Phosphatases in Toll-Like Receptors Signaling: the Unfairly-Forgotten

Total Page:16

File Type:pdf, Size:1020Kb

Phosphatases in Toll-Like Receptors Signaling: the Unfairly-Forgotten Lannoy et al. Cell Commun Signal (2021) 19:10 https://doi.org/10.1186/s12964-020-00693-9 REVIEW Open Access Phosphatases in toll-like receptors signaling: the unfairly-forgotten Valérie Lannoy, Anthony Côté‑Biron, Claude Asselin and Nathalie Rivard* Abstract: Over the past 2 decades, pattern recognition receptors (PRRs) have been shown to be on the front line of many illnesses such as autoimmune, infammatory, and neurodegenerative diseases as well as allergies and cancer. Among PRRs, toll‑like receptors (TLRs) are the most studied family. Dissecting TLRs signaling turned out to be advanta‑ geous to elaborate efcient treatments to cure autoimmune and chronic infammatory disorders. However, a broad understanding of TLR efectors is required to propose a better range of cures. In addition to kinases and E3 ubiquitin ligases, phosphatases emerge as important regulators of TLRs signaling mediated by NF‑κB, type I interferons (IFN I) and Mitogen‑Activated Protein Kinases signaling pathways. Here, we review recent knowledge on TLRs signaling modulation by diferent classes and subclasses of phosphatases. Thus, it becomes more and more evident that phos‑ phatases could represent novel therapeutic targets to control pathogenic TLRs signaling. Keywords: Toll‑like receptors, TLRs, Phosphatases, NF‑κB, IRFs axis, IFN I, MAPK Background Polymorphisms (SNPs) of TLRs, their co-receptors and Toll-Like Receptors (TLRs) belong to the Pattern Rec- some adaptors are indeed associated with several dis- ognition Receptors (PRRs) superfamily that recognizes eases including infections, atherosclerosis, asthma, Microbe-Associated Molecular Patterns (MAMPs)—not chronic cardiomyopathy and colorectal cancer [6, 7]. necessarily found on pathogens—, PAMPs (Pathogen) TLRs are divided into two groups: those localized at the and DAMPs (Damage) [1]. Tere are 13 identifed TLRs plasma membrane and those localized at the endosomal in mammals playing an instrumental role in the regula- membrane [8]. Plasma membrane-localized TLRs recog- tion of the innate immune system [2]. Tese receptors nize conserved motifs on extracellular microorganisms are highly conserved proteins also found in the phy- such as bacteria, fungi, protozoan and helminth parasites lum Cnidaria, including jellyfshes [3]. As TLRs evolved [9]. Yet, plasma membrane TLRs are also able to bind before the adaptive immune system, they constitute an DAMPs. Te most glaring example is TLR4 that is well- indispensable frst line of defense [4]. Accordingly, TLRs known to recognize Lipopolysaccharide (LPS), a com- expression is not restricted to immune cell lineages. ponent of Gram-negative bacteria, and 28 other ligands TLR3 and TLR5 mRNAs are detected ubiquitously within including DAMPs [10]. Tis wide range of recognition is the human body, while other TLRs are mostly expressed allowed by combinations between TLRs homodimers or in epithelial tissues (except TLR10, more restricted) [5]. heterodimers with co-receptors and/or accessory mol- Tus, because they constitute the frst line of defense ecules [11]. Te other plasma membrane TLRs include against microbes (see below), TLRs are involved in patho- TLR1, TLR2 and TLR6 which bind various lipopeptides genesis of various disorders. Several Single Nucleotide from Gram-positive bacteria and TLR5 which binds fagellin from fagellated bacteria [9]. Endosomal TLRs (TLR3, TLR7, TLR8, TLR9) are acti- *Correspondence: [email protected] Department of Immunology and Cell Biology, Cancer Research Pavilion, vated by nucleic acids derived from microbes. Teir ecto- Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201, domains undergo proteolytic cleavage in endosomes to rue Jean Mignault, Sherbrooke, QC J1E4K8, Canada generate functional receptors for nucleic acid structures © The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Lannoy et al. Cell Commun Signal (2021) 19:10 Page 2 of 15 [12]. For instance, TLR3 recognizes double stranded suggesting that FAK activation occurs early after TLR RNA (dsRNA), TLR7 and TLR8 recognize single activation [23]. FAK is indeed required for TLR4 down- stranded RNA (ssRNA) and TLR9 binds unmethylated stream signaling since cytokine induction in response to cytidine-phosphate-guanosine (CpG) dinucleotides [13]. LPS is totally abrogated in Fak−/− cells. However, FAK Notably, half of the TLRs exhibit both plasma mem- does not possess TIR domains for direct interaction with brane and endosomal localizations. For instance, in intes- MyD88 or TLR4 [24]. Instead, activated FAK phosphoryl- tinal epithelial cells exposed to bacterial DNA, TLR9 ates BTK which interacts with the TIR domains of TLR4 moves from the endosomal compartment to the cyto- (but also of TLR6, 8, and 9) [25]. BTK phosphorylation by plasmic membrane [14]. In macrophages, membrane- FAK opens its conformation [26] allowing its phospho- associated TLR4 reaches the endosomal compartment rylation and activation by Src kinases (Fig. 1). Once acti- through endocytosis [15]. A similar process has been vated, BTK phosphorylates diferent adapter molecules described for TLR2 which is endocytosed after its heter- such as the bridging adapter TIRAP, facilitating Myd88 odimerization with TLR1 or TLR6 in myeloid cells [16]. recruitment to TLR4 [27]. Interestingly, BTK can also Binding of ligands to TLRs triggers the activation of phosphorylate TLR3 and this is required for downstream several intracellular signaling pathways involving pro- signaling [28]. However, BTK does not phosphorylate tein phosphorylation, dephosphorylation and ubiquit- TRIF, but rather facilitates TRIF interaction with efec- ination. While the roles of specifc protein kinases in this tors Since BTK expression is restricted to myeloid cells, process have been well described [17, 18], much less is ETK, a member of the TEC family of tyrosine kinases, known about the implications of phosphatases, particu- is suspected to play similar functions in other cell types larly tyrosine phosphatases. In this review, we summarize such as epithelial cells. how specifc phosphatases regulate TLRs signaling and Aside from these observations, tyrosine phospho- function. rylation of TLR3 and TLR4 also increased in response to EGF (Epidermal Growth Factor), and inhibition of TLR signaling pathways: an overview EGFR (EGF Receptor) kinase activity impaired activa- Rapid tyrosine phosphorylation following TLRs tion of their downstream signaling. In fact, the Src family engagement kinases mediated this crosstalk between EGFR and TLRs, TLRs are type I membrane glycoproteins with an ectodo- triggering the recruitment of adapters and other efector main consisting of Leucine-Rich Repeats (LRRs), respon- proteins [31, 32]. sible for the molecular recognition of ligands [19]. TLRs Altogether, these observations strongly suggest that contain also a cytoplasmic domain called Toll/Interleu- a coordinated interplay should exist between tyrosine kin-1 Receptor (TIR) domain, which recruits several kinases and phosphatases in order to tightly regulate the adapter proteins including Myeloid Diferentiation pri- activation status of TLRs intracellular signaling and cel- mary response 88 (MyD88), Toll/Interleukin-1 Recep- lular function. Below, we summarize the main signaling tor domain-containing Adapter Protein (TIRAP) or pathways activated by TLRs and we discuss how these TIR-domain-containing adapter-inducing Interferon-β pathways are modulated by various tyrosine and serine/ (TRIF). Upon ligand binding, TLRs undergo conforma- threonine phosphatases. tional changes inducing homodimerization or heterodi- merization which unveil TIR domains which can now The MyD88‑dependent signaling recruit and bind diferent downstream signaling efectors TLRs activate two types of pathways to control infam- regulating the host infammatory response [20]. matory responses: the MyD88-dependent pathway Notably, the TIR domain of TLR2, 3, 4, 5, 8 and 9 is activated by all TLRs except TLR3, and the MyD88-inde- rapidly phosphorylated on tyrosine upon stimulation pendent but TRIF-dependent pathway activated directly with their respective ligands. Tis phosphorylation is by TLR3 and indirectly by other TLRs [33, 34]. Impor- required for the recruitment of adapter proteins and sub- tantly, Myd88 contains a TIR domain as observed in most sequent activation of the downstream signaling cascades TLRs, but most TLRs use the bridging adapter TIRAP [17, 21, 22]. Several tyrosine kinases interact with TLRs, to recruit MyD88 [35]. Indeed,
Recommended publications
  • Genetic Association of PTPN22 Polymorphisms with Autoimmune
    www.nature.com/scientificreports OPEN Genetic Association of PTPN22 Polymorphisms with Autoimmune Hepatitis and Primary Biliary Received: 08 April 2016 Accepted: 23 June 2016 Cholangitis in Japan Published: 11 July 2016 Takeji Umemura1, Satoru Joshita1, Tomoo Yamazaki1, Michiharu Komatsu1, Yoshihiko Katsuyama2, Kaname Yoshizawa3, Eiji Tanaka1 & Masao Ota4 Autoimmune hepatitis (AIH) and primary biliary cholangitis (PBC) are liver-specific autoimmune conditions that are characterized by chronic hepatic damage and often lead to cirrhosis and hepatic failure. Specifically, theprotein tyrosine phosphatase N22 (PTPN22) gene encodes the lymphoid protein tyrosine phosphatase, which acts as a negative regulator of T-cell receptor signaling. A missense single nucleotide polymorphism (SNP) (rs2476601) in PTPN22 has been linked to numerous autoimmune diseases in Caucasians. In the present series, nine SNPs in the PTPN22 gene were analyzed in 166 patients with AIH, 262 patients with PBC, and 322 healthy controls in the Japanese population using TaqMan assays. Although the functional rs3996649 and rs2476601 were non-polymorphic in all subject groups, the frequencies of the minor alleles at rs1217412, rs1217388, rs1217407, and rs2488458 were significantly decreased in AIH patients as compared with controls (allPc < 0.05). There were no significant relationships with PTPN22 SNPs in PBC patients. Interestingly, the AAGTCCC haplotype was significantly associated with resistance to both AIH (odds ratio [OR] = 0.58, P = 0.0067) and PBC (OR = 0.58, P = 0.0048). SNPs in the PTPN22 gene may therefore play key roles in the genetic resistance to autoimmune liver disease in the Japanese. Autoimmune diseases are characterized by an aberrant immune response to self-antigens. Although genetic factors contribute to disease susceptibility and severity, the mechanisms of disease initiation and persis- tence remain poorly understood.
    [Show full text]
  • Dephosphorylating TRAM TRIF-Dependent TLR4 Pathway by Phosphatase PTPN4 Preferentially Inhibits
    Phosphatase PTPN4 Preferentially Inhibits TRIF-Dependent TLR4 Pathway by Dephosphorylating TRAM This information is current as Wanwan Huai, Hui Song, Lijuan Wang, Bingqing Li, Jing of September 29, 2021. Zhao, Lihui Han, Chengjiang Gao, Guosheng Jiang, Lining Zhang and Wei Zhao J Immunol published online 30 March 2015 http://www.jimmunol.org/content/early/2015/03/28/jimmun ol.1402183 Downloaded from Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 29, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2015 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published March 30, 2015, doi:10.4049/jimmunol.1402183 The Journal of Immunology Phosphatase PTPN4 Preferentially Inhibits TRIF-Dependent TLR4 Pathway by Dephosphorylating TRAM Wanwan Huai,* Hui Song,* Lijuan Wang,† Bingqing Li,‡ Jing Zhao,* Lihui Han,* Chengjiang Gao,* Guosheng Jiang,‡ Lining Zhang,* and Wei Zhao* TLR4 recruits TRIF-related adaptor molecule (TRAM, also known as TICAM2) as a sorting adaptor to facilitate the interaction between TLR4 and TRIF and then initiate TRIF-dependent IRF3 activation.
    [Show full text]
  • The Expression Patterns and the Prognostic Roles of PTPN Family Members in Digestive Tract Cancers
    Preprint: Please note that this article has not completed peer review. The expression patterns and the prognostic roles of PTPN family members in digestive tract cancers CURRENT STATUS: UNDER REVIEW Jing Chen The First Affiliated Hospital of China Medical University Xu Zhao Liaoning Vocational College of Medicine Yuan Yuan The First Affiliated Hospital of China Medical University Jing-jing Jing The First Affiliated Hospital of China Medical University [email protected] Author ORCiD: https://orcid.org/0000-0002-9807-8089 DOI: 10.21203/rs.3.rs-19689/v1 SUBJECT AREAS Cancer Biology KEYWORDS PTPN family members, digestive tract cancers, expression, prognosis, clinical features 1 Abstract Background Non-receptor protein tyrosine phosphatases (PTPNs) are a set of enzymes involved in the tyrosyl phosphorylation. The present study intended to clarify the associations between the expression patterns of PTPN family members and the prognosis of digestive tract cancers. Method Expression profiling of PTPN family genes in digestive tract cancers were analyzed through ONCOMINE and UALCAN. Gene ontology enrichment analysis was conducted using the DAVID database. The gene–gene interaction network was performed by GeneMANIA and the protein–protein interaction (PPI) network was built using STRING portal couple with Cytoscape. Data from The Cancer Genome Atlas (TCGA) were downloaded for validation and to explore the relationship of the PTPN expression with clinicopathological parameters and survival of digestive tract cancers. Results Most PTPN family members were associated with digestive tract cancers according to Oncomine, Ualcan and TCGA data. For esophageal carcinoma (ESCA), expression of PTPN1, PTPN4 and PTPN12 were upregulated; expression of PTPN20 was associated with poor prognosis.
    [Show full text]
  • The Regulatory Roles of Phosphatases in Cancer
    Oncogene (2014) 33, 939–953 & 2014 Macmillan Publishers Limited All rights reserved 0950-9232/14 www.nature.com/onc REVIEW The regulatory roles of phosphatases in cancer J Stebbing1, LC Lit1, H Zhang, RS Darrington, O Melaiu, B Rudraraju and G Giamas The relevance of potentially reversible post-translational modifications required for controlling cellular processes in cancer is one of the most thriving arenas of cellular and molecular biology. Any alteration in the balanced equilibrium between kinases and phosphatases may result in development and progression of various diseases, including different types of cancer, though phosphatases are relatively under-studied. Loss of phosphatases such as PTEN (phosphatase and tensin homologue deleted on chromosome 10), a known tumour suppressor, across tumour types lends credence to the development of phosphatidylinositol 3--kinase inhibitors alongside the use of phosphatase expression as a biomarker, though phase 3 trial data are lacking. In this review, we give an updated report on phosphatase dysregulation linked to organ-specific malignancies. Oncogene (2014) 33, 939–953; doi:10.1038/onc.2013.80; published online 18 March 2013 Keywords: cancer; phosphatases; solid tumours GASTROINTESTINAL MALIGNANCIES abs in sera were significantly associated with poor survival in Oesophageal cancer advanced ESCC, suggesting that they may have a clinical utility in Loss of PTEN (phosphatase and tensin homologue deleted on ESCC screening and diagnosis.5 chromosome 10) expression in oesophageal cancer is frequent, Cao et al.6 investigated the role of protein tyrosine phosphatase, among other gene alterations characterizing this disease. Zhou non-receptor type 12 (PTPN12) in ESCC and showed that PTPN12 et al.1 found that overexpression of PTEN suppresses growth and protein expression is higher in normal para-cancerous tissues than induces apoptosis in oesophageal cancer cell lines, through in 20 ESCC tissues.
    [Show full text]
  • Rs2476601 T Allele (R620W) Defines High-Risk PTPN22 Type I Diabetes-Associated Haplotypes with Preliminary Evidence for an Additional Protective Haplotype
    Genes and Immunity (2009) 10, S21–S26 & 2009 Macmillan Publishers Limited All rights reserved 1466-4879/09 $32.00 www.nature.com/gene ORIGINAL ARTICLE rs2476601 T allele (R620W) defines high-risk PTPN22 type I diabetes-associated haplotypes with preliminary evidence for an additional protective haplotype AK Steck1, EE Baschal1, JM Jasinski1, BO Boehm2, N Bottini3, P Concannon4, C Julier5, G Morahan6, JA Noble7, C Polychronakos8, JX She9, GS Eisenbarth1 and the Type I Diabetes Genetics Consortium 1Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO, USA; 2Department of Internal Medicine, Ulm University, Ulm, Germany; 3Institute for Genetic Medicine, University of Southern California, Los Angeles, CA, USA; 4Department of Biochemistry and Molecular Genetics and Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA; 5Ge´ne´tique des Maladies Infectieuses et Autoimmunes, Institut Pasteur, Paris, France; 6Western Australian Institute for Medical Research, The University of Western Australia, Perth, Australia; 7Children’s Hospital Oakland Research Institute, Oakland, CA, USA; 8Department of Human Genetics, The McGill University Health Center, Montreal, Quebec, Canada and 9Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta, GA, USA Protein tyrosine phosphatase non-receptor type 22 (PTPN22) is the third major locus affecting risk of type I diabetes (T1D), after HLA-DR/DQ and INS. The most associated single-nucleotide polymorphism (SNP), rs2476601, has a C-4T variant and results in an arginine (R) to tryptophan (W) amino acid change at position 620. To assess whether this, or other specific variants, are responsible for T1D risk, the Type I Diabetes Genetics Consortium analyzed 28 PTPN22 SNPs in 2295 affected sib-pair (ASP) families.
    [Show full text]
  • RT² Profiler PCR Array (96-Well Format and 384-Well [4 X 96] Format)
    RT² Profiler PCR Array (96-Well Format and 384-Well [4 x 96] Format) Human Protein Phosphatases Cat. no. 330231 PAHS-045ZA For pathway expression analysis Format For use with the following real-time cyclers RT² Profiler PCR Array, Applied Biosystems® models 5700, 7000, 7300, 7500, Format A 7700, 7900HT, ViiA™ 7 (96-well block); Bio-Rad® models iCycler®, iQ™5, MyiQ™, MyiQ2; Bio-Rad/MJ Research Chromo4™; Eppendorf® Mastercycler® ep realplex models 2, 2s, 4, 4s; Stratagene® models Mx3005P®, Mx3000P®; Takara TP-800 RT² Profiler PCR Array, Applied Biosystems models 7500 (Fast block), 7900HT (Fast Format C block), StepOnePlus™, ViiA 7 (Fast block) RT² Profiler PCR Array, Bio-Rad CFX96™; Bio-Rad/MJ Research models DNA Format D Engine Opticon®, DNA Engine Opticon 2; Stratagene Mx4000® RT² Profiler PCR Array, Applied Biosystems models 7900HT (384-well block), ViiA 7 Format E (384-well block); Bio-Rad CFX384™ RT² Profiler PCR Array, Roche® LightCycler® 480 (96-well block) Format F RT² Profiler PCR Array, Roche LightCycler 480 (384-well block) Format G RT² Profiler PCR Array, Fluidigm® BioMark™ Format H Sample & Assay Technologies Description The Human Protein Phosphatases RT² Profiler PCR Array profiles the gene expression of the 84 most important and well-studied phosphatases in the mammalian genome. By reversing the phosphorylation of key regulatory proteins mediated by protein kinases, phosphatases serve as a very important complement to kinases and attenuate activated signal transduction pathways. The gene classes on this array include both receptor and non-receptor tyrosine phosphatases, catalytic subunits of the three major protein phosphatase gene families, the dual specificity phosphatases, as well as cell cycle regulatory and other protein phosphatases.
    [Show full text]
  • The Role of Protein Tyrosine Phosphatases in Inflammasome
    International Journal of Molecular Sciences Review The Role of Protein Tyrosine Phosphatases in Inflammasome Activation Marianne R. Spalinger 1,* , Marlene Schwarzfischer 1 and Michael Scharl 1,2 1 Department of Gastroenterology and Hepatology, University Hospital Zurich, 8091 Zurich, Switzerland; Marlene.Schwarzfi[email protected] (M.S.); [email protected] (M.S.) 2 Zurich Center for Integrative Human Physiology, University of Zurich, 8006 Zurich, Switzerland * Correspondence: [email protected]; Tel.: +41-44-255-3794 Received: 16 July 2020; Accepted: 29 July 2020; Published: 31 July 2020 Abstract: Inflammasomes are multi-protein complexes that mediate the activation and secretion of the inflammatory cytokines IL-1β and IL-18. More than half a decade ago, it has been shown that the inflammasome adaptor molecule, ASC requires tyrosine phosphorylation to allow effective inflammasome assembly and sustained IL-1β/IL-18 release. This finding provided evidence that the tyrosine phosphorylation status of inflammasome components affects inflammasome assembly and that inflammasomes are subjected to regulation via kinases and phosphatases. In the subsequent years, it was reported that activation of the inflammasome receptor molecule, NLRP3, is modulated via tyrosine phosphorylation as well, and that NLRP3 de-phosphorylation at specific tyrosine residues was required for inflammasome assembly and sustained IL-1β/IL-18 release. These findings demonstrated the importance of tyrosine phosphorylation as a key modulator of inflammasome activity. Following these initial reports, additional work elucidated that the activity of several inflammasome components is dictated via their phosphorylation status. Particularly, the action of specific tyrosine kinases and phosphatases are of critical importance for the regulation of inflammasome assembly and activity.
    [Show full text]
  • Pathologic Oxidation of PTPN12 Underlies ABL1 Phosphorylation In
    Published OnlineFirst October 8, 2018; DOI: 10.1158/0008-5472.CAN-18-0901 Cancer Priority Report Research Pathologic Oxidation of PTPN12 Underlies ABL1 Phosphorylation in Hereditary Leiomyomatosis and Renal Cell Carcinoma Yang Xu1,2,3, Paul Taylor4, Joshua Andrade5, Beatrix Ueberheide5,6, Brian Shuch7, Peter M. Glazer7, Ranjit S. Bindra7, Michael F. Moran4,8, W. Marston Linehan9, and Benjamin G. Neel1,2,3 Abstract Hereditary leiomyomatosis and renal cell carcinoma PTP oxidation in FH-deficient cells was reversible, although (HLRCC) is an inherited cancer syndrome associated with a nearly 40% of PTPN13 was irreversibly oxidized to the highly aggressive form of type 2 papillary renal cell carcinoma sulfonic acid state. Using substrate-trapping mutants, we (PRCC). Germline inactivating alterations in fumarate hydratase mapped PTPs to their putative substrates and found that (FH) cause HLRCC and result in elevated levels of reactive only PTPN12 could target ABL1. Furthermore, knockdown À À oxygen species (ROS). Recent work indicates that FH / PRCC experiments identified PTPN12 as the major ABL1 phos- cells have increased activation of ABL1, which promotes tumor phatase, and overexpression of PTPN12 inhibited ABL1 growth, but how ABL1 is activated remains unclear. Given that phosphorylation and HLRCC cell growth. These results oxidation can regulate protein-tyrosine phosphatase (PTP) show that ROS-induced oxidation of PTPN12 accounts for catalytic activity, inactivation of an ABL-directed PTP by ROS ABL1 phosphorylation in HLRCC-associated PRCC, reveal- might account for ABL1 activation in this malignancy. Our ing a novel mechanism for inactivating a tumor suppressor group previously developed "q-oxPTPome," a method that gene product and establishing a direct link between path- globally monitors the oxidation of classical PTPs.
    [Show full text]
  • The Balance of Expression of PTPN22 Splice Forms Is Significantly Different
    Ronninger et al. Genome Medicine 2012, 4:2 http://genomemedicine.com/content/4/1/2 RESEARCH Open Access The balance of expression of PTPN22 splice forms is significantly different in rheumatoid arthritis patients compared with controls Marcus Ronninger1*†, Yongjing Guo2†, Klementy Shchetynsky1, Andrew Hill3, Mohsen Khademi4, Tomas Olsson4, Padmalatha S Reddy3, Maria Seddighzadeh1, James D Clark2, Lih-Ling Lin2, Margot O’Toole2 and Leonid Padyukov1 Abstract Background: The R620W variant in protein tyrosine phosphatase non-receptor 22 (PTPN22) is associated with rheumatoid arthritis (RA). The PTPN22 gene has alternatively spliced transcripts and at least two of the splice forms have been confirmed to encode different PTPN22 (LYP) proteins, but detailed information regarding expression of these is lacking, especially with regard to autoimmune diseases. Methods: We have investigated the mRNA expression of known PTPN22 splice forms with TaqMan real-time PCR in relation to ZNF592 as an endogenous reference in peripheral blood cells from three independent cohorts with RA patients (n = 139) and controls (n = 111) of Caucasian origin. Polymorphisms in the PTPN22 locus (25 SNPs) and phenotypic data (gender, disease activity, ACPA and RF status) were used for analysis. Additionally, we addressed possible effects of methotrexate treatment on PTPN22 expression. Results: We found consistent differences in the expression of the PTPN22 splice forms in unstimulated peripheral blood mononuclear cells between RA patients and normal controls. This difference was more pronounced when comparing the ratio of splice forms and was not affected by methotrexate treatment. Conclusions: Our data show that RA patients and healthy controls have a shift in balance of expression of splice forms derived from the PTPN22 gene.
    [Show full text]
  • Deciphering the Link Between PTPN22 and Autoimmunity
    Deciphering the link between PTPN22 and Autoimmunity Pratigya Gautam Department of Infection, Immunity and Biochemistry School of Medicine Cardiff University A dissertation submitted to Cardiff University in candidature for the degree of Doctor of Philosophy September 2011 UMI N um ber: U 584572 All rights re se rv e d INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate th e deletion. Dissertation Publishing UMI U 584572 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 DECLARATION This work has not previously been accepted in substance for any degree and is not concurrently submittal in candidature for any degree. S ig n e d ......'/'j t '' ..................................... (candidate) Date ...... STATEMENT 1 This thesis is being submitted in partial fulfillment of the requirements for the degree of ^....(insert MCh, MD, MPhil, PhD etc, as appropriate) Signed (candidate) Date STATEMENT 2 This thesis is the result of my own independent work/investigation, except where otherwise stated. Other sources are Acknowledged by explicit references. (candidate)Signed ± m j± . STATEMENT 3 I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-library loan, and for the title and summary to be made available to outside organisations, Signed (candidate) Date 2 Acknowledgements This project would not have been possible without the generous help of many people.
    [Show full text]
  • Identification and Expression of the Family of Classical Protein-Tyrosine Phosphatases in Zebrafish
    Identification and Expression of the Family of Classical Protein-Tyrosine Phosphatases in Zebrafish Mark van Eekelen1, John Overvoorde1, Carina van Rooijen1, Jeroen den Hertog1,2* 1 Hubrecht Institute, KNAW and University Medical Center Utrecht, Utrecht, The Netherlands, 2 Institute of Biology Leiden, Leiden University, Leiden, The Netherlands Abstract Protein-tyrosine phosphatases (PTPs) have an important role in cell survival, differentiation, proliferation, migration and other cellular processes in conjunction with protein-tyrosine kinases. Still relatively little is known about the function of PTPs in vivo. We set out to systematically identify all classical PTPs in the zebrafish genome and characterize their expression patterns during zebrafish development. We identified 48 PTP genes in the zebrafish genome by BLASTing of human PTP sequences. We verified all in silico hits by sequencing and established the spatio-temporal expression patterns of all PTPs by in situ hybridization of zebrafish embryos at six distinct developmental stages. The zebrafish genome encodes 48 PTP genes. 14 human orthologs are duplicated in the zebrafish genome and 3 human orthologs were not identified. Based on sequence conservation, most zebrafish orthologues of human PTP genes were readily assigned. Interestingly, the duplicated form of ptpn23, a catalytically inactive PTP, has lost its PTP domain, indicating that PTP activity is not required for its function, or that ptpn23b has lost its PTP domain in the course of evolution. All 48 PTPs are expressed in zebrafish embryos. Most PTPs are maternally provided and are broadly expressed early on. PTP expression becomes progressively restricted during development. Interestingly, some duplicated genes retained their expression pattern, whereas expression of other duplicated genes was distinct or even mutually exclusive, suggesting that the function of the latter PTPs has diverged.
    [Show full text]
  • PTPN22 Is a Critical Regulator of Fcγ Receptor–Mediated Neutrophil
    PTPN22 Is a Critical Regulator of Fcγ Receptor−Mediated Neutrophil Activation Sonja Vermeren, Katherine Miles, Julia Y. Chu, Donald Salter, Rose Zamoyska and Mohini Gray This information is current as of October 3, 2021. J Immunol 2016; 197:4771-4779; Prepublished online 2 November 2016; doi: 10.4049/jimmunol.1600604 http://www.jimmunol.org/content/197/12/4771 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2016/11/01/jimmunol.160060 Material 4.DCSupplemental References This article cites 53 articles, 27 of which you can access for free at: http://www.jimmunol.org/content/197/12/4771.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on October 3, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 The Authors All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology PTPN22 Is a Critical Regulator of Fcg Receptor–Mediated Neutrophil Activation Sonja Vermeren,* Katherine Miles,* Julia Y. Chu,* Donald Salter,† Rose Zamoyska,‡ and Mohini Gray* Neutrophils act as a first line of defense against bacterial and fungal infections, but they are also important effectors of acute and chronic inflammation.
    [Show full text]