another kind of diagram, which represents the con­ figuration uniquely. In this Levi graph [32, p. 5], we represent the points and lines (or planes) of the configuration by dots of two colors, say "red nodes" and "blue nodes," with the rule that two nodes differently colored are joined whenever the corresponding elements of the configuration are incident.
    [Show full text]
  • Pedal Sets of Unitals in Projective Planes of Order 9 and 16
    SARAJEVO JOURNAL OF MATHEMATICS Vol.7 (20) (2011), 255{264 PEDAL SETS OF UNITALS IN PROJECTIVE PLANES OF ORDER 9 AND 16 VEDRAN KRCADINACˇ AND KSENIJA SMOLJAK Dedicated to the memory of Professor Svetozar Kurepa Abstract. Let U be a unital in a projective plane P. Given a point P 2 P n U, the points F 2 U such that FP is tangent to U are the feet of P , and the set of all such points is the pedal set of P . In this paper we study pedal sets of unitals embedded in projective planes of order 9 and 16. 1. Introduction A finite projective plane of order q can be defined as a block design with parameters (q2 + q + 1; q + 1; 1); that is, a finite incidence structure with q2 + q + 1 points, q + 1 points on every line, and a unique line through every pair of points. Similarly, a unital of order q is a (q3 +1; q +1; 1) block design. For more on finite projective planes we refer to the book [10], and for unitals to [2]. The most interesting unitals are the ones embedded in a projective plane P of order q2. In this setting a unital U is a set of q3 + 1 points of P with the property that every line of P meets U either in one point, or in q + 1 points. In the first case the line is tangent to U, and in the second case it is secant. The set of all tangents is a unital in the dual plane P∗, called the dual unital and denoted by U ∗.
    [Show full text]
  • Configurations of Points and Lines
    Configurations of Points and Lines "RANKO'RüNBAUM 'RADUATE3TUDIES IN-ATHEMATICS 6OLUME !MERICAN-ATHEMATICAL3OCIETY Configurations of Points and Lines Configurations of Points and Lines Branko Grünbaum Graduate Studies in Mathematics Volume 103 American Mathematical Society Providence, Rhode Island Editorial Board David Cox (Chair) Steven G. Krantz Rafe Mazzeo Martin Scharlemann 2000 Mathematics Subject Classification. Primary 01A55, 01A60, 05–03, 05B30, 05C62, 51–03, 51A20, 51A45, 51E30, 52C30. For additional information and updates on this book, visit www.ams.org/bookpages/gsm-103 Library of Congress Cataloging-in-Publication Data Gr¨unbaum, Branko. Configurations of points and lines / Branko Gr¨unbaum. p. cm. — (Graduate studies in mathematics ; v. 103) Includes bibliographical references and index. ISBN 978-0-8218-4308-6 (alk. paper) 1. Configurations. I. Title. QA607.G875 2009 516.15—dc22 2009000303 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to [email protected]. c 2009 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government.
    [Show full text]
  • Zaneville Testimonial Excerpts and Reminisces
    Greetings Dean & Mrs. “Jim” Fonseca, Barbara & Abe Osofsky, Surender Jain, Pramod Kanwar, Sergio López-Permouth, Dinh Van Huynh& other members of the Ohio Ring “Gang,” conference speakers & guests, Molly & I are deeply grateful you for your warm and hospitable welcome. Flying out of Newark New Jersey is always an iffy proposition due to the heavy air traffic--predictably we were detained there for several hours, and arrived late. Probably not coincidently, Barbara & Abe Osofsky, Christian Clomp, and José Luis Gómez Pardo were on the same plane! So we were happy to see Nguyen Viet Dung, Dinh Van Huynh, and Pramod Kanwar at the Columbus airport. Pramod drove us to the Comfort Inn in Zanesville, while Dinh drove Barbara and Abe, and José Luis & Christian went with Nguyen. We were hungry when we arrived in Zanesville at the Comfort Inn, Surender and Dinh pointed to nearby restaurants So, accompanied by Barbara & Abe Osofsky and Peter Vámos, we had an eleventh hour snack at Steak and Shake. (Since Jose Luis had to speak first at the conference, he wouldn’t join us.) Molly & I were so pleased Steak and Shake’s 50’s décor and music that we returned the next morning for breakfast. I remember hearing“You Are So Beautiful,” “Isn’t this Romantic,” and other nostalgia-inducing songs. Rashly, I tried to sing a line from those two at the Banquet, but fell way short of Joe Cocker’s rendition of the former. (Cocker’s is free to hear on You Tube on the Web.) Zanesville We also enjoyed other aspects of Zanesville and its long history.
    [Show full text]
  • Novem~Er 1963
    • ,UNIVERSITY OF NORTH CAROLINA Department of Statistics Chapel Hill" N. C. THE CONSTRUCTION OF TRANSLATION PLANES FROM PROJECTIVE SPACES by R. H. Bruck, University of Wisconsin and R. C. Bose, University of North Carolina Novem~er 1963 National Science Foundation Grant No. GP 16-60 and AF-AFOSR-Grant Noo 84-63 Can eve.ry (non-Desarguest.. an) projee.,tJVe p~' ~ imbedded (in some natural, g~anet.ric ff.hion) in af1J8sarguesian) projective space? The Ite,titn is ne...WI~.ut .. ,trnp.. · ortant, for, if the answer is yes, tfo entirely SEijifia'Wt fields of re- search can be united~ 1his paper ;p~1des. conceptually simple geometric construction 1vh1dti',Y1elds an affirmative answer for a broad class of pla.uer. A plane 1t is given by the construction precisely when 1t is a translation p1ar1e with a coordinatizing :right Veblen-Wedderburn system which is finite-dimensional over its left-operator skew­ field. The condition is satisfied by all known translation planes, including all finite translation p1aneso This research was supported by the National Science Foundation Grant No. GP 16-60 and the Air Force Office of Scientific Research Grant No. 84-63. Institute of Statistics Mimeo Series No. 378 THE CONSTRUCTION OF TRANSLATION PLANES • FROM PROJECTIVE SPACES by l R. H. Bruck, University of Wisconsin and R. C. Bose, University of North Carolina1 --------~--------------------------------.---------------------------------------- 1. Introduction. One might say, with some justice, that projective geometry, in so far as present day research is concerned, has split into two qUite separate fields. On the one hand, the researcher into the foundations of geometry tends to regard Desarguesian spaces as completely known.
    [Show full text]